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PACS.02.50.-r Probability theory, stochastic processes and statistics

PACS.89.90.+n Other areas of general interest to physicists

Abstract. Stretched exponential probability density functions (pdf), having the form of the

exponential of minus a fractional power of the argument, are commonly found in turbulence and

other areas. They can arise because of an underlying random multiplicative process. For this,

a theory of extreme deviations is developed, devoted to the far tail of the pdf of the sum X of

a finite number n
of independent random variables with a common pdf e~f~~~. The function

f(z) is chosen (I) such that the pdf is normalized and (it) with a strong convexity condition

that f"(z) > 0 and that z~f"(x)
~ +oo for (z( ~ oo.

Additional technical conditions ensure

the control of the variations of f"(x). The tail behavior of the sum comes then mostly from

individual variables in the sum all close to X/n and the tail of the pdf is
mJ

e~"f~~/"~. This theory
is then applied to products of independent random variables, such that their logarithms are in

the above class, yielding usually stretched exponential tails. An application to &agmentation is

developed and compared to data from fault gouges. The pdf by mass is obtained as a weighted

superposition of stretched exponentials, reflecting the coexistence of different fragmentation

generations. For sizes near and above the peak size, the pdf is approximately log-normal, while

it is a power law for the smaller fragments, with an exponent which is a decreasing function

of the peak fragment size. The anomalous relaxation of glasses can also be rationalized using

our result together with a simple multiplicative model of local atom configurations. Finally, we

indicate the possible relevance to the distribution of small-scale velocity increments in turbulent

flow.

1. Introduction

Consider the sum
n

Sn ~ Z~, (1)~
i=1
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where the x~ are independent identically distributed (iid) random variables with probability
density function (pdf) p(x) and mean value (xi. The central limit theorem ensures, with

suitable conditions such as the existence of finite second-order moments or refinements thereof

[1,2], that as n ~ cc the pdf of ~@ becomes Gaussian. In other words, the "typical"

fluctuations of Sn In around its mean value are Gaussian and O(I/@). The large deviations

theory is concerned with events of much lower probability when Sn In deviates from its mean

value by a quantity O(1) [3-6]. In non-technical terms, for large n,

Prob
~"

m

j
mJ

e"~~~~, (2)
~

where sly) < 0 is the CramAr function (also called "rate function" ).
In this paper we are concerned with "extreme deviations", that is the rAgime of finite

n

and large Sn
=

X. This r4gime exists only when the pdf extends to arbitrary large values of

x Ii-e- has noncompact support). In other words, we are interested in tail behavior. While

it is common in statistics to consider test probabilities of the order of li~, much smaller

probabilities are of interest in many areas in which crisis may ensue. If, for instance, one

wishes to investigate whether a chemical substance causes cancer, one will be interested in

very small test probabilities to make a convincing case. In the field of reliability, failure and

rupture, for instance of industrial plants, very small probabilities are the rule. Examples are the

calculation of the probability of a defect item passing an inspection system and the calculation

of the reliability of
a system. 10~~ is the probability threshold beyond which the U-S- Food &

Drug administration considers that any risk from a food additive is considered too small to be

of concern. In the same spirit, the legal U-S- maximum man-made risk to public is 5 x
10~~

The main result about extreme deviations for sums of random variables is presented in

Section 2. The relation to large deviations theory and to other work on extreme deviations is

briefly discussed in Section 3. Multiplication of random variables is considered in Section 4.

Applications are presented in Section 5. The Appendix is devoted to a rigorous derivation of

the main result for sums of independent variables.

2. Extreme Deviations for Sums of Random Variables

We are interested in the tail behavior for large arguments x of sums of iid random variables

x~, I
=

1,2,.. We shall only consider large positive values of
x.

All the results can be

adapted mutatis mutandis to large negative values. We assume that the common probability
distribution of the x~'s has a pdf, denoted p(x), which is normalized:

/
P(x) dx

=
1, (3)

and which can be represented as an exponential:

P(x)
=

e~~~~~, (4)

where f(x) is indefinitely differentiable (~). We rule out the case where f(x) becomes infinite

at finite x; this would correspond to a
distribution with compact support which has no extreme

deviations.

The key assumptions are now listed. All statements involving a limit are understood to be

for
x ~ +cc.

(~) As we shall see in the Appendix, this assumption can be relaxed.
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(I) f(x) ~ +cc sufficiently fast to ensure the normalization (3);

iii) f"(x) > 0 (convexity), where f" is the second derivative of f (~);

(iii) lim
fi

=
0, for k > 3, where f(~) is the kth derivative of f. The k

=
3 instance of

(iii) will be denoted by (iii).

An important consequence of (iii) is

limx~ f"(x)
=

+m, (5)

the proof of which is given in the Appendix (Lemma I).
We introduce now the pdf Pm (x) of Sn

=

£]
x~ which may be written as a multiple convo-

lution:

~

Pn(x)
=

e~
£~=i f~~~~ d x

~j
x~ dxi dxn. (6)

~j
~_~

n

All integrals are from
-cc to +cc. The delta function expresses the constraint on the

sum.

We shall show that, under assumptions (I)-(iii), the leading-order expansion of Pm (x) for large

x and finite n > I is given by

j

Pn(x)me~"f(~/"~ ~'~ ~,
for x~cc and n finite (7)Vh f"(X/11)

Furthermore, we shall show that the leading contribution comes from individual terms in the

sum which are democratically localized. By this we understand that the conditional probability
of the x~'s, given that the sum is x, is localized, for large x, near

xi Cf x2 Cf xn m

~ (8)
n

In this section we give a derivation of this result using a formal asymptotic expansion closely
related to Laplace's method for the asymptotic evaluation of certain integrals [8] (~). In the

Appendix we shall give a rigorous proof.
To evaluate (6) for

n > 2, we define new variables

h~ W x~
~, for I

=
I,.

,
n 1 (9)

n

hn w (hi + + hn-1), (10)

and the function

gn (x; hi,.
,

hn-i)
m

f
J ()

+ h~)
(ii)

i=1

We can then rewrite (6) as

Pn(x)
=

/ /
e~~"~~"~i" '~"-i~ dhi dhn-1. (12)

fi

(~) This is called log-concavity of the density by Jensen [7] whose work we shall comment on in

Section 3.

(~) This method is sometimes referred to as "steepest descent", an inadequate terminology when f(z)
is not analytic.
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The function gn has the following Taylor expansion in powers of the h~'s:

Note the absence of the term linear in the h~'s since, by (10), £)~~ h~
=

0.

If we momentarily ignore the terms of order higher than two in (13), we obtain for Pm (x)

a Gaussian integral the convergence of which is ensured by the convexity condition (it). This

integral is evaluated by setting y =
0 and

=

(1/2) f"(x In) in the identity (~)

le~'~~+...+~~-i+~~~~...~"~~~i
dhi dhn-i

=

) Ill ~ e+~~ (14)

~i

We thereby obtain the desired asymptotic expression (7) for Pm (x).
We now show that higher than second order terms in the taylor expansion (13) do not

contribute to the leading-order result. The quadratic form (1/2) f"(x In) £]~~ h( in the n I

variables hi,
,

hn-i can be diagonalized (it is just proportional to the square of the Euclidean

norm in the subspace £]~~ h~
=

0). One can show by recurrence that it has n 2 eigenvalues
equal to (1/2) f"(x In) and one eigenvalue n times larger. Hence, the Gaussian multiple integral

comes from h~'s which are all O(I/ f"(x In)) or smaller. For such h~'s, it follows from the

assumption (iii) that all higher order terms are negligible for large x. Furthermore, the scatter

of the x~'s around the value
x

In, measured by the the rms value of the h~'s is O(I / f"(x In)).
By (5), this is small compared to x, which proves the democratic localization property (8).

We shall also make use of
a

weaker result obtained by taking the logarithm of (7), namely

In Pn(x)
ci

-nf(x In), for
x ~ cc and n finite. (15)

This weaker form holds only if

j~ jll~~ /y~~

j~
~ /~~ ~ °' (16)

We make a few remarks. Our derivation is reminiscent of the derivation of Laplace's asymp-

totic formula for integrals of the form f e~~f(~) dx when 1 ~ cc, as given, e.g., in reference [8].
The main difference is that in Laplace's method, when f is Taylor expanded around its min-

imum, terms of order higher than two give contribution smaller by higher and higher inverse

powers of I, so that a single small parameter I IA is enough to justify the expansion, whereas

here we made
an

infinite number of assumptions (iii) for all n > 3. Actually, it will be shown

in the Appendix that the sole assumption (iii) with a slight strengthening of (5) is enough to

derive the leading-order term (7).
It is easily checked that our result is not equivalent to the well-known fact that the most

probable increment Ax /At of a random walk conditioned to go from (x, t) to (x', t') is constant

and equal to the average slope (x' x) /(t' t) in other words, the most probable path is then

a straight line, corresponding to a constant reduced running sum.

The convexity of f(x) at large
x is essential for our result to hold. For instance, pdf's with

powerlaw tails p(z)
oc

z~(~+") give f(z)
=

(I+p) In
x which is concave. The extreme deviations

of the sum
Sn

are
then controlled by realizations where just one term in the sum dominates.

(~) This identity if obtained, after proper normalization, by evaluating the n-fold convolution of a

Gaussian distribution of variance 1/(2A) with itself, which is a Gaussian of variance n/(2A).
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This extends to arbitrary exponents p, in this extreme deviations rAgime, the well-known result

that the breakdown of the central limit theorem for p < 2 stems from the dominance of a few

large terms in the sum. The breakdown of democratic localization far in the tail also happens
for pdf's with finite moments of all orders, for example, when p(x)

oc x~ ~~~ at large x. Here,
again the function f(x)

=

In~
x is not convex.

The result (15) can be formally (~) generalized to the case of dependent variables with nonsep-
arable pdf's p(xi, x2,

,
x~,

,

xn)
=

exp[- f(xi, x2,
,

x~,
,

xn)] where f (xi, x2,
,

x~,
,

xn)
is symmetric and convex. Indeed, fl [~~=~~=___=~~=s~ In is then independent of I and the matrix

of second derivatives b~f/bx) evaluated at xi = x2 = = xn =

Sn In is positive, ensuring
that f is minimum at xi = x2 = = xn =

Sn In, thereby providing the major contribution

to the convolution integral.

3. Relation with the Theory of Large Deviations

We now assume, in addition to conditions (I)-(iii) of Section 2, that the characteristic function

Z(fl)
+

je~fl~j
=

/
e~fl~p(x) dx (17)

exists for all real fl's (Cram4r condition). Recall that the CramAr function sly) is determined

by the following set of equations (see, e.g., Refs. [4,6,9]):

s(y)
=

In Zjfl) + fly, (18)

@
~

fl. (ig)

Hence, s(y) is the Legendre transform of In Z(fl).
Comparison of (2) with (15) shows that the Cram6r function s(y) becomes equal to f(y)

for large y. We can verify this statement by inserting the form p(x)
=

e~f(~) into (17) to get

Z(fl)
mJ

fj~~ dxe~fl~~f(~) For large [fl[, we can then approximate this integral by Laplace's

method, yielding Z(fl)
mJ

e~~'~~~(fl~+f(~)) Taking the logarithm and a Legendre transform,

we recover the identification that s(y) ~ f(y) for large y. Laplace's method is justified by

the fact that (y( ~ cc corresponds, in the Legendie transformation, to [fl[ ~ cc. A number

of more precise re§ults are known, which relate the tail probabilities of random variables to

the large-y behavior of the Cram6r function. For example, Broniatowski and Fuchs [10] give

conditions for the asymptotic equivalence of s(y) (called by them the "Chernov function" and

of Inf(y) where fl(y)
e

f°~ p(x) dx.

A consequence is that theiarge and extreme deviations rAgime overlap when taking the two

limits
n ~ cc and Sn In ~ cc. Indeed, large deviations theory usually takes n ~ cc while

keeping Sn In finite, whereas our extreme deviations theory takes n finite with Sn ~ cc.
Our

analysis shows that, in the latter r6gime, Cram6r's result already holds for finite n. The true

small parameter of the large deviations theory is thus not I In but min(I In, n/Sn).
A paper by Borokov and Mogulskii Ill] contains a result resembling somewhat ours. Their

equation (12) of Section I states, in our notation, that

Sn(v)
=

nS(v/n), (2°)

(~) Additional assumptions are then needed to make sure that higher than second-order terms in the

Taylor expansion are not contributing.
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where sn(y) is the Cram6r function for the sum of
n

independent and identically distributed

copies of a random variable with Cram4r function s(y). If we identify the tail of the Cram6r

function with minus the logarithm of the (tail of the) pdf, their result becomes identical with

(15). However, their result makes no use of the convexity assumption without which our result

will generally not hold.

Broniatowski and Fuchs [10] derive a more general but weaker theorem on the cumulative

distribution of Sn for finite n, which ressembles somewhat our result on the democratic local-

ization property (8). It is more general because it is valid for pdf's not obeying the convexity
condition (5), for example, the Cauchy distribution. It is weaker because it states only that

there is a number on > 0 such that

In Prob (Sn > nx)
= an [I + o(I)] In Prob (min(xi,

,

xn)) > x)
,

(21)

for x ~ cc. Roughly speaking, (21) means that the main contributions to the event Sn > nx

come from the realizations where all variables constituting the sum are larger than x, a much

weaker statement than the property of democratic localization (8).
Jensen Iii also considers the case where n is finite and the tail probability tends to zero, for

particular choices of the pdf. Jensen is able to show in a few examples that, even though there

is no asymptotics, I.e. there is no n tending to infinity, the saddlepoint expansion allows one to

get the correct order of the probabilities in the tail, using the so-called tilted density introduced

by Esscher [12]. Coupled with the Edgeworth expansion, this leads to results similar to ours.

Our work generalizes and systematizes these partial results by providing general conditions

of applications, in particular not requiring that f be Taylor expandable to all orders (see the

Appendix).

4. Multiplications of Random Variables

Consider the product

Xn
~ mlm2' mm (22)

of n independent identically distributed positive (~) random variables with pdf p(x). Taking the

logarithm of Xn, it is clear that we
recovir the previous problem (I) with the correspondence

x~ a Inm~, Sn m lnXn and f(x)
=

Inp(e~) + x.
Assuming again the set of conditions (I),

(it) and (iii) on f, we can
apply the extreme deviations result (15) which translates into the

following form for the pdf Pm (X) of Xn at large X:

Pn(X)mJjJ(X~/")]", for X~cc and
n

finite. (23)

(In this section we omit prefactors; this amounts to using (15) instead of (7).) Equation (23)
has a very intuitive interpretation: the tail of Pm (X) is controlled by the realizations where

all terms in the product are of the same order; therefore Pm (X) is, to leading order, just the

product of the n pdf's, each of their arguments being equal to the common value X~/"

When p(x) is an exponential, a Gaussian or, more generally, of the form oc
exp(-Cx~)

with ~/ > 0, then (23) leads to stretched exponentials for large n. For example, when

p(x)
oc

exp(-Cx~), then Pm (X) has a tail oc
exp(-CnX~/").

(~) What follows is immediately extended to the case of signed m~'s with a synimetric distribution.
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Note that (23) can be obtained directly by recurrence. Starting from Xn+i
=

Xnxn+i, we

write the equation for the pdf of Xn+i in terms of the pdf's of xn+i and Xn:

a~ a~

Pn+i (xn+i
=

dxnPn(xn) dzn+ip(zn+i)d(xn+i xnzn+1)

03 ~~ ~
-

vPn(xn)P Ii)
(24)

The maximum of the integrand occurs for Xn
=

(Xn+1)~"~~~/" at which X(/"
=

Xn+i /Xn.
Assuming that Pn(Xn) is of the form (23), the formal application of Laplace's method to (24)
then directly gives that Pn+i (Xn+i) is of the same form (~). Thus, the property (23) holds for

all n to leading order in X.

Some generalizations
are easily obtained. For instance, for exponential distributions, we can

allow for different characteristic scales aj defined by pj(x)
=

aje~"3~3 Equation (23) then

becomes
" i In n

Pm (X)
mJ exp -n X fl

aj for Xn >
fl (25)

~~i ~=i
°J

2 -x~/2a) ~jtji
z > 0, We ObtainSimilarly, if pj (X)

= /paj ~ ~
' ~

~n(~°)
~ ~~P~~)

fl~)~2~
~

~~~ ~" ~

~
~J' ~~~~

j= j

~

j=1

5. Applications

Considering the simplicity and robustness of the results derived above, we expect the extreme

deviation mechanism to be at work in a number of physical or other systems. We are thinking
in particular of the application of our result to simple multiplicative processes, that might

constitute zeroth-order descriptions of a large variety of physical systems, exhibing anomalous

pdf and relaxation behaviors. There is no generally accepted mechanism for their existence

and their origin is still the subject of intense investigation. The extreme deviations rAgime may

provide a very general and essentially model-independent mechanism, based on the extreme

deviations of product of random variables.

Fragments are often found to be distributed according to power law distributions [13] In Sec-

tion 5.I, we propose a multiplicative fragmentation model in which the exponent is controlled

by the depth of the cascading process. Anomalous relaxations in glasses have been largely
documented to occur according to stretched exponentials [14,15]. In Section 5.2, we construct

a relaxation model based on the idea that a complex disordered system can be divided into an

ensemble of local configurations, each of them hierarchically ordered. Stretched exponential
pdf are observed in turbulent flow (see, e.g., Ref. [9]) and our extreme deviation theory pro-
vides a simple scenario (Sect. 5.3). Let us finally mention the question of stock market prices
and their distribution. Here, the very nature of the pdf's is still debated [16,17]. While price

variations at short time scales (minutes to hours)
are well-fitted by truncated Ldvy laws [18],

other alternative have been proposed [16]. We have found that a
stretched exponential pdf

provides an economical and accurate fit to the full range of currency price variations at the

daily intermediate time scale. We will come back in future work to document this claim and

to describe the relevance of the multiplicative processes studied here.

(~) Control over higher-order terms in the asymptotic expansion requires, of course, the same condi-

tions (I)-(iii)
as in Section 2.
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5. I. FRAGMENTATION. Fragmentation occurs in a wide variety of physical phenomena from

geophysics, material sciences to astrophysics and in a wide range of scales. The simplest (naive)
model is to ignore conservation of mass and to view fragmentation as a multiplicative process

in which the sizes of children are fractions of the size of their parents. If we assume that the

succession of breaking events are independent and concentrate on a given generation rank n,

our above result (23) applies to the distribution of fragment size X, provided we take X to zero

rather than to infinity. Indeed, the factors ml, m2,
,

mm are all less or equal to unity (8).
If

we take, for example, p(m)
oc exp (-cm~) for small m, we obtain Pm (X)

oc exp
(-cnX~/").

For values of X which are order unity, large deviations theory applies when n ~ cc.
This

does not, in general, lead to a log-normal distribution, because central limit arguments are

inapplicable, except in the very neighborhood of the peak of the pdf of X (see, e.g., Ref. [9].
Sect. 8.6.5).

Next, we observe that most of the measured size distribution of fragments, not conditioned

by generation rank, display actually power-law behavior
oc X~~ with exponents T between 1.9

and 2.6 clustering around 2.4 [19]. Several models have been proposed to rationalize these

observations [13, 20] but there is no accepted theoretical description.
Here, we would like to point out a very simple and robust scenario to rationalize these obser-

vations. We again neglect the constraint that the total mass of the children is equal to that of

the parent and use the simple multiplicative model. Indeed, the constraint of conservation be-

comes less and less important for the determination of the pdf as the generation rank increases.

To illustrate what we have in mind, consider a comminution process in which, with a certain

probablity less than unity. a "hammer" repetitively strikes all fragments simultaneously. Then

the generation rank corresponds to the number of hammer hits. In real experiments, however.

each fragment has suffered a specific number of effective hits which may vary greatly from one

fragment to the other. The measurements of the size distribution should thus correspond to

a superposition of pdf's of the form (23) in the tail X ~ 0. Recent numerical simulations of

lattice models with disorder [21] show indeed that, for sufficient disorder, the fragmentation

can be seen as a cascade branching process.

Let us now assume that the tail of the size distribution for a fixed generation rank n is given
by (23) and that the mean number N(n) (per unit volume) of fragments of generation rank n

grows exponentially: N(n)
oc

e~" with > 0. It then follows that the tail of the unconditioned

size distribution is given by

P~;z~(x)
~

f ~(xi/n)ire>n
~J

/°° dn en inP(x~/")+~> (27)

~=o o

Application of Laplace's method in the variable n, treated as continuous, gives a critical (sad-
dle) point

n~ =
lnX, (28)

a

where a is the solution of the transcendental equation

The leading-order tail behavior of the size distribution is thus given by

Size mJ
-T~ ~~~ ~

(8) When taking the logarithm, the tail for X ~ 0 corresponds to the r6gime where the sum of

logarithms goes to -oo. Although X ~ 0, is not strictly speaking a "tail", we shall still keep this

terminology.
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with an exponent

T =
[ln p (e~") + Aj (31)

a

This solution (30) holds for A smaller than a threshold Ac dependent on the specific structure

of the pdf p(x). For instance, consider p(z)
oc exp (-Cx~) for

x ~ 0, with d > 0. This

corresponds to a pdf going to a constant as x ~ 0, with a vanishing slope (d > I), infinite

slope (d < I)
or finite slope (d

=

I). The equation (29) for a becomes A/C
=

(I + ad)e~"~.
This has a solution only for < C, as the function (I + x)e~~ has its maximum equal to I at

x =
0. For approaching C from below, the exponent of the power law distribution is given by

T =
Cd + O(Wt). At the other end 1~ 0+,

we get T ~ Cde. In between, for 0 < 1 < C,
the quantity T/(Cd) goes continuously from

e m 2.718 to I. It is interesting that T depends on

the parameters of the pdf p(x) only through the product Cd.

What happens for I > C ? To find out, we return to the expression (27) giving the tail of the

unconditioned size distribution and find that the exponential in the integral reads e"?~~~~~"~

In the limit of small fragments X ~ 0, the term X~/" is dominated by the large
n limit for

which it is bounded by I. Thus, A CX~/" < A C. For A > C, the larger n is, the larger
the exponential is, while for A < C there is an optimal generation number n~, for

a given size

X, given by (28). For I > C, the critical value n~ moves to infinity. Physically, this is the

signature of a shattering transition occurring at I
=

C: for 1 > i7, the number of fragments
increases so fast with the generation number n

(as e~"
> e~") that the distribution of fragment

sizes develops a finite measure at X
=

0. This result is in accordance with intuition: it is when

the number of new fragments generated at each hammer hit is sufficiently large that a dust

phase can appear. This shattering transition has been obtained first in the context of mean

field linear rate equations [22].
Consider another class of pdf p(x)

oc exp (-Cx~~) for
x ~ 0, with d > 0. The pdf p(x)

goes to zero
faster than any power law as x ~ 0 (1.e. has an essential singularity). The

difference with the previous case is that, as the multiplicative factor x ~ 0 occurs with very
low probability in the present case, we do not expect a large number of small fragments to be

generated. This should be reflected in a negative value of the exponent T.
This intuition is

confirmed by an explicit calculation showing that T
becomes the opposite of the value previously

calculated, I-e; T/(Cd) goes continuously from -e m -2.718 to -I as 1 goes from 0 to C.

In sum, we propose that the observed power-law distributions of fragment sizes could be the

result of the natural mixing occurring in the number of generations of simple multiplicative

processes exhibiting extreme deviations. This power-law structure is very robust with respect to

the choice of the distribution p(x) of fragmentation ratios, but the exponent T is not universal.

The proposed theory leads us to urge the making of experiments in which one can control the

generation rank of each fragment. We then predict that the fragment distribution will not

be (quasi-) universal anymore buton the contrary characterize better the specific mechanism

underlying the fragmentation process.

The result (30) only holds in the "tail" of the distribution for very small fragments. In the

center, the distribution is still approximately log-normal. We can thus expect a relationship
between the characteristic size or peak fragment size and the tail structure of the distribution.

It is in fact possible to show that the exponent T given by (31) is a decreasing function of the

peak fragment size: the smaller is the peak fragment size, the larger will be the exponent (the
detailed quantitative dependence is a specific function of the initial pdf). This prediction turns

out to be verified by the measurements of particle size distributions in cataclastic (i.e. crushed

and sheared rock resulting in the formation of powder) fault gouge [23]: the exponent T
of

the finer fragments from three different faults (San Andreas, San Gabriel and Lopez Canyon)
in Southern California was observed to be correlated with the peak fragment size, with finer
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gouges tending to have a larger exponent. Furthermore, the distributions were found to be a

power law for the smaller fragments and log-normal by mass for sizes near and above the peak

size.

5.2. STRETCHED EXPONENTIAL RELAXATION. We would like to suggest a possible appli-

cation of the stretched exponential distribution to rationalize stretched exponential relaxations.

A priori, we are speaking of a different kind of phenomenon: so far we were discussing dis-

tributions, while we now consider the time dependence of a macroscopic variable relaxing to

equilibrium. In contrast to simple liquids where the usual Maxwell exponential relaxation oc-

curs, "complex" fluids [24j, glasses [14,15,25], porous media, semiconductors, etc., have been

found to relax with time t as e~~~°, with 0 < fl < I, a law known under the name Kohlrausch-

Williams-Watts law [14,15]. Even, the Omori I It law for aftershock relaxation after a great
earthquake has recently been challenged and it has been proposed'that it be replaced by a

stretched exponential relaxation [26]. This ubiquitous phenomenon is still poorly understood,
different competing mechanisms being proposed. An often visited model is that of relaxation by
progressive trapping of excitations by random sinks [lsj. Models of hierarchically constrained

dynamics for glassy relaxations [25] suggest the relevance of multiplicative processes to account

for the relaxation in these complex, slowly relaxing, strongly interacting materials. Our model

offers a simple explanation for the difference in fl measured by the same method on different

materials in terms of the dependence of fl on the typical number of levels of the hierarchy as

we now show.

We assume that a given system can be viewed as an ensemble of states, each state relaxing
exponentially with a characteristic time scale. Each state can be viewed locally as correspond-

ing to a given configuration of atoms or molecules leading to a local energy landscape. As a

consequence, the local relaxation dynamics involves a hierarchy of degrees of freedom up to a

limit determined by the size of the local configuration. In phase space, the representative point
has to overcome a succession of energy barriers of statistically increasing heights as time goes

on; this is at the origin of the slowing down of the relaxation dynamics. The characteristic

time t~ to overcome a barrier AE~ is given by the Arhenius factor t~
mJ

Toe~~~/~~, where k is

the Boltzmann constant, T the temperature and To a molecular time scale. For a succession

of barriers increments, we get that the characteristic time is given by a multiplicative process,

where each step corresponds to climbing the next level of the hierarchy. In other words, the

characteristic relaxation time of a given cluster configuration is obtained by a multiplicative

process truncated at some upper level. It is important to notice that our model is fundamen-

tally different from the idea of diffusion of a representative particle in a random potential with

potential barriers increasing statistically at long times, as in Sinai's anomalous diffusion [27].
We consider rather that the system can be divided into an ensemble of local configurations,
each of them hierarchically ordered.

In this simple model, the times Tn
= To (ti/To) (tn /To) are thus log-normally distributed

in their center with stretched exponential tails according to our extreme deviation theory.
Now, in a macroscopic measurement, one gets access to the average over the many different

local modes of relaxation, each with a simple exponential relaxation: an observable tJ is thus

relaxing macroscopically as tJ
mJ

(e~/~"), where the average of the observable tJ is carried out

over the distribution of Tn. For large t (compared to the molecular time scale), Laplace's
method gives the leading-order behavior

O
mJ

e~~~°,

with fl
=

fi for a
distribution of Tn given by e~~"(~"/~°)"~" In this calculation, we have

assumed that all local configuration clusters are organized hierarchically according to a fixed
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number of
n

levels. We envision that this organization reflects the local atomic or molec-

ular arrangement such that the system can be subdivised into a set of essentially mutually
independent local configurations. These configurations can tentatively be identified with the

locally ordered structures observed in randomly packed particles [28], macromolecules [29j,
glasses and spinglasses [30j. The ultrametric structure found to describe the energy landscape
of the spinglass phase of mean field models also leads to a multiplicative cascade [31, 32]. No-

tice that if a system possesses multiple configuration levels n, then by the same mechanism

which in fragmentation led to (27), the relaxation becomes a power law instead of a stretched

exponential.

The often encountered value fl m
1/2 corresponds, in our model, to the existence of n m a

levels of the hierarchy. It is noteworthy that the factor
a can be determined quantitatively

from the pdf p(t~ /To)
~

exp[-a(t~ /To)") of the multiplicative factors, thus giving the potential

to measure the number of levels of the hierarchy that are visited by the dynamical relaxation

process. This could be checked for instance in multifragmentation in nuclear collisions, utilizing
techniques sensitive to the emission order of fragments [33].

Hierarchical structures are also encountered in evolutionary processes [34], computing archi-

tectures [35] and economic structures [36] and, as a consequence, it is an interesting question
whether to expect dynamical slowing down of the type described above.

5.3. TURBULENCE. In fully developed turbulence, random multiplicative models
were in-

troduced by the Russian school [37-39] and have been studied extensively since. Indeed, their

fractal and multifractal properties provide a possible interpretation for the phenomenon of

intermittency [40, 41] (see also Ref. [9]). The pdf's of longitudinal and tranverse velocity in-

crements clearly reveal a Gaussian-like shape at large separations and increasingly stretched

exponential tail shapes at small separations, as shown in Figure 1 [42-46].
Within the framework of random multiplicative models, our theory suggests a natural mecha-

nism for the observed stretched exponential tails at small separations as resulting from extreme

deviations in a multiplicative cascade. However, this mechanism cannot account for all prop-

erties of velocity increments. For example, random multiplicative models are not consistent

with the additivity of increments over adjacent intervals. Indeed, the pdf of velocity incre-

ments d~ cannot become much larger than the single-point pdf, as it would if the former
were

oc exp (-C[d~(fl) with 0 < fl < 2 while the latter would be close to Gaussian (see the Ap-
pendix of Ref. [46] ). Nevertheless, stretched exponentials could be working in an intermediate

asymptotic range of not too large increments, the controlling parameter of this intermediate

asymptotics being the separation over which the increment is measured.
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Appendix

Proof of the Main Results for Extreme Deviations

Our aim is to prove (7) without necessarily assuming that the function f(x), which defines

the pdf of the individual variables though (4), is Taylor expandable to all orders. Specifically,
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Fig. 1. pdf of transverse velocity increments reduced by the rms velocity at various separations in

units of the Kolmogorov dissipation scale ~. (From Ref. [46].)

we assume that f is three times continuously differentiable and satisfies the following conditions

when x ~ +cc:

(I) f(x) ~ +cc sufficiently fast to ensure the normalization (3);

(it) f"(x) > 0 (convexity), where f" is the second derivative of f;

~"~~ ~~~ if~i~~~/~ ~'

(iv) there exists Cl > 0 such that, for x < y large enough, x2 f"(x)/ (y2 f"(y)) < Gil

(v) there exist fl > 0 and C2 > 0 such that x2~fl f(x) > C2 for large enough x.

Assumptions (I) and (it) are just the same as made in Section 2. Assumption (iii) is an instance

of (iii) corresponding to the third derivative. Note that nothing is assumed about higher order

derivatives. Assumptions (iv) and (v) are new and will be seen to be slight strengthenings of

a
corollary of (iii) (~).
We begin by proving various lemmas.

Lemma I Assumption (iii) implies

limx~ f"(x)
=

+cc. (A.I)

(~) There are weaker formulations of (iv) and (v) for which our results hold, which we do not make

explicit here, as they are quite involved and do not bring any additional insight.
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To prove this result, we start from (iii) which may be rewritten as

I$/xj#~~'
~~'~~

It follows that for any e > 0 there exists X(e) such that, for
x > X(e), the argument of the

limit in (A.2) is less than e in absolute value. We take X(e) < y < x and apply the mean value

theorem to get

j(f"(x))~~~~ (f"(v))~~~~j =
(x v)

(
(f"(f))~~~~

,

(A.3)

with y < ( < z. The rhs of (A.3) is less than (x y)e. Dividing by x and letting z ~ cc, we

obtain

iicszP
zjm

< E. ~A.4)

Letting e ~ 0, we obtain (A.I). QED

Lemma 2 Under assumptions (it), (iii) and (iv),

lx VI =

C(f"(x))~~/~ (A.5)

implies, that

~~ll~~~
~ ~' ~~ ~ ~ ~~ ~~~ ~~~~ ~ ~~'~~

For the proof, let us first assume that y < x. By the mean value theorem, we have

f"(x) f"(v)
=

(x v)f"'(f), With v < f < x.
(A.7)

It follows from Lemma I and (A.5), that x/y ~ l and thus ( lx ~ l as x ~ +cc. Dividing
(A.7) by f"(x) and using (A.5),

we obtain

f"(x) f"(v)
~

~
f"'(f)

(f"(f)
~~~

~~ ~~f"(x) (f"(j))~/~ f"(x)

By (iv), the rightmost factor
on

the rhs is less than C)/~(z/()~, which remains bounded as

x ~ +cc, while, by (iii), the leftmost factor on the rhs tends to zero. Hence, the rhs tends to

zero. This implies (A.6).
For the case x < y, (A.7) holds similarly with x < ( < y. We then multiply (A.7) by

f"(x))Q~ /( f"(y))~/~ The rhs tends again to zero. If follows that

f"(x) f"(v)
(f"(x)

~~~

~ ~ ~~_g~f"(v) f"(v) '

which implies again (A.6). QED.

Lemma 3 Let h~, I
=

I,.
,

n be real variables, not all vanishing, such that £)~~ h~
=

0. The

subset of p < n I indices ij such that
h~~ > 0 satisfies

fh)
>

fh).
(A.10)

j=1
~ "

i=1



1168 JOURNAL DE PHYSIQUE I N°9

Let ip+i,
,

in denote the subset of indices such that
h~~ < 0. We set h[

=
-h~~ > 0, so that

p n

~jh~~
=

~j
h(~. (A.ll)

J=i j=p+1

We have

n p n~jh)
=

~jh)
+ ~j h(~

i=i j=1
~

j=p+1
~

2
P n

~ ~j
~~j + ~j ~lj

J=i

j=p+1

p p
~

=

~
hl~ + (L

ijj

J=i j=i

P P

~
~

~~J
~P~~~J

J"I j=I

P

< n
~j h) (A.12)

j=1
~

In deriving (A.12),
we have used p < n- I and the following inequality for a set of p nonnegative

variables vi,
,

up
(vi + + vp)~ < p(vl + + vj) (A.13)

Lemma 3 follows from (A.12). QED.

We now turn to the derivation of the main result (7), rewritten here in a slightly different form

as:

~~S ~~~~) ~~ ~~'~~~

where
~ ~

Pz~.(x)
-
e"f~~/"~i I/,,li/n~

~

(A.15)

We start from the representation (12) of the pdf of the sum of n iid variables as an
(n- I )-fold

integral. The function gn, given by (11) can be rewritten as

~+~~
~

gn ~ n
/(x In) +

f f
dz

f /"(y) dy. (A.16)

Observe that, by (10), we have £)~~ h~
=

0, so that, ignoring contributions of zero measure,

at least one of the h~'s must be positive. Furthermore, all the terms involving double integrals

are positive.
The proof goes now as follows. By Lemma 2, the second derivative f"(y)

can be replaced
by the second derivative at the minimizing point x

In
as

loilg as all the h~'s are not too large,
that is are in the set AH defined by

jh~j § H
=

C( f"(x In)) ~~/~, for all I. (A.17)
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By (A.I), (A.17) expresses that all the individual random terms in the sum stay within a

distance of x/n which is small compared to x, that is, what we have called the democratic

localization property. The substitution of f"(x In) for f"(y) amounts to using the second-order

truncation of the Taylor series (13) for gn, which leads to Pz~.(x). It follows from Lemma 2

that the error committed in this substitution is small for large x.

Since f"(x) > 0, the contribution of the complementary set ~ to the pdf Pn(x), denoted

P(~~~ (x), is estimated from above by estimating gn from below, keeping only the contributions

from the subset ij (j
=

I,.
,

p < n
I) of indices such that

h~~ > 0. We thus obtain

~

j+h~~
~

gn > n
f(x/n) +

~j dz f"(y) dy. (A.18)

~_~ i f

By (iv), for x
In < y < x

In + h~~, we have

v2f"(v) / Gil (x/n)2f"(x/n). (A.19)

Using (A.19) in (A.18),
we obtain

P

(J~.20)~~ > n~(z/n) + en Ill ~ f"(x/"~

i

~~"~~~ ~~~'

where

q(a)
~ a

in(i + a). ~~~~~

Note that q(a)
=

o~ /2 + O(o~) for small a and q(a) < o for large a. Assumption (v) is used

to show that, for large x, the overwhelming contribution to P(~~~ ix)
comes from hi~'s such

that nh~~ lx is small compared to unity. Using (A.20) and Lemma 3, we obtain the following
estimate

~

P$>~~ (x) < e~"f~~/"~ / /
e~

~f"1""~ L)=i hf dhi dhn-i, (A.22)

_
n-i

where the domain of integration is over
~,

so that at least one of the (h~ > H
=

C( f"(x In) )~ i

As a consequence, it is easily checked that the bounding integral is less than Pz~. (x) multiplied

by a
factor O(e~~~/"), which tends to zero very quickly for large C. This proves (A.14) and

the democratic localization property.
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