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Abstract. We consider two-dimensional triangular networks of beads connected by Hookean

tethers under isotropic compression. We determine both the compression and the shear modulus

as a function of temperature and compression within simple approximations and by a Monte

Carlo simulation. At low temperature, this network undergoes a
collapse transition with in-

creasing compression. In the two phase region, collapsed and non-collapsed triangles coexist.

While the compression modulus vanishes in the two phase region, the shear modulus shows only

a small anomaly at the transition. With increasing temperature, this transition disappears in

our simulation. Anharmonic shear fluctuations invalidate a harmonic analysis in large regions
of the phase space. In application to the red blood cell membrane, we obtain good agreement
with more microscopic models for the shear modulus. Our results also indicate that strong

compression will lead to non-trivial elastic behavior of the cell membrane.

1. Introduction

Models, consisting of systems of identical connected springs, are commonly used to explain

the mechanical properties of elastic materials. One-dimensional chains embedded in higher
dimensional space have been intensively examined in the fields of polymer physics [ii. Two-

dimensional spring networks have been investigated as models of polymerized membranes [2].
The fundamental material parameters of such a network (as long as it is isotropic)

are the

compressibility and the shear modulus. If the network is not confined to two dimensions but

rather allowed to explore the third dimension, a third parameter, namely the bending rigidity,

comes into play. Several studies have been devoted to strictly two-dimensional triangular
networks for which the externally applied tension is a crucial parameter [3, 4]. The elastic

behavior of such stretched networks can be understood using simple mean-field arguments. As

an example for the unusual effects one encounters in two-dimensional networks, we mention a

negative Poisson ratio which has been predicted by mean-field calculations and confirmed by

the results of a Monte Carlo simulation [4].

(*) Author for correspondence (e-mail: useiferttlmpikg-teltow.mpg.de)
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The purpose of this paper is to investigate two-dimensional elastic networks under lateral

compression. A network can be compressed, if it shows both a non-vanishing equilibrium area

in its relaxed state and elastic response to an external constraint imposing smaller area. In-

stead of buckling into the third dimension lateral compression of a network patch occurs, if the

bending modulus of the system is sufficiently large compared to the product of lateral pressure

and the square of the maximal diameter of the patch. The skeleton of the red blood cell (RBC)
membrane is a paradigmatic but somewhat subtle realization of a two-dimensional network [5],

which fulfills these two conditions for the occurrence of lateral network compression, The

RBC membrane consists of
a globally almost incompressible fluid lipid bilayer. Attached to

this bilayer via integral proteins there is a
closed twc-dimensional, almost perfectly hexagonal

network of spectrin tetramers. The connection of bilayer and net is close enough to consider

the net as a constituent part of the cell membrane. In experiments, in which the skeleton is

extracted from the membrane, the network shows non vanishing equilibrium area for observa-

tion times up to hours [6]. The bilayer provides the system with a sufficiently large bending
resistance to allow lateral compression of network patches, which are large compared to the

area of molecular meshes.

The presence of the incompressible fluid bilayer has important consequences for the tension

field within the network. In particular, the network needs not to be relaxed in the equilibrium
state of the membrane since the number of lipid molecules within the bilayer determines the

total membrane area due to the high area expansion modulus of the bilayer. Retracting or

adding lipid molecules from or to the bilayer of the RBC exerts isotropic compression or

stretching on the network [7]. Furthermore, the incompressibility of the bilayer implies that any
cell deformation causes, in general, local stretching, compression and shearing of the membrane

skeleton.

In various experiments RBCS have been deformed by external forces in order to extract the

elastic properties of the membrane. The most prominent method to exert cell deformations

in a controlled manner is the use of micropipettes [8]. In these experiments parts of the

membrane are aspirated into the pipette by negative pressure. The pressure-extension relation

is measured together with density profiles of different components of the cell membrane [9]. The

deformations applied in these experiments are quasi stationary and strong. In a second class

of experiments, time sequences of the thermal fluctuations of the cell shape are recorded and

analyzed [10,11]. The crucial part in the analysis of all these experiments is the decomposition
of the elastic response of the membrane into contributions from the bilayer and the skeleton.

For this decomposition, models that incorporate both components have to be used. The quite
intricate behavior our model shows under certain conditions indicates that simple minded

approaches concerning the elastic properties of the membrane skeleton may lead to an incorrect

analysis of the experimental results.

The paper is organized as follows. In Section 2, we define the model and analyze stability
of a single mesh at zero temperature and for finite temperature within a simple mean-field

approximation. In Section 3, we present the results of a Monte Carlo simulation. In Section 4,

we apply our results to models of the ABC membrane. A brief conclusion follows in Section 5.

2. The Model

2.I. BOND POTENTIAL. We model the network by a two-dimensional hexagonal lattice

of springs confined to a plane [4]. Thus, buckling is excluded. We also ignore defects and

inhomogeneities. Each spring with length ii is subject to a potential Viii). If the springs,
which model the spectrin strands, consisted of ideal Gaussian chains, the equilibrium length

would be zero and the area would vanish. A non-vanishing equilibrium area can be achieved
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physically by three mechanisms:

I) a non-vanishing equilibrium length lo of the springs, which can be motivated from a self

avoiding random walk or a
worm-like chain model for the single-chain elasticity;

2) an isotropic internal pressure p;n due to the inter-chain volume interactions;

3) the topological constraint of having
no entanglement between network strands, if we

assume that network connectivity and surface anchoring are preserved under compression.
This condition bears similarities to a three-dimensional melt of non-concatenated ring
polymers [12j. The effect is incorporated into our model in a crude way by a hard wall

potential which prevents the movement of vertices across bonds.

The compression of the network by external forces is achieved either by the application of

external isotropic lateral pressure pox (pressure ensemble)
or by periodic boundary conditions

(area ensemble).
We will now analyze the statistical mechanics of such a network assuming that Vii) is

independent of temperature and compression. While such a condition may not be met in a given
physical system, it is a well defined model. The zero temperature equilibrium conformation of

each unit cell of the network, which consists of one vertex, two triangles and three bonds of

lengths ii (I
=

1,. 3),
can be calculated by minimizing its energy

3

f(li,12,13)
"

~j V(lz) + 2pA(li,12,13), II)

i=1

where p is the sum of internal and external pressure and A(li,12,13) > 0 is the area of the

triangle.
Variation of (1) with respect to the three bond-lengths gives a set of three equations that

determines the stationary conformations. For an equilateral triangle, I.e., ii
~ 12 " 13 " 1,

these stationarity equations reduce to 0f/01
=

0. This equation determines the equilibrium
length le by ~

~~~~ ~
$

~~ ~' ~~~

2.2. HooKE's LAW NETWORKS. For a stability analysis of the equilateral conformation,

we specify V to be a Hooke's law potential,

V(1)
=

~
(l lo)~, (3)

where k is the spring constant and lo the spring length. This choice for V(I) may be interpreted

as the first term of a series expansion of an arbitrary potential with a single spring equilibrium
length of lo. In the following we measure I in units of lo. Pressure will be nleasured in units of

k and energy in units of klo~.
The stationarity equations show that all stationary conformations are isosceles triangles.

They can be parameterized by the length, I, of the two equal sides and a, which is half the

angle between them. In this parameterization, the free energy of a single unit cell becomes

f
=

2V(1) + V(21 sin a) + 2pl~ sin a cos a. (4)

For negative p, the equilateral nlesh (a
=

7r/6) is the only and therefore stable stationary
confornlation. when p approaches -v5, le grows continuously to infinity [4]. This nleans that
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Fig. 1. Energy f of a single mesh as a function of pressure p. Solid lines represent locally stable

conformations: The equilateral (o
=

r/6) and the collapsed (a
=

r/2). At Me (p
=

ill) the

equilateral conformation becomes unstable. Both branches cross at D (p
=

vi18). The energy barrier

between the two locally stable conformations consists of unstable, non collapsed isosceles triangles
(r/2 > o > r/6). This branch continues beyond Me (a

=

r/6) and ends at p =
1 in an unstable

collapsed conformation (o
=

0, f
=

1/2).

the network can be infinitely expanded by the application of a finite tension. For positive p,

additional stationary confornlations arise. A locally stable one is a collapsed nlesh with
=

2 /3
and a =

r/2 and a free energy of f
=

1/6. This state is a boundary nlin1nlum stabilized by
the constraint of forbidden bond crossing.

Figure 1 shows the energy diagram for a single mesh. For p >
1/vi

cd 0.6 the equilateral
conformation becomes unstable with respect to a shear deformation, which breaks the sym-

metry of the equilateral triangle. This scenario is typical for a discontinuous transition of the

equilibrium conformation. It implies
a

first order phase transition of the network between an

equilateral and a collapsed phase. The height of the energy barrier between the equilateral and

the collapsed conformation is approximately 0.02.

2.3. ELASTIC RESPONSE ON STATIC DEFORMATIONS. The values of the elastic constants

for the equilateral phase of the network can be extracted front an analysis of static defornlations

of the equilibriunl conformation [4j. The area per unit cell a(p) (measured in units of vi lo~ /2),
the area compression modulus Kp and the shear modulus /tp (both in units of k) depend on

the pressure as follows:

a =

(I+Pll)~, (5)

Kp
=

(
(I + VII), (6)

/Lp =

((ill-P).
(7)

As mentioned above, the area a diverges at p =

-Vi. At this value, Kp vanishes. The shear

modulus /tp vanishes at p =

1/vi, indicating an instability of the equilateral conformation with

respect to shear deformations at Me The elastic constants Kp and /tp are meaningful quantities

only for the equilateral phase. Beyond the collapse transition, where for zero temperature a =
0,

they are no longer defined.
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2.4. CONSTANT AREA ENSEMBLE. Of course, a
complete net collapse is impossible for the

nlenlbrane skeleton because it is connected to the closed bilayer with constant surface area.

Thus we have to consider a constant area ensemble rather than a constant pressure ensemble.

In the constant area ensemble, coexistence of the equilateral and the collapsed phase becomes

possible.
For a simple lever rule calculation, which neglects the coupling between the phases at their

boundaries, we assume a binary mixture of collapsed and equilateral meshes and minimize the

free energy. Varying both the ratio of collapsed and non collapsed meshes and the bond length
of the equilateral triangles for a given total number of unit cells N and total area A shows

that the transition will occur at constant pressure p =

vi18
cf 0.2, which corresponds to the

transition D in Figure 1. The area per triangle
a =

A/N at the transition is 21% less than

the area at p =
0. The bond length in the equilateral phase is found to be le

=
8 /9. Thus the

bond length in the equilateral phase fits neither the length of the short sides of the collapsed
meshes (2/3)

nor of the long sides (4/3).
The elastic constants

~~
~

/~ ~~~

and

~~
~~~ ~/~~ ~~~

follow if equation (5) is used to eliminate p from equations (6, 7). Again these equations

are only valid in the equilateral regime. But in contrast to the case above, KA and /tA are

meaningful quantities also for the two phase regime, which does not exist in the constant

pressure ensemble.

Neglecting phase boundary effects, both KA and /tA vanish in the limit of zero temperature,

when the system enters the two phase regime. Using the definition of KA in the form

this result follows from the ever rule alculation,
which

shows that p is constant in the two

phase
The

shear modulus
is zero due to the fact

that
a

finite shearing
can

by

2.5. MEAN FIELD ESTIMATE AT FINITE TEMPERATURE. In a first attempt to explore

the effect of finite temperature H (measured in units of klo~/kB) we calculate the partition

function of a network vertex. With the bond potential (3) the elastic energy (4) is not a

harmonic function of the vertex positions. Calculating the partition function in the harmonic

approximation, which becomes exact in the limit lo ~ 0, is equivalent to the zero temperature

analysis of static deformations (4]. For an alternative approximation, we neglect all correlations

between the meshes. The single vertex partition function becomes

li1213 ~-ji(ii,i~,i~))/B (11)Z
~

/
~~l

/
~~~

/
~~~

2 A(li, 12, 13)

The factor in front of the exponential gives the
a priori statistical weight of a specific triangular

conformation expressed in the bond length coordinates ( (~). The three integrals can be

performed numerically.
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Fig, 2. Area per vertex a as a function of pressure p resulting from mean-field calculation. The

solid line corresponds to zero temperature (Eq. (5)). The inlet shows the bond length fluctuations as

given by equation (12) in the vicinity of the phase transition as a function of p (same units as in the

main diagram).

Figure 2 shows the area versus pressure diagram resulting from this calculation together
with the results from the zero temperature considerations given above. In this single mesh

model, a strong decrease of the area per mesh indicates the presence of the phase transition

even before the shear modulus vanishes in the harmonic approximation. Nevertheless, this

decrease is smeared out even for low temperatures, as it should be expected in a one vertex

model. The inlet gives the square of the relative bond length fluctuations

(12)ai~
= j -1 (12)

(1)

in the vicinity of the phase transition. When the pressure approaches the transition pressure,
the bond length fluctuations increase rapidly. This one vertex model shows a

reflection of

the phase transition, but is definitely not capable of predicting reliable values of the elastic

constants in the two-phase regime.

3. Monte Carlo Simulation

3.I. COLLAPSE TRANSITION. The full coupling of the meshes can only be considered in

a computer s1nlulation. Therefore, we performed a Monte Carlo simulation with Boltznlann

sanlpling for the Hooke's-law spring network in a constant area ensemble. The bounding box

is periodic in x- and y-direction of a non-rectangular coordinate system. The periodicity of the

box preserves the total area. Fixing the geometry of the boundary box imposes a deformation

on the network. Bond crossing moves are rejected. The system of N
=

20 x 20 vertices is

prepared in equilateral confornlation at the fixed area A. Then the systen1is allowed to evolve

freely at constant temperature. In contrast to the simulation of Boal et al. [4], who have

implenlented a s1nlilar schenle for the pressure ensemble, the two phase reg1nle is accessible to

our simulation.

(~) This measure factor differs from an incorrect one used in reference [4j.
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Fig. 3. Typical configuration of the network at low temperature (H
=

0.01) and compression to

about half of the stress free area (a
=

0.48). The system is periodic at the upper and lower as well as

at the left and right boundary.

Figure 3 shows a typical conformation in the low temperature two phase region. The col-

lapsed domains forn1lines oriented along the preferred directions of the hexagonal net. Far

away fron1these strings, the shapes of the triangles within the equilateral domains are affected

only weakly by the presence of the collapsed meshes. However, the non collapsed triangles
adjacent to the collapsed strings are distinctly non-equilateral.

This observation suggests that a domain boundary costs energy. In the lever rule calculation

discussed in Section 2.4, the bond length in the equilateral phase fits neither the length of the

short sides nor of the long side of the collapsed mesh. Figure 3 shows that the short sides are

preferably in contact with the equilateral phase. The energy associated with this mismatch can

be minimized by forming collapsed domains from several adjacent rows of meshes. Furthermore,
the mismatch shears the triangles that are directly adjacent to the collapsed strings. This effect,
which can be seen most clearly in Figure 3 above the horizontal string of collapsed meshes,
limits the growth of the collapsed domains.

Due to these domain boundary effects, the collapse transition occurs by collective motions

of chains of adjacent triangles. This fact explains the stability of the collapsed domains at

low temperature observed in our s1nlulations. Once a chain of meshes has collapsed, thermal

fluctuations have to induce a collective motion in order to break up the string. The probability
for this process is strongly reduced with increasing domain size.

3.2. ISOTROPIC COMPRESSION. The elastic response of the network on deformations of the

bounding box is evaluated by means of the pressure tensor defined by

Pap
=

6nP +
£ l~j ~()~(~ fv (13)

~~
iJ

where ij counts the pairs of vertices connected by a spring, rzj denotes the bond vector between

the connected pairs and fzj the force exerted by the spring [13]. We performed two kinds of

deformations: isotropic compression by a scaling of the boundary box and pure shearing. In

the isotropic case, Pii and P22 are equal and give the lateral pressure p.

The average in (13) is performed by means of MC sampling. The sampling technique is

somewhat different for the equilateral and the coexistence reg1nle. In the equilateral reg1nle
configurations are picked front the sequence produced by a single MC run. At low tenlperature
and high conlpression, for which a collapsed region exists, only one confornlation of each
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Fig. 4. Pressure p as a function of the area per vertex a =
A/N resulting from MC simulations.

The solid line represents the f~
=

0 value from equation (5).

equilibrated systen1is collected. Using 500 such confornlations, we average over different

realizations of the collapsed domains. This procedure reflects the fact that at low tenlperatures

the collapsed regions do not spontaneously break up once they have formed. The system shows

enormous correlation times due to freezing of collapsed domains.

The p-a diagran1resulting from our simulations is shown in Figure 4. For low temperatures

(H
=

0.01 and fl
=

0.02) a pressure plateau indicates the collapse transition whereas for higher

tenlperatures (H > 0.03) no indications of a phase transition are observed. Thus we find a

critical temperature Hc (0.02 < Hc < 0.03), above which the phase transition in our simulation

disappears.
A closer inspection of Figure 4 shows that the pressure in the two phase regime is not

exactly constant at small temperature. This small remaining area dependence of p may be due

to donlain boundary effects. A growing portion of non collapsed nleshes beconles part of the

phase boundary when a decreases. Figure 3 shows that these non collapsed triangles are not

equilateral.
The lateral compression nlodulus can be extracted from the g-a diagram by differentiation

using equation (10). The result of a numerical differentiation of the data of Figure 4 using a

four point neighborhood is given in Figure 5. For low temperature e < Hc the compression

modulus drops to -zero at ac cf 0.79 (~). For temperatures larger than Hc, the compression
modulus stays non zero.

3.3. SHEAR MODULUS. In order to extract the shear modulus from the simulations we

shear the boundary box. Moving of the upper boundary of the simulation box, which has the

length L, by EL to the right, we perfornl a shearing. The responding torque of the system is

evaluated by nleans ofthe off diagonal elements ofthe pressure tensor. In this special geonletry,
the torque T generated by the network in response to the deformation is given by

T =
NaP12. (14)

(~ The shoulder is artificially rounded by the smoothening method of numerical differentiation. As
we

have checked for selected points, the data is, apart from the shoulder, consistent with a computation

of the compression modulus from the MC expectation value of the second derivative of the free energy

with respect to the elements of the strain tensor.
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Fig. 6. Shear modulus vA as a
function of the area per vertex a =

A/N resulting from MC

simulations for three different temperatures together with the 13
=

0 value.

For small shear deformations, the responding torque is proportional to the magnitude of the

deformation. Besides a geometrical factor, the constant of proportionality is the shear modulus

Figure 6 presents the results of our simulations. The solid line gives the e
=

0 values from

equation (9). It is a good approximation for
a ~ 0.8. In this regime, the shear modulus shows

almost no temperature dependence.
For a < 0.8 significant deviations front the behavior expected for H

=
0 are found. S1nlu-

lations for H < Hc are very time consuming due to the long correlation time induced by the

stability of the collapsed domains. Therefore, we determined /tA for only one temperature
below Hc (fl

=
0.02). For this temperature, which is already close to the critical, we find no

indications of a sharp drop of /tA. It decreases smoothly with decreasing a and seems to reach
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zero asymptotically for small a. The signature of the collapse transition is a sudden increase

of the temperature dependence of /JA.
In contrast to the compression modulus, which behaves, at least for small temperature,

as it is expected in this kind of a phase transition, the shear modulus is not as strongly
affected by the collapse transition. It does not shows a sharp drop to zero at the entrance

to the coexistence regime. The collapse of a mesh introduces a strong anisotropy to the

remaining equilateral meshes. In the course of compression, more and more meshes collapse.
The anisotropy induced by the already collapsed meshes imposes preferred directions for the

following collapses. Meshes at the end zones of a collapsed string will tend to align with the

string, meshes at some distance perpendicular to the string will collapse to one of the other

two preferred directions of the hexagonal network. Therefore, in our simulation, the spatial
distribution of collapsed domains shows strong correlations. Under certain conditions, these

correlations produce regular pattern of collapsed meshes (see Figure 3). An odd distribution of

collapsed meshes on the three preferred directions of the net, which is to some extend preferable
to a shearing of the equilateral domains and indeed the reason for the slight decrease of the

shear modulus at the entrance to the two phase regime, will partially destroy these pattern.
This would again impose an anisotropic deformation of the remaining equilateral triangles and

thereby cause a non zero shear modulus. The occurrence of such correlations may be an effect

of our finite simulation box. If, however, the deformation of the equilateral phase induced by
collapsed meshes decays slowly enough with the distance from the collapsed domain, which is

not unusual for elastic interactions, it may also be an inherent feature of the system.

3.4. HIGH TEMPERATURE. So far, we have discussed the system in a compressed state at

low temperature. At temperatures 8 > 0.03, we find no indications of a first order phase
transition. In contrast to this observation Discher et al. [14] report on a first order phase
transition between an equilateral phase and a completely collapsed phase for arbitrary finite

temperatures. They perform a simulation of the equivalent system in the pressure ensemble.

When the isotropic pressure exceeds a certain value, in their simulation the system collapses
completely to one of the three preferred directions of the hexagonal network. In this transition,
the symmetry of the system changes discontinuously from C6 to C2. This first order transition

can not end in a critical point due to the different symmetry of both phases.
The transition we study is the transition from the hexagonal phase to the coexistence phase

of hexagonal domains and collapsed domains, which are regularly distributed to the three

preferred directions of the hexagonal net. Assuming the equivalence of both ensembles, the

existence of the transition from hexagonal to completely collapsed in the pressure ensemble

for arbitrary finite temperature would imply an equivalent transition from the completely non

collapsed to the coexistence phase in the area ensemble. However, we see a behavior of the

system, which is akin to a critical point as the endpoint of a line of first order phase transition.

At present, we see two possible explanations for this difference with the results of Discher

et al. [14]:
ii) Finite-size effects could mean that the simulations are still far from the thermodynamic

limit of infinite system size. In this case, the position of the phase boundary and especially of

the critical point should depend on the system size (~).
(ii) Long-ranged elastic interactions are known to spoil the equivalence of the thermodynamic

ensembles which holds only for sufficiently short-ranged interactions. In this case, a finite size

effect is immanent to the system and vanishes never regardless of its actual size. If our network

(~) Even if the phase behavior turns out to depend only weakly on the system size, this finite size

effect may still be relevant for the topologically closed skeleton of a red blood cell which is also a finite

system.
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system belongs to this class, a complete separation of the collapsed domains and the hexagonal
domains, as it is usually expected in the thermodynamic limit due to the decreasing importance

of the domain boundaries, is not possible. The two ensembles could then show different phase

behavior even for very large systems (~).
The precise character of the phase transition in the area ensemble should be resolved in the

future by simulations of far larger systems.
The elastic properties of the network deviate significantly from the values of the harmonic

theory discussed in Section 2.4 even when the network is slightly stretched. As a representative
example, we show in Figure 7 the compression and the shear modulus at 8

=
1 in a wide range

of a. Both, KA and /JA are smooth and non vanishing functions of a. Only for a / 3,

equations (8, 9), which hold exactly in the limit
a » I, become good approximations of the

simulation results.

4. Application to Red Blood Cell Skeletons Models

We now discuss how
our model relates to previous models of the red blood cell skeleton. Isolated

spectrin molecules are
flexible, water-soluble macromolecules with a large number of charged

side groups [15]. In modeling the spectrin network, one has to account for the effective inter-

and intra-molecular interactions as well as for the presence of the bilayer and of counter-ions.

The basic model of the spectrin network uses expressions from classical rubber elasticity [16].
Implicitly, the cytoplasm is treated as a e-solvent in which the network strands behave as

ideal Gaussian chains. The shear elastic properties of a network of ideal entropic springs can

be calculated analytically ii ii. Later refinements took quite opposite views on the importance
of the polyelectrolyte character of spectrin. Stokke et al. [18] treated the network as an ionic

gel. In bad solvents the counter-ion osmotic pressure leads to phase separation and a vanishing
compression modulus of the network. Other groups have completely ignored electrostatic

interactions and modeled spectrin as a flexible polymer in a good solvent [19-21]. This is

motivated by the strong screening under physiological conditions and the observation that the

isolated cytoskeleton is stable, shows no signs of (local) collapse [6], and adopts conformations

similar to those found in simulations of closed two-dimensional triangular networks of self-

avoiding bead-spring chains [22]. The elastic properties of such a network in contact with

(~) In a note added to [14j, the possibility that the two ensembles are not equivalent has also been

suggested.
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an impenetrable surface and under zero external pressure were measured in extensive computer
simulations [20j and can be understood on the basis of the c*-theorem 11, 21].

Conceptually, one should distinguish between microscopic and mesoscopic (or effective) mod-

els. The first approach relies on simulations of molecular models of the spectrin network. In the

comprehensive study by Boal [20], the spectrin molecules are modeled as bead-spring-chains,
explicitly including volume interactions between beads and the presence of the surface. In

principle, the extraction of the elastic properties of the model network and the inclusion of

molecular detail into the model are limited only by the available computing resources which,
in practice, can be a severe limitation.

Mesoscopic or
effective models, like the classical theories of rubber elasticity, start with a

networks of entropic springs. The difficulty lies in mapping the microscopic interactions on

appropriate spring equations and (possibly) interactions between neighboring springs. Simula-

tions of microscopic models therefore provide valuable test cases to check the predictions and

the interpretation of parameters for a mesoscopic model. Once the mapping is understood,
the accessible time and length scales are orders of magnitude larger than for microscopic mod-

els, even if a mesoscopic model cannot be solved analytically. Such models can be treated

either by methods of computer simulations [4], afline theory [23] or the analysis of static de-

formations [24]. lvhile computer simulations are capable of including mesh fluctuations and

topological constraints, these effects are left out by afline theory and the static analysis.
We will now relate our simulation to the simulation of Boal [20]. The macroscopic state of the

network, characterized by the vertex area density p =
N/A and the temperature T, is known.

For our model, we have to specify appropriate values of the parameters 8
=

kBT/klo~ and

a =

2/viplo~, from a comparison to the (approximately) known single chain characteristic of

the network strands used in the model of Boal. Then we can use our results for the isotropic
shear and compression modulus and their dependence on isotropic compression for a compari-

son with the microscopic model.

In the case of self-avoiding chains, values for 8 and
a can be deduced by comparison to the

Redner-des Cloizeaux (RdC) expression for the end-to-end distance distribution of SAW in a

halfspace with both endpoints on the limiting surface (in the following denoted as
3d/2) [23, 25].

The RdC force-elongation relation is given by

f(x)
=

~~()~~ (9x~~ tK~x~~~), (16)

where the end-to-end distance ~ is measure in units of the root-mean-square end-to-end distance

fi, t 1 2.5 and 9 1 0.35 are (effective) exponents related to the SAW critical exponents,

and K
i I a

numerical normalization constant. In harmonic approximation, equation (16)
corresponds to Hooke's law springs with lo cd

0.5/~~
~ ~~

and k 1 3.8kBT/(r~)3d/2. This

leads to a
reduced temperature 8 cd I.I.

In the absence of external forces, the size of the network in the simulation of Boal measured

in our units is a Cf 3.2(r~)~d/~/lo~ ci 13 [20]. This finding is used to determine the second of

our parameters. As Figure 7 shows, this value for a is large enough to neglect the effect of

topological constraints and mesh fluctuations. Thus equation (9) gives a good approximation

for the shear modulus. Inserting the natural units, it predicts /J =
5.2kBT/(r~)3d/2. This

is in excellent agreement with /J =
5.lkBT/(r~)~d/2 from the junction afline model used in

reference [21], which inherently makes the assumption of negligible mesh fluctuations, and

in good agreement with /J =
4.2kBT/(r~)~d/2 from the extrapolation of simulation data by

Boai 1201 l~).

(~) see reference [21] for a discussion of possible finite strand length effects in [20].
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Our model can account only for the shear elastic properties of the network and not for

the compression modulus. KA/ILA predicted by our model is approximately 0.2 while in the

simulation KllJ
ci 1.7. In order to adjust the lateral extension of our network to the situation

found in the microscopical simulation, an internal pressure p;n if -1.2 is necessary. The present
example illustrates that choosing a non-zero internal pressure in order to adjust a given value of

network stretching is sufficient to extract the shear modulus but may lead to erroneous results

for the compression modulus.

Finally,
we assess the consistency of the recent effective model by Hansen et al. [24]. This

finite element description of the network emphasizes the single chain elasticity and the influence

of a random network topology. Thermal fluctuations of the meshes, however, are neglected.
The network is assumed to be in a relazed initial state, which means p =

0 and a =
I, if we

neglect the influence of randomness. This assumption is obviously in contrast to the outcome

of the simulation of Boal. Due to this assumptions, the equilibrium length of the spectrin
molecules in the RBC network of about 70nm is identified with lo. For 8

=
0 and a =

I,

equation (9) gives /JA "

Vi14
if 0.43 in units of k. In this model, the spring constant k has

to be extracted from an external source, which is the measured value of /J. After assigning
values to k and lo, the value for 8 can be calculated. The crucial question is, whether this

value is consistent with the initial assumption of negligible thermal fluctuations. Using the

value for the shear modulus /J 1 6.6 x
10~~ dyn/cm published by Waugh et al. [26] leads to

k
i 1.5 x

10~~ dyn/cm, which means 8
ci 0.05. Figure 6 shows that for such low value of

8 and a / 0.8 the influence of 8 on the shear modulus is indeed negligible. However, for

a < 0.8 it is not. If we take a value for /J from the flicker analysis by Strey et al. Ill], which

is typically two orders of magnitude smaller than the results from micropipette experiments,
the assumption of negligible fluctuations is inconsistent even at a =

I. Thus, in contrast to

the afline model, where the negligible effect of thermal fluctuations can be justified
a posteriori

by the harmonic character of the network at sufficiently high values of a, this assumption is

questionable in the Hansen model.

In conclusion, our simple model with its two parameters 8 and a allows a classification of

the different effective models for the RBC membrane skeleton. Typical for all those models,
which deduce the elastic properties of the network from single chain properties alone, is the

fact that they give unreasonable results for the local compressibility. Even though this net-

work compressibility is in any case small compared to the compressibility of the bilayer and

can therefore be neglected for the question how the membrane area changes when a certain

pressure is applied to the membrane as a whole, it is crucial for the problem how the network

reacts on cell deformations. Modeling the membrane network by a system of connected springs,

which is an obvious idea especially for an investigation of the effects of strong and anisotropic
deformations, has to include some feature of the chain-chain interactions, which mainly con-

tribute to the network compressibility. This could be done by replacing the internal pressure

in the second term on the right hand side of equation ii by a more realistic expression, which

considers the dependence of the chain-chain interactions on the local chain density.

5. Conclusions

The mechanical properties of a hexagonal network of springs are in a certain range of tem-

perature and compression strongly influenced by the presence of a configural phase transition.

Lateral compression of the network induces a sharp collapse of chains of net meshes. With

increasing temperature we find a critical point, above which the phenomenon disappears.
Below this critical temperature and beyond a threshold value of compression, the area of

the net can be decreased without a change in internal pressure due to a growing fraction
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of collapsing meshes. In this state, the network can easily be sheared by a redistribution of

energetically equivalent but geometrically distinct collapsed conformations. Above the critical

temperature the network shows elastic response to area expansion as well as to shear. This

elasticity of the hexagonal network of Hooke's-law springs with non-zero equilibrium length
under compression is of entropic origin.

The difference in the elastic behavior between the stretched and the compressed network is

a consequence of the difference in the fluctuations of mesh shapes. In the strongly stretched

case, the position of an individual fluctuating vertex remains in the vicinity of its equilibrium
position. The system behaves like a harmonic solid, showing no influence of temperature on the

elastic properties. Therefore the zero temperature estimates are in good agreement with the

Monte Carlo simulations for finite temperature [4]. With decreasing tension, shear fluctuations

become more important. For non-zero equilibrium length, these fluctuations are anharmonic

which implies a temperature dependence of the elastic constants.

One application of our network model is to the skeleton of red blood cell membranes. The

advantage of such a network model is that it includes fluctuations of the mesh points while

it is not as time consuming as the simulation of more microscopic models. Identifying the

model parameters with one particular microscopic model, we find good agreement for the shear

modulus. For a full description of the elastic behavior including the compression modulus,
especially under the condition of anisotropic deformation, a physically motivated concept has

to be developed how to include chain-chain interactions beyond an isotropic tension into such

an effective model. Only then will it be possible to specify the conditions under which the

collapse transition discussed here may become relevant for strongly deformed red blood cell

membranes.
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