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Abstract. Using different simulation techniques, we study the influence of the friction law

governing interparticle and particle-plane contacts on the dynamics of
a

regular array of rigid
parallel cylinders moving on a plane. We find that the evolution of the system depends strongly

on the simulation method. But both in simulations with a Contact Dynamics algorithm, which

prescribes the basic Coulomb's law of friction, and in simulations with molecular dynamics,
which prescribes a regularized form of Coulomb's law, a steady state with very similar collective

rotation modes is reached. As long as the static and dynamic friction coefficients are equal, the

rotation modes are independent of the initial conditions. We show that in all cases, the global
steady-state coefficient of friction between the array and the plane is a function of the driving

force and the system size, and hence is not Coulombian.

1. Introduction

The physical basis of the frictional properties of dense granular materials, studied first by
Coulomb over two centuries ago ill, is still an open question [2-4]. The frictional resistance in-

side a
(dense) granular system or along a bounding solid surface is a collective process involving

the disordered network of interparticle contacts. In other words, due to kinematic correlations

the particles do not contribute independently to the overall friction.

These correlations appear not only as a result of the multi-contact nature of a dense granular
system, but also from the possibility of particles to roll over one another. At such nonshding
(NS) contacts no dissipation takes place. Moreover, according to Coulomb's law of friction

(see below), the friction force T at a NS contact is only "partially mobilized", I.e. it takes

an absolute value between
zero and the product of the coefficient of friction

~1
and the nor-

mal contact force N. Only at sliding (S) contacts, the friction force is fully mobilized (I.e.
T

= -~1 sgn(v~)N), where v~ is the relative tangential velocity of the surfaces. For these rea-

sons, the global frictional resistance is not expected to be a simple function of the interparticle
coefficient of friction. It depends on the distribution of S and NS contacts in the medium

and on the highly heterogeneous distribution of contact forces, as observed in experiments and

numerical simulations [5-7].

(*)Author for correspondence (e-mail: radjaitlcomphys.uni-duisburg.de)
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If all particles could roll over one another, a granular assembly would deform without resis-

tance, in contrast to the fact that a finite force is needed to trigger or to maintain a granular
flow. Hence, the resistance of a dense granular system results essentially from the frustration
of particle rotations. This means that, due to kinematic constraints, contacts cannot all be

simultaneously NS. Consider, for instance, three identical disks mutually in contact. If the

particles in this simple configuration rotate, then at least one of the three contacts has to be

sliding. The patterns of rotational frustration are generally much more complex and need a

systematic study if a fundamental understanding of the mechanisms of friction in granular
systems is to be gained.

In this paper we are interested in the dynamics of an array of identical disks (or cylinders)
supported by a basal straight line (or plane), set to motion by applying a constant force on

one of its ends (see Fig. I). Some aspects of this model have been studied in [8]. There, it

is numerically shown that with the basic Coulomb's law of friction, the system self-organizes
itself to reach

a steady state that is independent of initial conditions. This final state involves

a well-defined organization of forces and particle angular velocities, giving rise to (up to three)
mesoscopic scales along the array. In the steady state, one can define a global coefficient of

friction which is,independent of initial conditions but depends on the driving force. The same

reference, by an analytical study of the correlations between the rotation modes and the global
steady-state friction, shows that even for this regular multi-contact system, the mechanisms

leading to an overall friction are far more complicated than what might be expected on a purely
intuitive basis.

An original feature of the simulation method employed in [8], namely the Contact Dynamics
(CD) method, is to prescribe the exact Coulomb's law of friction and the condition of perfectly
rigid particles. However, the physical behavior of the system, briefly presented above, would

have been partially different if another simulation method was used. In fact, in more common

algorithms, such as Molecular Dynamics (MD),
a "regularized" form of Coulomb's friction

is implemented, and the particles are not considered as rigid. Thus, the important point is

to examine to what extent such a regularization may affect the macroscopic behavior of the

system. Another possible friction law is the Coulomb's law with a static coefficient of friction

in addition to a different dynamic one. How would the dynamics of the system be influenced

by such a law? This paper is concerned in the first place with these issues. We discuss in detail

the ability of the numerical algorithms used to describe correctly the physics of the system. We

study the time evolution, and more particularly the mechanisms of self-organization (essentially
missing in [8]), involving a new effect due to friction with the driving block. Furthermore, the

influence of mechanical parameters, such as the local coefficients of friction at particle-particle
and particle-plane contacts, on the global coefficient of friction are systematically investigated.
For the sake of self-containedness, some overlaps with [8] could not be avoided.

We will first introduce the model and its parameters. The friction laws and their prescription
in numerical codes are discussed next. The most important results are grouped in three sections

concerning the evolution, the steady-state collective modes and the steady-state friction. We

will conclude with a discussion of the most salient physical features of the model and the

relevance of the numerical algorithms. Some technical details have been placed in appendices.

2. The Model

Figure I shows the geometry of
a linear array of identical disks on a straight line. The particles

are numbered from I to L opposite to the direction of motion. A horizontal driving force NL

is applied to the particle L by a "pushing block". At the other end of the array, a braking force

-No is applied by a block to the particle I, where NL > No-
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Fig. 1. Geometry and boundary conditions of the model.

The mechanical parameters of the system are: particle-particle (~1), particle-plane (~1') and

particle-block (~1") coefficients of friction, driving and braking forces, the weight P and the

moment of inertia I of each particle, and finally the total number of particles L. All quantities

can, however, be normalized with respect to three basic units of the problem: the weight and

the radius of one particle, and the acceleration of gravity; they are all set equal to unity. In

the following, we will use only dimensionless quantities.
Each particle in the array has one rotational and two translational degrees of freedom. None

of them is frozen in this model, so that particle-particle or particle-plane contacts may "open"
during motion. Our simulations show, however, that starting the system with the closed-

contact configuration (each particle in contact with its two neighbors and with the plane),
all contacts are mechanically stable in time unless the value of the driving force NL exceeds

a critical value Nc which is a function of the parameters. The degrees of freedom are thus

reduced to only one translational for the whole array and one rotational per particle. In the

simulations reported in this paper we have mostly used low values for the coefficients of friction

in order to get a stable system for a wide range of driving force values.

It is important to note that the particle rotations in this one-dimensional system are fully
frustrated. Indeed, every pair of neighboring particles and the plane form a loop of three

solids mutually in contact. At least one of the three contacts has to be sliding. As the array

is pushed, particles move and rotate and some interparticle or particle-plane contacts can be

nonsliding. Moreover, during motion a NS contact may turn into a S contact, or vice versa.

The correlations in the motions of particles, due to the multi-contact geometry and frustration

of rotations, are so strong that collective dynamics should be expected.
We are interested in the evolution of the system and the behavior of the global array-

plane friction as a function of the local friction laws and the mechanical parameters. Let us

first briefly introduce different friction laws which we have used and their implementation in

numerical algorithms.

3. fYiction Laws

A friction law is a relation between the relative tangential velocity v~ and the friction force

T at a contact (ij) between two solid bodies I and j. We used three different friction laws,
namely Coulomb's law and two variants of it.

3.1. COULOMB'S LAW (Cl). Figure 2a shows the graph of Coulomb's law. For a nonzero

relative velocity v~, the friction force T at a contact between two particles is equal to

-sgn(v~)~IN, where
~1

is the coefficient of friction. This corresponds to the two horizontal

branches of Coulomb's graph, for which the friction force is opposite to the direction of relative

motion. At v~
=

0 (NS contact), the friction force has a value in the interval [-pN,pN].
Note that N is always a repulsive force and with a suitable choice of the local frame attached
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Fig. 2. Graphs of friction laws, relating the relative tangential velocity v~ and the friction force

T at a contact between two solid bodies: a) Coulomb's law used in CD simulations, b) regularized
Coulomb's law used in molecular dynamic simulations, and c) Coulomb's law with a dynamic coefficient

of friction ~d and a static coefficient of friction ~s.

to a contact, it can be made positive. We remark also that at a NS contact the direction of

the friction force can be either positive or negative. In the following, we will refer to this exact

formulation of Coulomb's law as the Cl law.

Coulomb's law is nonsmooth in the sense that the two variables v~ and T belong to a contin-

uous set of acceptable values which can not be represented as a function of either of the two

variables [10,11]. The friction force at a NS contact is a reaction force: It is not given locally
by the friction law itself, I. e. as a function of v~, but compensates the tangential component of

all other forces acting on the two bodies in contact. In other words, friction at a NS contact

involves inevitably the dynamics of the contacting bodies. The question is then how dynamics

may be conveniently taken into account in the formulation of the friction law.

The point is that the distinction between NS and S contacts, suggested by the Cl law, is

a kinematic definition of the state of a contact. If at a contact the relative tangent velocity
v~ is zero but the relative tangent acceleration fl~ is not, then the contact cannot stay NS

over whatever a small time interval. The friction force at such a contact is necessarily fully
mobilized and we have T

=

-sgn(@~)pN, where @~ is the relative tangential acceleration. A

contact is NS in the dynamic sense only if we have both v~
=

0 and fl~
=

0. On the basis

of this distinction between NS and S contacts in the dynamic sense, Coulomb's law takes the

following general form for a contact (ij) between two bodies I and j:

lip
=

o ~ T~~j-pN~,pN~j,

v(~ =
0 and (~ > 0 ~ T~ =-pN~,

)~ < 0 ~ T~ =pN~, (I)

v(~ > 0 ~ T~
=

-pN~,

v(~ < 0 ~ T~
=

pN~.

Coulomb's law is written here as a set of possible alternatives, each of them involving one

equation and one inequality. The important point is that all of these equations contain only
dynamic variables (force

or relative acceleration). Consider, for instance, the first case where

u~
=

0 and @~ =
0. The latter can be supplemented to the equations of dynamics. However, the

calculated friction force T should satisfy the corresponding inequality T ~ [-pN, pNj. If this

condition is satisfied, then the contact is NS in the dynamic sense, I. e. fl~
=

0, and we have got
the solution for all dynamic variables. Otherwise, we should pass to the next alternative. All

alternatives are to be tested in this way until the solution is found. For more details concerning
the implementation of this procedure, see

Appendix A.
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3.2. A REGULARIzED COULOMB'S LAW (RCI). A different method widely used in simula-

tion of dense granular systems, the molecular dynamics (MD) method [13], cannot handle the

exact form of Coulomb's law. In MD simulations, Newton's equations of motion are integrated
numerically, so that the method requires specification of the forces acting between grains. The

forces thus have to be functions of the particle positions and velocities.

Here, we are mainly concerned with the tangential force. The details concerning the normal

force can be found in Appendix B. Since Coulomb's law cannot be implemented directly, it has

to be regularized for v~ m 0. One widely used choice [15-21] to achieve this is to approximate
the tangential force T by the function

T
"

~~g~(~~) ~i~l'fslv~l> PNI> (2)

where 7s is an adjustable parameter (see Fig. 2b). The higher 7s, the closer the regularized law is

to the nonsmooth one. We emphasize that this viscous friction law has no physical justification.
It is just a convenient approximation whose consequences in numerical simulations of granular

systems so far have only been checked for the case of the binary impact of particles [14]. For this

case it was found that 7s should be as large as possible to achieve the results expected for the

Coulomb friction law. The ID model with its simple geometry provides a good model system

to investigate the physical outcome of this contact law in the case of long-lasting contacts.

In a densely packed system there is a great number of NS contacts. With the regularized
Coulomb's law, which we will refer to as the RCI law from now on, we cannot get a true

NS contact, I.e. v~
=

0, except in the improbable case T
=

0. Deviation from a true NS

contact increases with the normal force and the coefficient of friction, since the Coulomb range
[-pN, pN] increases then. This error gives rise also to an error in dissipation. Whereas a true

NS contact is non-dissipative, the RCI law gives a dissipation rate equal to 7s(v~)~ at a NS

contact [22].

3.3. CouLomB's LAW WITH Two COEFFICIENTS (C2). It is a well-known property of

most materials that the coefficient of friction at the sliding threshold, I.e. the static coefficient

ps, is higher than that during sliding, I-e- the dynamic coefficient pd. This property in

association with a sufficiently elastic driving mechanism gives rise to stick-slip motion [9, 24].
Figure 2c shows the graph of a Coulomb law with two coefficients of friction. We will refer to

this law as the C2 law from now on. The Coulomb range of the friction force in the C2 law for

a
NS contact is [-psN, p~N].
As in the case of the Cl law, the C2 law has to be interpreted in the dynamic sense. We

may again use the CD method to simulate this nonsmooth law, taking numerically care of the

static Coulomb range at NS contacts. In fact, the iteration scheme for searching the contact

states here is more complicated. Our simulations show that the solution with the C2 law is

not unique.

4. Evolution

The initial state is completely given by the angular velocities of particles uJ(I) and the linear

velocity
v

of the array. With a random distribution of velocities we generally get a state where

all contacts are sliding.
The evolution of the system as a whole can be described by the variation of the linear

acceleration of the array, or equivalently of the global friction Fg, defined as the sum of

friction forces exerted by the plane on particles. The two global dynamic variables and Fg

are related together by the equation of motion of the center of mass of the system,

NL No Fg
=

Ing@, (3)



1058 JOURNAL DE PHYSIQUE I N°9

0.4

Cl

RCI

C2

0.2

o-o

-0.2
_~ _~ ~ ~10 10 10 10

Fig. 3. Typical evolution of the global coefficient of friction ~g for an array of10 particles with

the Cl, C2 and RCI friction laws as a function of the dimensionless time t (see text) for the same

parameters and initial conditions. Parameters are NL
=

2.5, No
=

0.01, ~ =
0.1, p'

=
0.2 and

p"
=

0.001 for the Cl and RCI laws. For the C2 law we have ps =
0.3, ~1[ =

0.6, ~ld =
0.1, ~1[ =

0.2

and
~1" =

0.001.

where Ing =
L is the total mass of the system. A global coefficient of friction pg can be defined

for the array-plane contact by pg =
Fg IL.

Figure 3 shows a typical evolution of pg for an array of10 particles with the Cl, C2 and RCI

friction laws for the same common parameters and initial conditions. The C1 law (simulated by
the CD method) gives a piecewise constant path. Each jump is a discontinuous variation of all

forces and accelerations as a consequence of changing of one contact state in the system. The

MD method gives a completely different path. The oscillations at very short time are clearly

a consequence of contact elasticity. If the normal restoring force and the damping are weaker,
these oscillations dominate the path even at longer times. But as soon as the oscillations settle

down, friction (the RCI law) takes over and the path shows a behavior similar to the C1 path.
For the C2 law, we have again a stepwise path which differs partially from the C1 path.

In all cases, the evolution of the system ends in a steady state where the dynamic variables

(forces and accelerations), and pg as a result, stay constant in time. Physically, this corresponds
to the state where the relative tangential velocity and the relative tangential acceleration at

every contact are of the same sign, or both are equal to zero [23]. In Contact Dynamics
simulations (with the C1 law) this latter rigorous criterion is used and the steady state is

reached whatever the initial conditions. In molecular dynamics simulations (with the RCI

law) the steady state is sometimes not reached in this rigorous sense but only as a state

where the dynamic variables stay constant within some precision, although contact states

continue to change from time to time. For a reliable identification of the steady state in

MD simulations, both the exact condition from CD, as well as some precision limit on the

fluctuations of the dynamic variables should be checked. These fluctuations, however, do not

influence considerably the average steady-state value of pg with the RCI law, which is always

very close to that obtained with the C1 law. The discrepancy among the steady-state values

of pg, or other dynamical variables of the system, are more
pronounced for the C2 law on one

hand and the two other laws on the other hand.

Figure 4a shows the evolution of pg simulated by CD with the C1 law for different initial

conditions: The steady state is independent of initial conditions even though the number
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Fig. 4. Evolution of the global coefficient of friction ~lg simulated by (a) the CD method using
the Cl law, (b) the MD method with the RCI law, and (c) by the CD method with the C2 law, as

a function of the dimensionless time t for different initial conditions. Parameters are the same as in

Figure 3. Note that in (c) we have a = ~s /~d
=

jL(/jLi
=

3.

of possible transients grows exponentially with the system size. This independence of the

steady state from the initial conditions is conceptually important. It means that the steady-

state value of pg is an intrinsic quantity depending only on system parameters and not on the

preparation of the system. This is one step towards the definition of
a

Coulombian friction

force for the array as a whole.

For most initial conditions, pg is initially weak. Then it grows, goes through a maximum,
and finally reaches its steady state value. At the beginning, for a random distribution of

rotation velocities, the relative velocities at particle-plane contacts are randomly negative or

positive. So, at almost half of the particle-plane contacts the friction force is initially oriented

in the direction of motion of the array, whereas the other half is directed opposite to it. For

this reason pg, which is given by the sum of the particle-plane friction forces, is initially weak.

As the angular velocities of particles and the linear velocity of the array evolve, the friction

forces exerted by the plane on particles (at S but also at NS particle-plane contacts) gradually
become opposite to the direction of motion of the array and pg increases correspondingly.

For later times, pg decreases again. This is due to the emergence of stable NS contacts and

can be understood in the following way: Fg in (3) may be interpreted alternatively as sum

of all forces exerted by the plane on the array of particles or as dissipation rate/v. The NS

particle-plane contacts contribute only in the first picture, whereas in the secbnd only sliding,
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I.e. dissipative contacts count (including those among particles). At late times the number of

sliding contacts decreases, and hence pg decreases as well.

More generally, since the steady state with the Cl and RCI laws is independent of initial

conditions, the question is how the memory of initial conditions is lost. At the beginning all

contacts are sliding. The appearance of the first NS contacts is directly dictated by the initial

angular velocities of the particles. However, they are generally misplaced as compared to the

positions of NS contacts in the steady state. So, most of NS contacts appearing before the

maximum are metastable and soon turn again into S contacts. The dominant process before

the maximum is thus S ~ NS ~ S. This is what clears the memory of initial velocities.

In fact, in the transition S ~ NS the initial relative velocity is lost. Then, the value and

the direction of the relative velocity in the new transition NS ~ S is dictated by that of the

relative acceleration, which is in turn related to dynamics of the whole array and its boundary
conditions. After the maximum, the dominant process is S ~ NS. The NS contacts are then

generally stable and will gradually shape the organization of rotations in the steady state.

In Figure 4b we have shown the evolution of pg simulated by MD with the RCI law for

different initial conditions. Here also the steady state is independent of initial conditions.

In the framework of the MD approach there is no straightforward way to explain how the

system may forget its initial state. But independence of the steady state with respect to initial

conditions shows that, as soon as initial elastic oscillations are damped away, a regularized
friction law can produce results similar to those of the nonsmooth law.

In the case of the C2 law, the steady state depends on initial conditions, as shown in Figure 4c.

To understand this point, let us consider the extreme case where a =

ps/pd tends to infinity
(here by ps or pd we mean coefficients of friction at any particle-particle or particle-plane
contact). Then a contact where v~ becomes zero necessarily remains NS, since the static

friction can be mobilized to infinity. In this way, the first NS contacts which depend essentially

on the initial angular velocities of particles and the linear velocity of the array will be stable,
whereas in the case of the Cl law most of the NS contacts appearing in the beginning are

unstable. For lower values of o a given NS contact has more chance to turn S and we should

thus expect less dependence on initial conditions. Figure 4c shows that even for o =
3, the

steady-state values of pg are very close to each other.

5. Collective Modes

The most distinctive feature of the steady state is the beautiful organization of particle rotations

along the system [8]. Figure 5 shows the angular accelerations £l(I) of particles as a function

of their position in the array, as simulated using the Cl law. In this figure we can distinguish
three spatial domains with collective rotation modes. In the first domain, next to the braking

block, all particles roll on the plane, I. e. £j(I)
=

(mode 1). In the next domain particles rotate

and slide on the plane, with a decreasing angular velocity along the array (mode 2). In the last

domain, next to the driving block, all particles are counter-rotating, I.e. £j(I) + £j(I +1)
=

0
(mode 3). A particle in mode I or 3 has at least one NS contact, whereas in mode 2 all contacts

of each particle are sliding.
Modes I and 2 extend over coherence lengths L[ and L[ which are functions of the parameters

and the linear acceleration of the array [8]. These lengths can be significantly larger than the

particle diameters, but do not depend
on the system size. They characterize the system on a

mesoscopic scale. Mode 3 fills the rest of the system and is only present if L > L( + L[.
L[ increases with

@,
whereas L( and L( + L[ decrease. Mode 2 is a direct consequence of

the accelerated motion of the array. A particular case is the limit of constant velocity, where

=
0. Then, mode 2 disappears from the array, I-e- L[

=
0, and mode I takes its largest
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Fig. 5. Dimensionless steady-state angular accelerations £J(I) of particles
as a function of their

positions I in an array of 80 particles, as simulated with the Cl law. Parameters are NL
=

1.4,
No

=
0.01,

~1 =
0.06, ~1' =

0.1 and
~1" =

0.001. The acceleration shown on abscisse 0 is the dimension-

less linear acceleration of the array as a
whole: D(0)

=
b.
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Fig. 6. Particle-particle and particle-plane dimensionless steady-state normal forces N(I) (a) and

N'(I) (b), respectively, as a function of the positions I of contacts in an array of 80 particles. The

contact number 0 is the one between the first particle and the braking block. Param~ters
are the same

as in Figure 5.

coherence length for a given set of parameters [8]. For p « p' all particles are in mode I, I.e.

L( > L, whereas for p' < p all particles are in mode 3, because L( becomes imaller than the

diameter of a particle.

Our simulations with the RCI law (by MD) give the three modes in good agreement with

the results obtained with the Cl law (by CD). With the C2 law we may get a large variety

of steady states with different values of L( and L[, depending on the initial state. The major

effect of the static coefficient of friction is to reinforce NS contacts. In this way, mode 2 may

disappear completely from the array for sufficiently large a. The collective modes have also

been observed in experiments with a linear array of cylinders [24].

In Figures 6 and 7, we have plotted the contact forces for the system of Figure 5. In

mode I the friction force at particle-plane contacts is only partially mobilized. The degree
of mobilization, which can be defined by ~ =

(T( /(pN), increases along the first domain



1062 JOURNAL DE PHYSIQUE I N°9

0.010 0.012

(a) ~~~
0.008

0.010

0.006

~ ~ 0.008

0.004

0.002
0.006

0.000 0.004
0 20 40 60 80 0 20 40 60 80

I

Fig. 7. Partiale-particle and particle-plane dimensionless steady-state friction forces T(I) (a) and

T'(I) (b), respectively, as a function of the positions I of contacts in an array of 80 particles. Parameters

are the same as in Figure 5.

(exponentially, according to the theoretical analysis of [8] Only for the first particle of mode 2

the value of ~ at the particle-plane contact reaches its maximum ~ =
l. This determines L[.

The situation is different for mode 2, where all contacts are sliding. At every contact of

each particle in this mode, the friction force is proportional to the normal force. The particle-
particle friction increases along the array, while the particle-plane friction remains constant.

As a result, the angular acceleration decreases along this domain in absolute value and changes
sign for the first particle in mode 3.

In mode 3, the particle-particle contacts are NS. The friction force at such contacts is partially
mobilized. It oscillates with exponentially varying envelopes. However, in contrast to mode 1,

~ stays always lower than unity, so that the length of mode 3 is theoretically infinite. The

limit on the effective length of this domain comes from the possibility of the rising of a particle
(the one in contact with the driving block or the one before) when the particle-particle friction

force is too high. This is, in fact, the limit of the model for a given set of parameters.

6. Steady-State fYiction

In this section we discuss how the global steady-state friction depends on the driving force, on

the length of the array and on local coefficients of friction.

6.I. DEPENDENCE oN DRIVING FORCE. We showed that the steady-state coefficient of

friction, pg, is a good parameter for characterizing the "macroscopic" friction of the array as

a whole, since it is independent of initial conditions for the Cl and RCI laws. Nevertheless,
contrary to a "Coulombian" coefficient of friction, pg (in the steady state) is an increasing
function of the driving force NL and saturates at the value of the particle-plane coefficient of

friction for high enough values of NL [25]. This is shown in Figure 8.

The motion of the array as a whole is thus governed by two equations. One of them is the

equation of motion (3) of the center of mass of the system; the other one is the dependence of

Fg on
the driving force or, equivalently, on the linear acceleration of the array, which can be

written as a
general equation:

Fg = Fg(@, Q), (4)
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Fig. 8. Steady-state global coefficient of friction ~lg as a function of the dimensionless driving force

NL for an array of 30 particles as simulated with the Cl law. Parameters are No
=

0.01,
~1 =

0.04,

~1' =
0.1 and

~1" =
0.001.

where Q stands for all mechanical parameters of the system. If Fg were a linear function of @,

we might separate the term proportional to fl and move it to the right hand side of (3). We

would then get an "effective" inertia for the system higher than its mass. However, as Figure 8

shows, dependence on
(or NL) is not generally linear. One may then resort to an infinitesimal

analysis in order to separate the contribution of Fg to an effective inertia in a unique way. In

this way, we introduce the following Legendre transform of Fg as a function of @:

By introducing the
new variables into (3), we get the following equation for the center of mass

of the system:
NL No F~

= 1n~@, (6)

where Fe
=

b and Ire = Ing + a. Fe and Ire are the effective friction force and the effective
inertia, respectively. We may also define an effective coefficient of friction by pe =

Fe /Ing.
The effective quantities pe and1ne vary with @, as shown in Figures 9a, b. The two plots,

obtained by the CD method, are piecewisely constant functions composed of two types of

discontinuous changes: steps and "spikes". These details were not discussed in [8], since there

they were not seen due to a lower resolution. At low enough values of @,
all particles are in

mode 1. The effective inertia is very high (almost six times the total mass Ing =
30 of the

system in these simulations!), whereas the effective coefficient of friction is very low. As soon

as the particle I
=

L enters mode 2 for some value of @, Ire jumps down, while pe jumps up.

As increases, more and more particles enter modes 2 and 3 and the contact states change.
Each changing of

a contact state gives rise to a step.
The spikes appear every time the direction of angular accelerations of particles in domain 3

is reversed. Each spike has a finite width. After each spike the values of1ne and pe come back

almo8t to the same level as before the spike with a reversed direction of particle rotations in

domain 3.

At high enough values of all particles are in mode 3. The contact states will no more

change with increasing @, so that the effective quantities stay constant as a function of b.

Then, Ire = Ing and pe = pg m
p'.
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Fig. 9. Effective coefficient of friction ~1~
(a) and effective inertia m~

(b)
as a

function of the

dimensionless linear acceleration b of an array of 30 particles. Parameters are the same as in Figure 8.

Physically, the effective inertia of the system is a consequence of particle rotations on the

plane. The friction force mobilized at a particle-plane contact does not totally resist the motion

of the array. On the contrary, it applies a positive moment on the particle that contributes

to its rolling on the plane. The real resistance to rolling on the plane is, in fact, localized at

particle-particle sliding contacts. In mode 1, it increases with the normal particle-particle force

proportionally to the driving force. That is why the dissipative resistance to rolling appears as

an additional inertia whose expression depends on the particle-particle coefficient of friction.

In the same way, the effective friction is a purely dissipative resistance to the translational

motion of the particle. The analytic expressions of the effective quantities in mode 1 (which
gives the main contribution)

are given by [8]:

m[~)
=

~ ~ l( ~ ") ~'

l
,

(7)
~" ~

pji)
=

) 1()) ~' j
No, (8)

1 P

where Li is the length of domain 1. We see that the two quantities increase with p. In the

case of mode 2, the before-mentioned mechanism is still partially present, I.e. the particle-
plane friction force contributes to rotation on the plane. All contacts resist to rotation and to

translation on the plane at the same time. We get the following expressions:

m(2)
~

l
~~ (g)

~ i AA'

p(2)
~

A'
j~~~

~ i AA'~

where L2 is the length of domain 2. Finally, in mode 3 the effective inertia oscillates around

the total mass of the array, whereas the effective friction oscillates around the value of the

global friction [8]. However, the friction force at the contact of each particle in mode 3 rotating

in the positive direction (the direction of motion of the array) with the plane resists less to

motion than that of a particle in mode 3 rotating in the negative direction. When the angular
accelerations of particles in domain 3 are zero, the friction force at particle-plane contacts is
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Fig. 10. Effective dimensionless coefficient of friction ~1~ as a function of the dimensionless linear

acceleration fl of an array of 5 particles as simulated by CD and MD methods. Parameters are

NL
=

0.9, No
=

0.01, ~1= ~1' =
0.3 and

~1" =
0.01.

only resisting the motion and the contact with the pushing block is NS. This is the reason for

the appearance of spikes every time the rotation of particles in domain 3 changes direction. A

spike has a finite width since the friction force at a NS particle-block contact can be mobilized

within the Coulomb range [-p"NL, p"NL] in such a way to stop the rotations of particles in

domain 3. That is why the amplitude and the width of spikes increase linearly with the driving
force. Moreover, in the case where p"

=
0 the spikes disappear from the plot. We see that

Figure 9a (or Fig. 9b) contains all the information concerning the evolution of contact states

as a function of @: The steps correspond to the changing of particle-particle or particle-plane
contact states and the spikes to the changing of the state of the contact with the pushing block.

It is instructive here to return to the comparison between the Cl and RCI laws. With the

RCI law we get essentially the same plots for the effective quantities as a function of as

with C1. The reason is that only the steady-state friction is considered here and we have seen

that the elastic oscillations, observed in Figure 4b during the evolution of the system, do not

influence the steady state. Nevertheless, in some cases discrepancies appear also in the steady

state. One example is given in Figure 10 where we plot the effective coefficient of friction as a

function of for a system of 5 particles as simulated by CD and MD separately. The agreement
is quite good everywhere except around

=
1.05. The particle rotations in the system are

shown in Figure 11 for
=

1.05. Wliat is particular with this configuration is that the angular
accelerations of the particles in mode 1 and mode 3 have the same absolute value. Hence, the

three contacts of particle 3 are NS, and, as we know, the difference between the C1 and RCI

laws is at such NS contacts. If there are many NS contacts in a (less frustrated) system, we

should therefore expect such discrepancies to be enhanced.

Let us now consider the limit of constant velocity or static equilibrium,
=

0. Since the

global coefficient of friction increases with fi, its minimum is reached at
=

0. All particles are

in mode 1 if L < L(. In this case, the global coefficient of friction is equal to pg =
p(~~, whose

expression is given by (8). If the C2 law is used, we have a global static coefficient of friction

jJ[ and a global dynamic one jJ(. The first one is given by (8) by replacing the static particle-
particle coefficient of friction jJs with jJ. The second one is given by the same expression with

p = pd. Note that the difference p[ p( in this regime increases exponentially with Li, so

that the static global coefficient of friction can be much higher than the dynamic one. Each

particle added to the array increases the difference between the two coefficients. In particular,
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Fig. 11. Dimensionless steady-state angular accelerations of particles in the array of Figure 10 at

=
1.05. The acceleration shown on abscisse 0 is the dimensionless linear acceleration of the array.

if the system is at incipient sliding, the addition of one particle can immobilize the system!
This is because the motion of the array implies the mobilization of friction at all interparticle

contacts in the system up to the static limit (given by the product of the coefficient of friction

and the normal force), while the normal interparticle force increases exponentially along the

array in mode I.

If L > L(, there are L L( particles in mode 3, since as mentioned before mode 2 disappears
in the static limit. The static and dynamic coefficients of friction of mode 3 are approximately
equal to p[ and pi, respectively. These coefficients are those of particle-plane contacts. pg
is the mean value of the global coefficients of friction of modes I and 3 weighted by their

respective lengths:

"~
~ )) ~~

~° ~
~ ~~

"" ~~~~

This expression gives p( if p = ps and p'
=

p[. It gives p( if p = pd and p'
=

pi. As L

increases, p( approaches p[, and p( approaches p[.

6.2. DEPENDENCE oN NUMBER OF PARTICLES. Now we show that pg in the steady state

depends on the number of particles, L. This means that the global friction violates another

important property of Coulomb's friction law, as L is the "apparent contact area".

Let us consider first an array totally in mode 1. As long as all particles are in mode 1, the

effective coefficient of friction is the one given by (8). pg for this mode increases very rapidly
with L. However, at first order in p the effective inertia is equal to (1+1)Li and the effective

coefficient of friction is given by 2pNo, which is independent of L. We recall that p should

be sufficiently small if the array is totally in mode 1. On the other hand, if we define pe by
Fe /1n~ (and not by F~/Ing), then its expression is independent of Li This definition provides

a coefficient of friction for mode 1 which is independent of L at all orders of p. But, this is not

a common definition of the macroscopic coefficient of friction.

Equation (10) shows that p~ of mode 2 does not depend on the number of particles in

this mode. This is also true for mode 3 up to small oscillations around pi~~
=

p', which is

the effective coefficient of friction for this mode. On the other hand, the length of the first

domain does not change with that of the array, since the new particles added to the array will

find themselves in mode 3 or, if mode 3 is absent, in mode 2. In this way, since the length of

domains 2 and 3, which have higher global coefficient of friction than the first domain, increases
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Fig. 12. Steady-state global coefficient of friction pg as a function of the partide-particle coefficient

of friction
~1

for ~1' =
0.1 (a) and as a function of the particle-plane coefficient of friction ~1' for

~1 =
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(b) in an array of 30 particles as simulated by the CD method. Parameters are NL
=

4, No
=

0.01,
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~1" =
0.01.

with L, the global coefficient of friction for the whole array increases and asymptotically tends

to p'. Again, we recall that at first order in p the global coefficient of friction is independent
of L in all conditions.

6.3. INFLUENCE OF LOCAL FRICTION COEFFICIENTS. When one of the coefficients of

friction (p, p'
or

p") is changed, the system may still keep its configuration of modes (the
number of particles in each mode). The effective coefficients of friction for each mode then

change according to (4, 6) as a function of the coefficients of friction. In mode 1, p~ increases

with p, but is independent of p'. In mode 2, p~ increases both with p and p'. Finally in

mode 3, p~ does not depend on the coefficients of friction.

However, the values of friction coefficients also influence the configuration of modes along
the array. Figure 12a shows pg as a function of p in the case where the three modes are present
along the array and where all other parameters and the driving force are fixed. At low enough
values of jJ, all particles are in mode 1. jJg increases rapidly with p. The variation with p slows

down as the number of particles in modes 2 and 3 increases and tends asymptotically to jJ' for

high enough values of p for which all particles are in mode 3.

Figure 12b shows pg as a function p' for the same system. At low enough values of p' all

particles are in mode 3. pg is then equal to p' and increases with it. As p' increases, more and

more particles appear in modes 2 and 1. pg tends to its asymptotic value, as a consequence,

when all particles are in mode 1. Note that here pg increases with p' although the number of

particles in mode 1 increases.

Finally, the particle-block coefficient of friction p" does not influence notably the modes and

pg. Its major effect concerns the particle rotations in mode 3 which gives rise to spikes on the

plots of the effective quantities as a function of fl.

7. Conclusion

The simple model of rigid particles we studied in this paper has two main properties: all

contacts are mechanically persistent and particle rotations are frustrated
as in a dense granular

system. The frictional dynamics of such a system gives rise to nontrivial correlations. These

correlations appear both in time, by the self-organization of dynamic variables to reach a steady
state, and in space, by mesoscopic length scales involving collective rotation modes.
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This picture is somewhat modified as soon as molecular dynamics (MD) with a regularized
version of Coulomb's law is used. The evolution of the system and of the friction forces is then

dominated by elastic oscillations at short time scales and the steady state is sometimes reached

only in a
statistical sense at long time scale. Moreover, in the presence of particles for which

all contacts are nonsliding the discrepancy between the two methods is likely to increase. But,

as far as the steady state is concerned, we find globally very good agreement between the CD

and MD results for this frustrated one-dimensional model.

The main difficulty with the MD method in the context of the present model is the fact that

it does not provide a simple key to the description of the dynamics of the system. We showed

that a nonsmooth friction law is inevitably bound to dynamics. Both the step-by-step loss of

the memory of initial conditions and the collective modes result from this interplay between

dynamics and friction. The concepts of nonsliding and persistent contacts in the dynamic sense

are well-suited for a physical and transparent description of the behavior of the system. On

the contrary, in the MD method only a
careful checking (taking into account the numerical

precision) of the effective values of velocities in each time step allows to establish the underlying
phenomena.

With a friction law involving both a static coefficient of friction and
a dynamic one, the steady

state is dependent on initial conditions. However, we saw that it is possible to define global
static and dynamic coefficients of friction with such a

friction law if the system starts moving
from static equilibrium. As a particular case, we showed that if the mechanical parameters

are such that all particles are in the rolling mode, then the difference between these global
coefficients of friction increases with system size.

To what extent are these results relevant to real granular systems? The phenomenology of a

real disordered granular system is far more complex. The present study shows that part of this

complexity should have its origin in the nonsmooth nature of interaction laws. The presence of

nonsliding contacts naturally gives rise to long-range correlations and a collective organization
of contact states. While the continuum classical description of granular systems does not take

into account particle rotations, the rich physics of this simple ID model suggests that they
should play an important role in the dissipative evolution of a sheared granular material.
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Appendix A

Prescription of the Exact Coulomb's Law in Simulations

The iteration process briefly described in Section 3.1 has to be simultaneously applied to all

contacts. At the beginning, for a given configuration of particle velocities, the states are known

only for contacts where v~ # 0, which are all sliding (S). The actwated contacts, I.e. contacts

where v~
=

0, can be S or NS in the dynamic sense, I.e. @~ =
0 or @~ # 0 respectively. We may

start with a random distribution of states at such contacts and calculate dynamic variables. If

they all satisfy the corresponding inequality at each contact, then the solution is acceptable.
Otherwise, some states at active contacts are to be modified. Again, the dynamic variables are

calculated with the new equations and checked with respect to the inequalities. This process

is iterated until the solution is reached. So we see that through this iteration, which is only
internal to a

numerical code, we obtain both the values of the dynamic variables and the

dynamic contact states.
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One peculiarity of the closed-contact 1D system is that, as mentioned in the introduction,
for a wide range of mechanical parameters all particle-particle and particle-plane contacts stay
closed. The closed-contact condition implies that the interstitial distance d~ between two

bodies I and j, the normal relative velocity v(, and the relative normal acceleration @( all be

zero. The last one is the condition of a -persistent (P) contact in the dynamic sense. It should

be supplemented to the equations of dynamics. If it happens that at a given contact @( # 0,
then that contact should open and it is a nonpers18tent (NP) contact, even if v(

=
0.

A natural question raised by the method depicted above to prescribe Coulomb's law, is

whether a solution exists. Let us consider a granular assembly of p particles and c contacts.

We have, in two dimensions, 3p equations of dynamics. On the other hand, there are 3p
accelerations and 2c tangential and normal forces to be determined. For a given set of tangent

contact states (S or NS) and normal contact states (P
or

NP), there are c equations given by
the friction law and c more equations given by the normal contact law. In the 1D array which

we consider in this article, the normal contact law is the closed-contact condition, which should

result in repulsive forces (otherwise the array is no more stable and the simulation has to be

stopped). In this way, for a given set of contact states, the number of equations is equal to the

number of unknowns, so that the system of equations has formally at least one solution.

The iteration process has, however, to converge to a Inechanically acceptable solution, I.e. the

contact states should be such that the ine(ualities corresponding to each alternative equation,

listed in (1), be satisfied. From the description given above it is not obvious that such a

mechanically acceptable solution should exist at all or that the solution should be unique. It

can be shown that, for example, any loop of NS contacts implies a continuous set of solutions

for contact forces. We will not discuss further such indeterminate 8tate8 here; a more detailed

discussion can be found elsewhere [12]. As far as
the 1D model is concerned, we would like to

mention that our simulations by the method described here, I.e. Contact Dynamics method

[10], have always given a unique solution.

Appendix B

Normal Forces in MD Simulations

Contrary to the CD method, which models perfectly rigid particles that interact only if the

interstitial distance d~ is zero, in MD particles can overlap ("soft grains" and interact if

d~ < 0. This overlap or interpenetration is a measure of elastic deformation at the contact

region. A repulsive force with some
kind of damping is implemented in the normal direction

which keeps the overlap small and models the dissipation occurring in the impact of two

particles. In long-lasting contacts, which we will discuss here, this damping mainly serves as a

means of damping possible oscillations of the particles around their equilibrium distance, since

in long-lasting contacts, the relative normal velocities of the particles should vanish. For the

normal force, we use

N
"

~kndzj 7nd$j
,

dzj < °, (12)

I.e. a linear spring with viscous damping, where the spring constant kn determines the time

step, in mainly determines how fast oscillations resulting from the initial state are damped

away and has no further significance here. We want to stress, however, that in simulations of

granular flow, where particle contacts open and close, these parameters have a clear physical

meaning and should be adjusted to realistic values [14]. For the simulations presented here,

we chose kn
=

2 X
10~ and in =

200 in terms of the basic units used in this paper. The limit

of rigid particles can be approached by increasing kn. However, this increases the computation

time, since the time step scales as
ki~/~ In this limit, the CD method is naturally more

convenient since it directly prescribes the condition of perfect rigidity [10,11].
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