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PACS.78.20.Bh Theory, models, and numerical simulation

Abstract. The prediction of the macroscopic complex permittivity of composites is based

on the derivations of D.J. Bergman and G. Milton, by means of third order correlation functions.

This approach is applied to morphological models of textures simulating the geometry of two

phase composites: random mosaics built on a random tessellation, Boolean models, Dead Leaves

models, or combinations of these models into hierarchical random textures; they allow us to look

for optimal textures with respect to the material behaviour.

1. Introduction

Modeling composite microstructures by means of random sets [1-6] is a useful way to summarize

microstructural information and to propose practical methods of simulation. For some models,
probabilistic properties such as correlation functions are available. This enables an estimation

of the overall properties of random composites from bounds based on a
limited amount of

statistical information [7, 8]. The bounds that are commonly used for isotropic media are

Hashin and Shtrikman (H-S) bounds based on volume fractions [9]. Tighter bounds can be

derived from additional statistical information, such as the infinite set of their correlation

functions [7, 8,10]. In practice, useful bounds are obtained by limiting the calculations to the

third order.

In this presentation, we recall the third and fourth order bounds obtained for two-phase
media with a complex permittivity Ill,12]; then we introduce some basic random sets models,
and their combination to produce hierarchical textures. For each model is given its three-

point function (i (p) defined below. This is useful to compare the incidence of the morphology
of random media on their overall physical properties, as illustrated in the last part. In the

present case, this can be applied to the prediction of optical properties of composites (and of

their change according to the frequency uJ). This is limited to the quasi-static case, where

the light wavelength is much larger than the scale of microstructural heterogeneities. Earlier

attempts were made to deduce geometrical information from these bounds [13,14]. A shorter

presentation of our results is given in [15].

(*) Author for correspondence (e-mail: jeulinficmm.ensmp.fr)
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2. Principle of Calculation of Complex Bounds

We consider random composites made of two phases A (with volume fraction p) and AC (with
volume fraction q =

I p). In the case of absorbing
or conductive media, the dielectric

permittivity depends on the frequency
uJ

of the electric field and is complex:
e =

e'- ie" (with
i~

=
-I, e' is the dielectric constant, and e" the dielectric loss factor). The bounds derived by

Beran for real permittivity [16] are not available anymore.
The derivation of the bounds on the effective permittivity ee of a two-component composite

with complex permittivity El (phase A) and e2 (phase AC) [17] is based on the Bergman's
method [18], which is valid in the quasi-static case (when the wavelength is much larger than

the characteristic length of the microstructure). As did Milton, it is convenient to introduce

the variable r,

T "
(El + E2)/(Ei E2)

ee is expressed as a function of e2 and
r

which can be represented in the following closed

rational form
11 7],

m

Ee " E2
HIT T()/(T Ti), II

~=o

where the constants r~ and r(
are real and must satisfy (2),

1>ro>r(>ri>r(. r$>-1. (2)

In two dimensions, the poles and zeroes in [0, ii define (by interchange) those in [-1, 0].
Using ii) and the method described in [17], the Beran's bounds can be generalized to the

complex plane (e',e"). The bounds for complex El and e2 restrict ee to a region fl" of the

complex plane which depends on what is known about the microstructure of the composite
material. They depend on some constants Rn, calculated from the perturbation expansion of

ee [16], and summarizing the microstructural information on the composite:

Rn
=

"~j)l'~~~
13)

ei=e~=1

These constants Rn are:

.
RI

" P for any composite material;

.
R2

#
-2pq Id if the material is statistically isotropic in lll~ (with d

=
2, 3);

.
R3

"

%»q((i + fl~) (with d
=

2, 3) where the Milton's function (i is calculated from

the 3 points correlation function;

.
R4

"

3pq~(1+ q) 2R3(1+ 2q) for statistically isotropic 2-dimensional materials. For

this type of material Keller [19], Dykhne [20] and Mendelson [21] have shown that

ee(ei, e2)ee(e2, El)
= eie2. (4)

It was observed by Milton ii Ii that (4) implies the given relation between R3 and R4.
For higher values of n, Rn can be calculated in terms of higher-order correlation functions.

When the constants T~
and r(

are allowed to vary subject to the appropriate restrictions (2)
and (3), while keeping T, £2, and Rn in

=
1,2,..,J) fixed ill,12,17,18], ee, given by equa-

tion ii ), covers the domains fl" of the complex plane. The larger the morphological information

taken into account, the smaller is this region which provides rigorous bounds on ee.
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2D material Mosaic model of discs epsl =(-2,3) eps2=(1,1) p=0.6
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Fig. 1. Construction of the regions Q" (for n =
o,..

,

4).

The Milton's function (1(») (12] entering into the calculation of R3 and R4 is defined below

(Eq. (5)). It is known for some theoretical random set models or can be calculated from

measurements obtained by image analysis. It is deduced from the probability P(hi, h2) that

the three points (x), (x + hi ), (x + h2) belong to Al (with volume fraction p). Denoting this

probability P([ hi (, (h2(, 9), with u =
cos9, 9 being the angle between the vectors hi and h2,

we have:

(ilp)
"

~ /~~ ~~ /~~ ~~ ~~(3u~
1)P(x, y, 9) du in three dimensions

4»q
o X o Y -1

(5)

(1(»)
"

~ ~~ ~~
P(~, y, 9) cos(29) d9 in two dimensions.~»q~~~

~

~~~ ~~

Exchanging phases A and AC enables us to define the function (2(q) with (2(q)
"

I (i(»).
The function (i(P) satisfies the inequalities 0 < (1(P) < I.

Now, let us remind how bounds are constructed.

The regions fl,fl~, fl~,fl~, and fl~
are obtained by the geometric constructions shown in

Figure I. The bounds always restrict ee to a region of the complex plan enclosed by circular

arcs
(the pair of arcs

A"B"A"~~ and A"B"B"~~ bound fl"). Given El, e2, Pi, d and (i, the

points A" and B" (for n =
1, 2, 3 et 4) are first plotted.

.
Without any information on the geometry, ee is confined to the region fl(ei, e2) of the

complex plane (e', e") bounded by the arc Oeie2 and the straight line eie2 (17].

.
Knowing the volume fractions of the components p and q =

I p
,

ee is confined to

a smaller region fl~ (El, e21P, q), which is bounded by the two circular arcs
A~B~ei and

AlBle2 (17].
A~

= per + qe2

Bl
=

(pier + qle2)~~
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.
For a

statistically isotropic structure, ee is confined to a smaller region fl~ (El, e2i P, qi d)
of the complex plane (d

=
2 or 3), bounded by the two cilcular arcs

A~B2 Al and A2B2Bl

11 7].

~~
~~ ~

~/~~~e2 ~i)

~
dpe2 (El e2)

~ ~~ ~
de2 + q(ei e2)

.
Knowing the Milton's function (i, the region fl~(ei, e2iP, qi d; (1, (2) can be defined for

d
=

2 or 3; it is bounded by the two circular arcs
A~B~A~ and A~B~B~ [12, 22].

~3 ~

l + lid l)11 + q) + (i 1)P21 + Id I)lid l)q + (i I)Pli
~ l lq + I (i Id 1))P2i + ((q Id l)P)11 (i) Id I)q)Pli

~3
~

l + lid I)lP + (i) 1)P12 + Id I)llld l)P q)(i P)P12
~ l Ii + P Id l)(1)P12 + (P Id l)(1)P12

~'~~~~ ~"
e~

~)d ~i)ej
The range A~-B~ is of the order of (El e2)~.

.
In the case of a two-dimensional material, fourth order bounds can be defined. The region
fl~(ei, e2i P, qi d

=
2; (1, (2) is bounded by the two arcs

A~B~A~ and A~B~B~ [12].

~4
+ qfl21 P(2fl~l

~ ~
~~

l qfl21 P(2fl(1

~4
~

~ fifl21 q(lflil
~ ~ ~ l + pfl21 q(lfl~l

The range A~-B~ is of the order of (El e2)~.
Figure I shows the effect of the order of the approximation of the effective permittivity ee,

for a two phase composite with p =
0.6 (volume fraction of phase I). In this example and in

the following sections, we use the same values for the permittivity of El and e2 as in [17]:

phase
1 corresponds to £1 =

-2 + 3i

phase 2 corresponds to £2 "
1 + I

3. Real Dielectric Permittivity, Optimal Textures, and Limitations of the Method

When £i and f2 are both real and positive, the bounds reduce to those obtained by Wiener,
Hashin and Shtrikman, Beran and Milton, points A~ and B~ giving lower and upper bounds

respectively: all the regions fl" become segments on
the real axis. For (i(»)

=
I or o (and

only in these cases), the two bounds obtained in the case of a real permittivity coincide and

are equal to the H-S upper ((i(»)
=

I) or lower ((1(»)
"

0) bound. For given p, El and

e2 (with
El > e2), the two bounds increase with the function (i(p) (while the H-S bounds

remain fixed), so that higher values of the effective properties are expected. This point is used
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2D material epsl =(-2,3) eps2=(1,1) p=0.6
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Fig. 2. Position of the regions Q~ and Q~ (3rd and 4th order bounds) when the function (i changes
((1

=
0.25 0.5 0.75).

to compare the expected properties of materials with different morphologies, and to design
optimal morphologies [23, 24].

For the case of a complex permittivity, the third and fourth order regions move from the

point A2 to the point 82 when (i changes from I to 0 (Fig. 2); given the properties of the two

phases (El and e2), and possibly their volume fraction, a random texture can be looked for,

from the desired value of ee, and consequently of (I

This approach can be successful when the domains corresponding to different textures are

confined and do not overlap too much. This happens for a limited contrast of permittivity, or

for some particular relative positions of the three starting points (O, El, e2) of the geometric

construction of the regions fl" in the complex plane. If the angle between the complex dielectric

constants of both phases El Oe2 is acute (which
means

e[e[ +el'e[ > 0), the domain fl is confined

(Fig. 3), and so are the domains Q". If this is not the case I.e. El Oe2 is obtuse, the region Q

is very large (Fig. 4), and consequently, the regions Q" are not confined. This is a limitation

of the method.

In Figure 5, we show a case for which the model cannot separate the two regions (even for 4th

order bounds) obtained when exchanging the morphology of the two phases of a Boolean model

of discs (see Sect. 4.1.2). The values El "

(-4.10, 0.37) and e2 "

(1.93, 0) correspond respec-

tively to the permittivity of the following real materials [25] for a 6 eV energy electromagnetic

wave:

phase I: Ag (silver)

phase 2: MgF2 (magnesium fluoride)

The angle eiOe2 is very obtuse. The two domains Q~
are very large and overlap. A better

separation of the domains would require higher order morphological information.
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Fig. 3. Construction of the domain Q. The angle El Oe2 is acute. The domain Q is confined.

Fig. 4. Construction of the domain Q. The angle eiOe2 is obtuse. The domain Q is large.

2D material Boolean model epsl =(-4.10,0.37) eps2=(1.93,0.00) p=0.6
30

25

g 20

I (discs)c
Lu

~ 15
I
mI
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5

0
20 15 lo -5 0 5 lo 15

Real Epsilon

Fig. 5. -4th order bounds Q~ for Boolean models of discs and (discs)~. Example where

eiei+ eiei < 0: the regions are overlapping.

4. Exmnples of Random Sets Models

Random composites made of two phases A (with volume fraction p) and AC (with volume

fraction q =
I p) can be modelled by a stationary and isotropic random set A. Random sets

models are characterized by the probability distributions T(K) or
Q(K) defined on compact

sets K:

T(K)
=

P(K n A # fl)
=

P(K hits A) (6)

Q(K)
=

P(K c AC)
=

I T(K).
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Particular cases of equation (6) give the covariance Q(h)
=

P(~ E AC, ~+ he AC) when

K
=

(~,~ + h) and the three point probability P(~,y,9) entering in equation (5) when

K
=

(~, ~ + hi, ~ + h2). The theoretical expression of T(K)
or

Q(K) is available for various

models. On the other hand, T(K)
or

Q(K)
can be estimated from image analysis

on pictures
of the material. This is used to check the validity of a model, or to estimate its parameters.

In this section, we
recall results for the function (i(P) obtained for some random sets (or

two-phase media) models noted A. More details are found in [23, 24].

4.I. BASIC RANDOM SETS MODELS

4.I.I. The Mosaic Model. The mosaic model [4-6, 26], or "cell" model [27] is built in two

steps: starting with a random tessellation of space into cells, every cell A' is assigned inde-

pendently to the random set A with the probability p and to AC with the probability q. The

medium is symmetric in A and AC, which may be exchanged (changing p into q), and there-

fore (1(0.5)
=

0.5. For the area fraction 0.5 in two dimensions, the Keller-Dykhne expression

(ee
=

fi) is satisfied, and would give the exact solution in the center of the bounds in

Figure I. For the mosaic model equation (5) becomes [12]:

(1IV)
" V + ajq p) with

a =

~~~

d 1 j7)
(2 IV)

"
(i IV)

and therefore (1(») lmries linearly with the proportion p, with a slope 1- 2a (0 < a < I). In

equation (7) the parameter G defined by Miller depends only on the random cell geometry by

means of the function s([hi(, (h2(, 9):

p~(A'nA[ nA[
~~~~~

'
~~~~ '~~ Pd(#) ~

where /Jd is the Lebesgue measure in llt~, @ its average over the realizations of A', and A[ is

obtained by translation of A' by the vector h. Then

G
=

+ /~~ ~~ /~~ ~~ ~~(3u~
1)s(~, y, 9) du in lll~

9 2
o ~ o Y -1

G
=

+ /~~ ~~ /~~ ~~ /~~ six, y, 9) cos(29) d9 in llt~.
4 ~ o X o o

We have 1/9 < G < 1/3 in three dimensions and 1/4 < G < 1/2 in two dimensions. The two

extreme cases are the following:

. a =
0 for G

=
1/9 in llt~ and for G

=
1/4 in llt~ (this corresponds to spherical and disc

cells respectively),

. a =
I for G

=

1/3 in llt~ and for G
=

1/2 in llt~ (corresponding to spheroidal cells of

plate and needle shapes respectively).

A particular random mosaic (Fig. 6; the lines of the tessellation, which are shown on this

figure for convenience, do not exist in the final structure) can be obtained from a Poisson

tessellation of space by Poisson random planes in llt~ (with the intensity I, which is a scale
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Fig. 6. Mosaic model built on a Poisson tessellation.

Fig. 7. Boolean model of discs.

parameter that does not appear in the calculation of G) and by Poisson lines in llt~ [2, 3]. The

cells of this tessellation are Poisson polyhedra and Poisson polygons. For the Poisson cells built

up from this tessellation, we have:

sllhil,lh21,9)
= exP

(-I (hi(
+ lh21+ /lhil~ + lh21~ 2

hillh21COS9))

Therefore, G can be calculated analytically:

.
G

=
I In 2 [26], in llt~ and we have a =

3 4 In 2;

.
G

=
1/6 [23], in llt~, and we have a =

1/4.

Anisotropic cells (but distributed with a uniform orientation)
are studied in [24]. G (and

consequently (i(p) for a < 1/2) increases with the cell anisotropy: for example, for rectangles
with L

=

length/width
=

200, G
=

0.491.

4.1.2. The Boolean Model The Boolean model II, 2] is obtained by implantation (with pos-
sible overlaps) of random primary grains A' (discs are used for the two dimensional simulation

of Fig. 7) on Poisson points xk with the intensity I (namely the average number of point per

unit area or volume)
:

A
=

U~~A[~. For this model, we have:

QjK)
= exp

j- jp A' ~g £))
=

qPd(A'ek)/pd(A')

where A'e k
=

U-~eKA[ is the result of the dilation of A' by K [3].
Any shape (convex or non convex, and even non

connected)
can be used for the grain A'.

Most often in the literature, Boolean models of spheres are considered. Contrary to the mosaic

model, the Boolean model is not symmetric, and therefore, different bounds are obtained when

exchanging the properties of A and AC. From numerical calculations [23, 24], it was found,

with a good approximation, that linear functions of p are obtained for (i(»)i (i(P) Cf ap + fl.
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Fig. 8. Section of a Boolean model of spheres.

Fig. 9. Boolean model of Poisson polygons.

The function (i(P)
was estimated in [28, 29] for spheres (Fig. 8) and in [23, 24,3§] for discs

(Fig. 7). It is given in [23, 24], for grains made of polygons in llt~, including Poisson polygons
(Fig. 9). These results land (2(P)

=
I (i II p) obtained by exchange of the two phases)

are

summarized by:

(1(P) Cf 0.5615p for spheres [28, 29]

(21p) Cf 0.5615p + 0.4385 for (spheres)C

(ilP)
~f

P
for discs in M~ 123, 24, 30j

(8)

(21P) Ci (p + I for ldiscs)C in m2

(1(P) h 0.5057p + 0.2274 for Poisson polygons in llt~ [23, 24]

(2(P)
" 0.5057p + 0.2669 for (Poisson polygons)C in llt~.

For the models presented in equations (8),
we have (2(P) > (i(»),

so that in the real case, the

third order bounds increase when the largest permittivity is attributed to the set AC. This is

due to the fact that it is easier for the "matrix" phase AC to percolate than for the overlapping
inclusions building A. For the sphere and disc models, (21p) is larger than the (i(») of the

corresponding mosaic models.

4.1.3. The Dead Leaves Model. The dead leaves model [4-6] is obtained sequentially by
implantation of random primary grains A'(t)

on a Poisson point process: in every point z is

kept the last occurring value e(z,t) during the sequence. In this way, non symmetric ran-

dom sets are obtained if two different families of primary grains are used for A and for AC.
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/ '
. - - >~

Fig. 10. Two phase dead leaves model of discs (p
=

0.5).

Fig. 11. Section of a dead leaves model of Poisson polyhedra (p
=

0.5).

When using the same family of primary grains for the two sets, a mosaic model built on a ran-

dom tessellation is obtained (Figs. 10 and II). The shape of the resulting cell is non convex

(and
even non connected! ), due to the overlaps occurring during the construction of the model.

For the symmetric case, the calculation of G can be made from the knowledge of the function

s(x, y, 9) :

~l'~~"~~' ~~ Ill') Ill 'lit

Calculations were made for Poisson polyhedra as primary grains (Fig. II) [23, 24] G ci 0.170

in llt~ and G cd 0.311 in llt~, which is slightly larger than for the Poisson mosaic.

4.2. COMBINATION OF BASIC RANDOM SETS. Combining the previous basic models pro-

vides more complex structures [23]. For instance, fluctuations of morphological properties
(such

as the local volume fraction of one phase, p) may exist in real materials. Experimental
evidence of such fluctuations

was noticed in [31,32] for polymers filled with conducting particles
clustering, or in [33, 34] for composite materials containing carbon black aggregates percolating
for a volume fraction as low as 2-3%. The combination of the random sets presented before can

describe such fluctuations. We will use in this hierarchical approach random structures with

very different scales, for which an approximate value of (i(»), noted (Hi (»), can be obtained.

We have to notice that formulae presented in the following subsections are accurate for the

combinations of random sets with widely separate scales. The figures illustrating these types
of structures very roughly represent this scale separation.

4.2.I. Union and Intersection of Random Sets. A first way to combine random sets is to

consider the union or the intersection of two independent random sets Al and A2. Since we

have (Al u A2)~
"

A[ n A[,
we can limit our purpose to the intersection. For this model,

p = piP2 and P(K)
=

P(K c (Al n A2))
"

P(K c Al )P(K c A2). When using the same

type of random set ((i (P)
" ap + fl) for the two primary structures (with the scale of A2 being
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Fig. 12. Intersection of two Boolean models of discs with p =
0.25, pi =

0.40 and p2 =
0.62.

Fig. 13. Intersection of two Boolean models: p =
0.25, pi = p2 =

0.5.

much smaller than the scale of Al ), we get the following approximate result:

Pq ((Hi(p) (ilP))
=

((Pi P)11 Pi)la P)

and for the two scale model (Hi (P) > (i(P) when a > p > 0. This is the case when the basic

model is a mosaic model with a < 1/3
or when it is one of the studied Boolean models (or its

complementary set).
An optimal value of the increment (Hi (P) (i (PI when varying pi for

a given p, is reached

for pi "
2p/(1+ p) when a > p > 0:

.
for the intersection of two Boolean models (Fig. 12) (or of their complementary sets)

~~~°~~ ~~ ~~~~
~

~ ~~~ ~'

.
for the two scale mosaic model with a < 1/3, it becomes

(Hioptlp)
=

p~ j~~ +
(

A last combination of structures is obtained for pi " p2 (Figs. 13 and 14) and for widely

separate scales. In that particularly case, we have p =

p( and

(Hil»)
>

(il»1)
= ))(~(il»~/~).

By iteration at order n, we have p =
pi and

((~ Iv) m
)~ (~ (i1»~/"

~~~~~ ~~~~ ~ ~' ~~ ~~~ ~~~~l~~ ~ ~i IV) &lid (~~~~ IV) ~ (~~ IV) If (I IV)
" CYp

With
CY > 0.
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Fig. 14. Fig. 15.

Fig. 14. Intersection of two Boolean models: p =
0.49, pi = p2 =

0.70.

Fig. 15. Boolean model of discs with p =
0.49.

A limiting case is obtained by iterations for n ~ cc:

((~ lp) ~

) ~ (i (1).

If the basic random set is the complementary set of a Boolean model of spheres in IR~
or

of

discs in IR~, we obtain (~~~p) ~ (l + p)/2. This corresponds to a Boolean model of spheres
with an infinite range of widely separate sizes.

This last example limited to the first iteration (intersection of two random sets) shows the

importance of such a hierarchical model. When pi #
I and p2 " P, we recover the standard

Boolean model, with a percolation threshold close to 0.6. In Figure 14 is given a simulation

of a composite material with a particle volume fraction p equal to 0.49 (with pi = P2 =
0.7,

p = pip2 =

0.49). The particle phase percolates in this case, while it does not percolate at the

same volume fraction (p
=

0.49) for a standard Boolean morel (as in Fig. 15). It is interesting
to notice that the new random set obtained after 10 iterations of intersections has a percolation

threshold roughly estimated to 0.6i~. It is therefore easy to generate in this way interesting
microgeometrical media with performant expected properties at low volume fractions.

4.3. A HIERARCHICAL MODEL. A simple hierarchical model with two separate scales is

built in two steps [6]:

. we start with a primary random tessellation of space into cells,

. every cell is intersected by a realization of a secondary random set (with (i (P), and with

random parameters). Realizations in separate cells are independent.

Any random tessellation can be used in this construction. Any type of random set (mosaic
model, Boolean model, dead leaves model, etc...) can be used in the second step.

An example of simulation of a
hierarchical model is presented in Figure 16. This model

starts from a Poisson tessellation of the space into cells. The density of the Poisson tessellation
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. ,

e

'

e
,

0

Fig. 16. Simulation of a hierarchical model.

is I
=

[Line number / (Image size * gr *
v§)) (in

our example, Line number
=

15). Each cell is

intersected by a Boolean model of discs, with the density d (probability 0.5) or 5d (probability
0.5). As for Figure 6, the lines of the tessellation are absent from the final structure). This

simulation of a two scale random set can represent a two phase material with an average particle
volume fraction equal to 0.3 presenting local fluctuations of the volume fraction generated by

the changes in density (average number of Poisson germs per unit area) from cell to another

of the Poisson tessellation.

For cells much larger than the scale of the secondary random set, implanted with a random

volume fraction P (with expectation E(P)
= p and variance D~(P)); the function (Hi lp)

corresponding to the hierarchical model is approximated by:

Pq(Hi (P)
=

EIP(i P)(i (P)I + PD~IPI + aEl(P P)~l. (9)

Equation (9) recovers (i IF) when P is non random ((Hi (P)
=

(i(P)), and the mosaic result

(Eq. (7)) when P
=

I with the probability p and P
=

0 with the probability q.

It is interesting to examine the case where P
= pi with the probability p2 and P

=
0 with

the probability 1 p21 it means that a proportion p2 of cells is filled-with a mixture of AI (in

a proportion pi and A2 (in a proportion I pi), and a proportion 1- p2 of cells is filled with

the phase A2 alone. For this example, p = pi p2 (P is the volume fraction of phase I I.e. AI in

the final material). If (i(p)
= ap + fl (which is the case of mosaic models, and approximately

the case of Boolean models), equation (9) becomes:

Pq ((Hi(P) (i(P))
=

P(Pi P) (P(1 3a) + a fl + (pi 2P)(a a))

We can consider now situations where the increment (Hi (p) (i (P) reaches an optimal value

(Hiopt(p) when varying pi for a given p. It
can admit a positive optimum when a < a, for

p(1-3a +n-fl
PI 2(a-n)

~~~°~~~~~ ~~~~~
~~~~ ~

~(a~~
)~ ~~~

For instance, when the secondary random set is a mosaic model built up on the same type
of tessellation as the primary random tessellation (but

on a much smaller scale), the increment

is always positive (Hi (P) (i(P) > 0 for a < 1/3 (that is for G < 1/3 in IR~ and G < 5 /27
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2D material Boolean model of discs epsl =(-2,3) eps2=(1,1)

Volume fraction p "~

,,_

.li

o.5

'>~ '7'~
3.5

0 "' fi 2.5
-1 lmag Epsilon

Real Epsilon

Fig. 17. Regions fl" (n
=

0,..
,

4 of the complex plane filled by the values of ee when p varies.

in IR~). In these conditions, the two scales model provides different bounds than the initial

one scale mosaic (higher bounds in real case). And, for pi =
(P + 1) /2:

(Hiopt(p)
= p l~

~)
+

fi
4 4

This result is the same as for the intersection of two independent random mosaics presented
in Section 4.2.I, and obtained for a different construction: the two types of models cannot be

distinguished when restricting up to third order correlation functions.

5. Examples of Regions of the Complex Dielectric Permittivity of Random Media

First of all, Figure I describes the complex bounds fl"
on

the effective permittivity ee for

different orders (n
=

0,..
,

4) and for one volume fraction p. These regions fl" vary with p. So,
the representation of these bounds in a three-dimensional graph (e', e", p) looks like spindles.
Figure 17 gives an example of such spindles that are narrower when increasing the order of

correlation functions.

In what follows,
we will generally consider only the higher available order; which means third

order in 3D models, and fourth order in 2D models.

We consider first the fourth order regions of ee in the two dimensional space at changing
volume fraction p and for different random models.

. For a Boolean material of discs (the discs having the permittivity El ), we see in Figure 18

that the domains obtained by exchanging the geometry of the two phases are separate:
the real part of ee is expected to become negative for a lower volume fraction when El is

affected to the complementary set of the union of discs. For Poisson polygon grains (the
grains having the permittivity El ), the functions (i(p)

Cd
(2(p) and the resulting domains

are similar (Fig. 19).

.
For the mosaic model, the symmetry of the domains with respect to the probability p

appears in Figure 20, where it is clear that when p =
0.5, the domains are the same

whatever the mosaic since (1(0.5)
=

0.5. In two dimensions, it encloses the geometrical

mean when pi "
0.5.
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2D material Boolean model- epsl=(-2,3) eps2=(1,1) 4th order

Volume fraction p
(discs)c

3

2.5

-1.5
_~

imag Epsilon

Real °

Fig. 18. 4th order bounds for Boolean models of discs and (discs)~.

2D material Boolean model epsl=(-2,3) eps2=(1,1) 4th order

Volume fraction p

I jpoisson polygons)c

polygons

o.5

~~

R~al
5

~~ag Epsilon

Fig. 19. 4th order bounds for the Boolean model of Poisson polygons and (Poisson polygons)~.

The anisotropy of primary grains is a parameter of great interest. Figures 20 and 21 show

isotropic grains like discs, providing bounds similar to the cases of squares or
Poisson polygons.

Anisotropic grains like rectangles with an important side ratio (L
=

200) or needles, give
bounds separated from the case of the isotropic cells.

.
For the dead leaves modelin Figure 22, squares and elongated rectangles provide separate
domains (but closer than for the cell model).

.
It is also possible to compare different models built with the same primary grains, like

the Boolean and the mosaic models of discs (Fig. 23). Their behavior is different since

the Boolean model is not symmetric.

In the three dimensional space, we are limited to the third order domains.

. For the Boolean model of spheres in Figure 24, where the exchange of the morphology of

the two phases (El being first assigned to the grains, and then to the complementary set)
gives separate domains. The same qualitative behavior as for the 2D case is observed.
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2D material- Mosaic model- epsl=(-2,3) eps2=(1,1) 4th order

Volume fraction p

i needles

discs

o.5

3

o

.5
Real

Fig. 20. 4th order bounds for mosaic models of discs, Poisson polygons, and needles.

2D material Mosaic model epsl=(-2,3) eps2=(1,1) 4th order

Volume fraction p

~~~j

lmag Epsilon
.5

~

Fig. 21. 4th order bounds for mosaic model of squares, rectangles (L
=

8), and rectangles (L
=

200).

.
Figure 25 illustrates the evolution of effective properties when iterating the intersection

of Boolean models of spheres with the same volume fraction (p
=

pi), the grains having
the permittivity El These random sets are described in Section 4.2.I and Figures 13

and 14 illustrate their construction. The complex bounds are represented for two volume

fractions p =
0.25 and 0.50. In this example, they provide almost separate domains in

the complex plane when p =
0.25.

.
Figure 26 shows the effective properties of optimized hierarchical models compared with

the one
scale mosaic model. They produce separate domains in the complex plane,

leading to different permittivities for these different textures.
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2D material- Dead leaves model- epsl =(-2,3) eps2=(1,1) 4th order

vojume fraction p
rectangles L=200

squares

3

2.5

-1 .5
_1

~mag Epsilon
°

0.5

~

Fig. 22. 4th order bounds for dead leaves models of squares and rectangles IL
=

200).

2D material Boolean and mosaic models of discs epsl =(-2,3) eps2=(1,1) 4th order

Volume fraction p
mosaic model

i

model

3

2.5

Epsilon
~~ -0.5

~
l .5

Real Epsilon 0.5

Fig. 23. 4th order bounds for Boolean and mosaic models of discs.

To summarize these results, we can build models of random composites, for which the effec-

tive complex permittivity lays in domains in the complex plane which are more accurate than

what can be obtained from the isotropic assumption: everything being constant (properties

El and e2 of the phases, volume fraction p of the set A), the effective property reaches the

point A~ when (i(p) ~ l, and the point B~ when (i(p) ~ 0; therefore, increasing the value of

(i (p) brings the effective property close to A2 in the complex plane; this is obtained by acting

on the following morphological criteria: by increasing the anisotropy of the random primary
grain (Boolean model whatever p, dead leaves and mosaic models for p < 0.5), by affecting
the property El to the complementary set of the primary grains for Boolean models, and more

generally by developing a microstructure with a lower percolation threshold for the phase with

the property El
(as obtained for the intersection of Boolean random sets).
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3D material Boolean Model epsl =(-2,3) eps2=(1,1) 3rd order

Volume fraction p

i

(spheres)c

o.5

3

2.5

-1.5

~j
~ ~

i ~
Epsilon

~ ~~~~°~ l

Fig. 24. 3rd order bounds for the Boolean model of spheres and (spheres)~.

3D material Intersection of boolean schemes of spheres epsl =(-2,3) eps2=(1,1) p=0.25
1.8

1.75

7
iteration

c
,'

l .65 "

£ ,:" /

ij .~
,>"

2 iterations

,/

~'~~
," an infiniw

1.5

______

__,,-/""'

1.45

~'
""~

~'~'~

0.45 0.5 0.55 0.6 0.65 0.7 0.75
Real Epsilon

Fig. 25. Bounds for the intersection of Boolean models of spheres (2nd and 3rd orders).

6. Conclusion

Models of random structures can provide different bounds of the effective properties, even when

considering the third order (3D) or the fourth order (2D) bounds. A similar approach can

be followed to predict the frequency dependency of the complex permittivity. for a IFequency

range which is in agreement with the scale of the microstructure, frequency dependent domains

can be obtained in the complex plane. Therefore, useful information on
the choice of the

microstructure can be obtained in this way.

The models introduced in this paper have a multiphase and even a continuous version (scalar

or
multivariate) [5, 6], for which the calculation of third order bounds in the real case can be

made using the general derivation based on the third order correlation function ii,10, 27].
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3D material Hierarchical model of Mosaic model epsl=(-2,3) eps2=(1,1) p=0.25
1.8

1.75

"~"'
~~~)

Hierarchical model

g
'~

;." ;~

jj
.65 .,"'

.1'

~ ,,/ ,:"(
l.6 ,,/ ,/

~ ./ ;."
E

,i
"

1.55

1.5 _;-.."'
"''

"~osaic

model of plates

1.45
~""

0.45 0.5 0.55 0.6 0.65 0.7 0.75
Real Epsilon

Fig. 26. Bounds for a hierarchical model of mosaic with plate cells (2nd and 3rd orders).

The extension of these more general textures to the complex permittivity requires further

theoretical developments.

Acknowledgments

A part of this study was made with the financial support of DRET (contract 92 017 00 025).
Laurent Savary is also grateful to CNRS and DRET for a grant.

References

ill Matheron G., ElAments pour une thAorie des milieux poreux (Masson, Paris, 1967).

[2] Matheron G., Random sets and integral geometry (J. Wiley, New York, 1975).

[3] Serra J., Image analysis and mathematical morphology (Academic Press, London, 1982).

[4] Jeulin D., in: Proc. CMDSS, A-J-M- Spencer, Ed. (Balkema, Rotterdam, 1987) p. 217.

[5] Jeulin D., ThAse de Doctorat d'#tat, University of Caen (1991).

[6] Jeulin D., Morphological models of random structures (CRC press, in preparation).
iii Beran M-J-, Statistical Continuum Theories (J. Wiley, New York, 1968).

[8] Kr6ner E., Statistical Continuum Mechanics (Springer Verlag, Berlin. 1971).

[9] Hashin Z. and Shtrikman S., J. Appl. Phys. 33 (1962) 3125.

[10] Hori M., J. Math. Phys. 14 (1973)1942.
ill] Milton G-W-, J. Appl. Phys. 52 (1981) 5294.

[12] Milton G-W-, J. Mech. Phys. Solids 30 (1982) 177.

[13] McPhedran R. and Milton G., Appl. Phys. A26 (1981) 205.

[14] McPhedran R., McKenzie R., Milton G., Appl. Phys. A29 (1982) 19.

[15] Jeulin D. and Savary L., accepted for publication in Physica A.



1142 JOURNAL DE PHYSIQUE I N°9

[16] Beran M.J., Il Nuovo Cimento 38 (1965) 771.

[17] Milton G-W-, Appl. Phys. Lett. 37 (1980) 300.

[18] Bergman D-J-, Phys. Rep. 43C (1978) 377.

[19] Keller J-B-, J. Math. Phys. 5 (1964) 548.

[20] Dykhne A-M-, Zh. Eksp. Tear. Fiz. 59 (1970) l10.

[21] Mendelson K.S., J. Appl. Phys. 15 (1975) 917.

[22] Milton G-W-, Phys. Rev. Lett. 46 (1981) 542.

[23] Jeulin D. and Le Co@nt A., in "Continuum Models of Discrete Systems", K-Z- Markov,
Ed. (World Scientific Publishing Company, 1996) p. 1996.

[24] Le Co@nt A. and Jeulin D., C. R. Acad. Sci. Paris Ser. IIb 323 (1996) 299.

[25] Andraud C., ThAse de Doctorat de I'UPMC (1996).
[26] Matheron G., Rev. IFP 23 (1968) 201.

[27] Miller M., J. Math. Phys. lo (1969)1988.
[28j Torquato S. and Stell G., J. Chem. Phys. 79 (1983) 1505.

[29] Torquato S. and Lado F., Phys. Rev. B 33 (1986) 6428.

[30j Joslin C. and Stell G., J. Appl. Phys. 60 (1986) 1607.

[31] Carmona F., Physica A 157 (1989) 461.

[32] Meraoumia T., ThAse de l'UniversitA Bordeaux1 (1994).
[33] Michels M-A-J-, Brokken-Zijp J-C-M-, Groenewoud W-M- and Knoester A., Physica A

157 (1989) 529.

[34] Le Co6nt A., ThAse de I'ENSMP (1995).


