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Abstract. Persistent currents flowing through disordered mesoscopic rings threaded by
a

magnetic flux
are

investigated. Models of fermions with on-site interactions (Hubbard model)

or
models of spinless fermions with nearest neighbor interactions

are
considered

on
2D cylinders

with twisted boundary conditions in
one

direction to account for a magnetic flux. Self-consistent

Hartree-Fock methods
are

used to treat the electron-electron interaction beyond first order. We

show that the second harmonic of the current (which is relevant in the diffusive regime) is

strongly suppresiedby the interaction in the
case

of spinless fermions while it is significantly
enhancedin the Hubbard model. Our data also strongly suggest that the reduction (increase) of

this harmonic is related to a strong increase (reduction) of the spatial fluctuations of the charge
density.

The observations of mesoscopic currents in very pure metallic nano-structures was done in

pioneering experiments [1-3]. In the first case the experiment dealt with the average current of

a system of 10~ disconnected rings in the diffusive regime while in the second a single ring was

used. Although the existence of such persistent currents in small metallic rings was predicted
long ago [4-6] the magnitude of the observed currents is still a real challenge to theorists.

There is a general belief that the interaction plays a crucial role in enhancing the current. But,

so far, the role of the interaction in disordered systems is still unclear. Treating interaction

and disorder on equal footings is a difficult task. Previous work [7,8] has shown by exact

diagonalizations (ED) of small clusters that, for strictly 1D systems of spinless fermions, the

effect of a repulsive interaction is to increase further the localization of the electrons and hence

to decrease the value of the current. Using a Hartree-Fock approach, Kato et al. [16] have

obtained a qualitatively good agreement with the exact calculations. On the other hand, Gia-

marchi et al. [9] have pointed out that, for the 1D Hubbard model, i-e-
when spin is included,

the interaction enhances the persistent current. In this case, the increase of the current is

closely related to the decrease of the spatial fluctuations of the charge density or, equivalently,
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to the smoothing out of the charge density as it occurs in the 1D Hubbard model with repulsive

interaction. This emphasizes the important role of the spin in 1D systems.

In higher dimensions the role of the spin is still unclear. First order calculations for which

spin is irrelevant have shown that the persistent currents are increased by the interactions [11].
More recently, Ramin et al. [13] have numerically shown that the first order Hartree-Fock (HF)
correction to the second harmonic of the persistent current was in agreement with the analytical

treatment [11]. Hence, for both the spinless fermion model with nearest-neighbor interactions

and the Hubbard model, the second harmonic is enhanced. However, in this treatment it is

found that a nearest neighbour interaction tends to decrease the value of the typical current

while a repulsive extended Hubbard interaction enhances it. In some previous work, Exact Di-

agonalizations (ED) calculations have been compared to a
Self-consistent Hartree-Fock (SHF)

treatment of the interaction. For the small clusters (4 x 4 clusters) which could be handled

we have found a good agreement between the two sets of data [19]. This direct comparison
with the exact results has therefore established some degree of reliability of the self-consistent

Hartree-Fock approximation at least in the diffusive regime. In this paper, we use both HF

and SHF treatments of the interaction between particles which enables us to treat much larger

systems. The SHF treatment takes into account high order terms in the interaction and, simul-

taneously, deals with quantum interference effects due to the disorder somehow exactly. It is

important to note that this method is different from the usual perturbative approach ii ii where

the corrections to the current due to the interacting term are calculated perturbatively. In con-

trast to their approach, our procedure includes a resummation of higher order terms through a

self-consistency relation, which turns out to become essential at moderate interaction. Never-

theless, an exact connection with some diagrammatic expansion is a tedious problem and this

issue probably deserves further study. Note that our study also applies in principle to single

or multi-ring experiments. From a theoretical point of view, the difference simply relies in the

absence or presence of particle number fluctuations. In the following, we shall assume that the

number of electron of the ring is fixed.

This paper is organized as follows: first,
we compare, for both spinless and Hubbard models,

the first order correction (in the interaction) and the SHF correction to the second harmonic of

the persistent currents. We show that, in the case of spinless fermions, the two methods stay
in good agreement only for rather small values of the interaction parameter but a complete
disagreement appears for moderate values. In contrast, in the Hubbard case, the agreement
between the two approaches is rather good. Secondly, we pi~esent evidences that this decrease

(increase) of the persistent currents is directly related to the increase
(decrease) of the spatial

fluctuations of the charge density from site to site as the interaction is switched on. Thirdly,
the effect of the electron repulsion on the second harmonic is shown to increase with the system
size.

The Hamiltonian is defined on a L x L lattice with periodic boundary conditions in one

direction (e.g.
x

direction) and reads:

i~
"

i~K + flint + rides. (1)

7iK
"

£~,jt~jc)cj is the usual kinetic part containing the flux dependence,

t~j =

)exp(i~f~(i~ j~)) if I and j are nearest neighbor sites and 0 otherwise. 7iint is

the interacting part and 7ides is the term due to the disorder,

i~des
"

~
Wi n~ (2)

1

where n~ is the local density operator at site I and w~ are on-site energies chosen randomly in

[-W/2, W/2]. When spin is included,
n

i
= nit +ni ~

and the kinetic term contains an additional
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sum over the spin indices. In the spinless fermion case the electron repulsion is given by

~int
~ § ~3 ~~ ~3' ~~)~ ~

i-j

where l~,j of strength V
=

((j( only connects nearest neighbor sites (screened interaction).
Lastly, the Hubbard interaction is defined by

li~t
"

U ~
~St ~SI' (4)

1

In the SHF approximation, the interaction part of the spinless fermion model reduces to

~Int
"

~
~~SJ ~l ~J +

~
~~°~ ~~

~ vJ ((~llOl~Jl0 l~l ~~lO
~)

(~)

S,J S S,J

where ()~ stands for the expectation value in the ground-state wavefunction. The expression

above contains two terms: an Hartree term proportional to dw~
=

£~
~~

l~j (nj)~ which comes

out as an extra on-site disorder potential and a Fock term proportional to dt~j
=

l~j (c) c~)~

which is an extra hopping amplitude. The quantities (nj)~ and (c) ci)~ are calculated self

consistently so that the SHF Hamiltonian itself depends on the filling factor, the disorder

strength etc. Similarly, in this approximation 7if~ becomes

~~t ~ ~~~'~St~0 ~~~ ~ ~~S~~o ~~t ~~s~~o~~st~o~. ~~~

i

Since we are interested in the paramagnetic phase we shall assume (ni~)~
=

(nit )~. In this

case the spin f and ( are decoupled so that one can write 7if~
=

£~ 7i[~ where

~~t ~~ ~~?~~0~" ~~~"~~' ~~~

i

The current is defined as the derivative of the total energy versus flux

aE(~)
~i~)=-

a~
~~)

where E(4l) is the total energy. The current is a periodic function of 4l of period 1 (4l is

measured in units of 4lo) and thus can be expanded as a Fourier series,

1(4l)
=

~j Ihn sin(27rn4l) (9)

where Ihn are the harmonics of the current. The solution of the previous set of non-linear self-

consistent equations are obtained numerically on small clusters by an iterative procedure for

arbitrary values of 4l and arbitrary disorder realizations. The various physical quantities are

then averaged over disorder. The disorder average denoted by ()~.~ in the following corresponds
typically to an average over at least 1000 configurations of the iisorder.

It is now well established that the ensemble average (over filling or disorder) suppresses the

first harmonic of the current [18,19]. This fact was indeed observed in multi-ring experiments
where the current was found to be 4lo/2 periodic. We have explicitly checked that the first
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Fig. 1. Total averaged current I(#I
versus

# (non interacting fermions) for a 8 x 8 system and for

different values of the disorder parameter W, Ne is the total number of electrons. An average over

1000 disorder configurations has been done.
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Fig. 2. (Ih2)
~

as a function of V calculated within the SHF method for spinless fermions on a

8 x 8 cylinder. A~
average over loco disorder configurations has been done. a) Comparison between

first order HF (open symbols) and SHF results (full symbolsl at half-filling- Circles correspond to

W
=

3 and squares to W
=

4. b) SHF results at half-filling (full symbols) and quarter filling (open
symbols). Circles correspond to W

=
3, squares to W

=
4 and triangles to lV

=
5.

harmonic is suppressed for sufficiently large disorder. We show in Figure 1 the dependence of

the total averaged current (1(4l))~~~ versus flux for different. values of the disorder parameter.
We observe from that figure that the current is 4lo/2 periodic for sufficiently large values of

the disorder parameter (W/t > 4 for a system of size 8 x 8). This is a simple way to estimate

the cross-over from the ballistic to the diffusive regime.
As noted previously, the self-consistency relations can take care of high order effects in the

interaction. It is therefore necessary, as a preliminary study, to investigate the role of the

self-consistency by comparing the SHF results to the simple first order calculations (referred

to hereafter as HF). In Figure 2a (Ih2)~. for spinless particles is plotted as a function of

V. The calculations have been done at h2f-filling
on a 8 x 8 cylinder. The HF contribution
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is of course Iinear in V. As expected, we observe for small values of the interaction a perfect

agreement between the SHF and the HF calculations. Indeed, the slope at V
=

0 of the SHF

results is actually given by the HF data. However, for increasing V the SHF calculation shows

a strong reduction of the current whilst the HF predicts an increase. We also observe that

the region of agreement between HF and SHF is reduced as the disorder increases. In other

words, this means that, as the strength of the interaction increases, the effect of higher order

terms becomes more and more dominant and thus a first order calculation is not sufficient.

We will see later on that this reduction is related, as in the 1D case, to an increase of the

spatial fluctuations of the charge density. The influence of the filling factor and of the disorder

strength on (Ih2)~. versus V is shown in Figure 2b. This figure shows that the repulsive
interaction is

detri£ental
to the persistent currents which are drastically suppressed for a wide

range of parameters. Note that, at quarter filling, (Ih2 )~. starts immediately to decrease with

V contrary to the behavior observed at half-filling. ~~

Similar conclusions can also be reached from a direct investigation of the complete distribu-

tions of the first and second harmonics obtained in the SHF method (Figs. 3a and b) Note

that these distributions contain more information than the above expectation values which

correspond only to their first moments. In absence of interaction, we clearly observe that

the distribution of the first harmonic is perfectly symetric ((Ihi)~~~ "
0) in agreement with

Figure 1. The effect of the spinless interaction on Ihi consists only on reducing the width of

the distribution. That is why we focus on the conjugated effect of interaction and disorder

on Ih2 only. The case of the second harmonic is completely different. Indeed, in absence of

interaction the distribution is strongly asymetric, (Ih2)~ is finite (current is 4lo/2 periodic).
When we switch on the interaction, the effect is draniat~~, for V/t

=
0.8 the distribution gets

perfectly symetric ((Ih2)
~.

is suppressed by the interaction) and the width of the distribution

is significantly reduced.
~~

In contrast to the spinless model, the Hubbard model exhibits a completely different behav-

ior, as seen in Figure 4 showing the relative increase of (Ih2)~~~ as a function of the Hubbard

repulsion U. Interestingly enough, both SHF and HF calculations predict an increase of the

current. It is also interesting to notice that the first order calculation gives reliable results

regarding the effect of the interaction. However, the first order calculations always predict

larger values of the currents. In Figure 3c, we also show the effect of the Hubbard interaction

on the distribution of Ih2 due to the interaction (SHF). The shape of the distribution remains

asymetric and (Ih2)~~~ is increasing with the interaction as shown previously.

At this point, these results already suggest that the nature of the interaction plays a crucial

role: in the spinless case the currents are strongly reduced by the interaction in contrast to

a Hubbard repulsive interaction which enhances the currents. Secondly, we have shown that,

in the spinless fermions case, higher order terms become rapidly dominant even for relatively
small values of the interaction strength. Hence a first order afiproach is not sufficient.

Let us now try to develop a physical picture that could help to understand the role of the

spin. We shall argue that the enhancement (reduction) of the persistent currents is related to

the reduction (increase) of the fluctuations of the charge density ni from site to site. One way

of observing this effect on the charge density consists in plotting the distribution of the local

density (ni)~. For that purpose, we shall consider here a 10 x 10 system and assume that the

(ni)~ (where the subscript k labels the various realizations of the disorder) are independent
variables. The distribution of the charge densities can then be defined as

P(p)
=

~

~j ~ d((ni)~ p) (10)
NdisL

~~

~
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The disorder parameter is fixed (W/t
=

4) We have considered loco configurations of disorder. a) Ihi

in the spinless fermion case (V/t
=

o and o.81, b) Ih2 in the spinless fermion case (V/t
=

o and o.8),
c) Ih2 in the Hubbard

case
(U/t

=
o and U/t

=
o.4).
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Fig. 5. Distribution Pip) in the case
of spinless fermions. The calculations have been done at

quarter filling
n =

o.25 (al and
n =

o.4 (b)
on a

lo X lo cylinder. We have averaged over 30

configurations of the disorder. The values of V and W are given in the figure.

where L is the length of the system (L
=

10) and Ndis is the number of disorder configurations.

As usual, the local densities (n~)~ are calculated self-consistently. Note that, for a sufficiently
large system, we expect the distribution to become independent of the choice of the disorder

configurations.
For spinless fermions, we have plotted in Figures 5a, b the distribution Pip) calculated on

a 10 x 10 cylinder for two different fillings. We clearly observe that, with the interaction,

both the shape of the distribution change and the width of the distribution increases. These

effects are strongly emphasized in Figure 5b in which two peaks appear, showing a tendency
towards the formation of a charge density wave as we approach commensurability in

=
0.5).

Note that such an instability is clearly unphysical for a metal and could be easily removed
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and W are given in the figure.

by preventing perfect nesting of the Fermi surface (for example, by including hopping terms

at larger distances). However, the effect of the interaction to broaden the distribution Pip)

seems to be independent of the precise details of the band structure and is generic for any
filling. In contrast, in the case of the Hubbard model (Fig. 6), we observe the opposite effect:

the distribution shrinks around the average value as the interaction is switched on.

Let us now turn to more qualitative results. The width of the distribution (assuming inde-

pendent variables for different configurations of the disorder) dp is given by

dp
=

) ( j ~iiniii n)2 iii)

~_~
~

where n =
N~/L2 is the filling (iV~ is the number of electrons). We have studied the effect of

the interaction on dp as a function of V (spinless fermions) or U (Hubbard model) for different

values of the disorder strength W and different fillings. In Figure 7a dp(V, W) is plotted at half-

filling as a function of the parameter V (spinless fermions). Here we clearly observe an increase

of the width dp of the distribution for increasing V. Very crudely, this effect seems to depend
only on the combined parameter V/W. In contrast, in the Hubbard case shown in Figure
7b, we observe a reduction of dp(U, W)

as U increases. In Figures 8a, b we have plotted the

relative variations of the width of the distribution dp(V, IV /dp(0, W) and dp(U. W) /dp(0, W)

as a function of the interaction parameters V and U for various densities. We observe that the

effects described above become stronger for larger fillings i.e.
when the interaction between the

particles becomes more effective. Note however that, in the case of the spinless fermion model.

this behavior is unrelated to the commensurability since densities n =
0.25 and n =

0.4 have

been chosen, clearly away from half-filling in
=

0.5). In Figures 8 we see that, in the spinless

case, the width has increased by almost a factor 4 for V
=

0.8 and N~
=

40. In the Hubbard

case the reduction of dp(U, W) is 25% larger compared to half-filling. Our present study then

strongly suggests that a
reliable explanation of the observed large persistent currents must

somehow take into account the spin of the particles.

We finish our discussion by a study of the influence of the system size on our results. In

Figure 9 we have plotted the relative increase of the current (Ih2)~ (LT,W)/(Ih2)~. (0,W)
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=
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=
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versus U at fixed density but for different system sizes. This figure clearly indicates that,
as

the size of the system increases, the effects induced by the interaction become stronger. We

also expect that this is also true when the connectivity of the lattice increases (i.e. going form

2D to real 3D rings). Although a systematic accurate study as a function of the sample size

is not feasible, our data for the Hubbard model for, let say U
=

0.4, are not inconsistent with

the magnitude of the currents observed in the experiments.
In conclusion, we have shown that, in the spinless fermion model, the effect of a moderat.e

interaction leads to a drastic reduction of the magnitude of the current, contrary to what is

expected from first order calculations. For the first time, we have established that, in 2D, taken

into account the spin degrees offreedom is crucial to explain the enhancement ofthe current due

to the interaction, similarly to the 1D case. Although the calculations presented in this paper
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=
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deal with rather small 2D clusters, we expect that, for larger systems and higher connectivity
(e. g. in 3D) and in the presence of an Hubbard interaction, the impurity scattering will become

even less effective to localize the electrons. Although a systematic study as a function of the

sample size is still out of reach of present day computers, our data of the Hubbard model at

intermediate U (around 0.4) are not inconsistent with the magnitude of the current observed

in the experiments. Our study suggests that the SHF approach provides a relatively good tool

to study, on equal footings, the effects of the interaction and of the disorder.

Acknowledgments

We gratefully acknowledge stimulating discussions with T. Giamarchi and G. Montambaux.

D.P. acknowledges support from the EEC Human Capital and Mobility Program under grant
CHRX-CT93-0332. Laboratoire de Physique Quantique (Toulouse) is UA No. URA505 du

CNRS.

References

[1] Levy L.P., Dolan G., Dunsmuir J. and Bouchiat H., Phys. Rev. Lett. 64 (1990) 2074.

[2] Chandrasekhar V., Webb R.A., Brady M.J., Ketchen M.B., Galager W.J. and Kleinsasser

A., Phys. Rev. Lett. 67 (1991) 3578.

[3] Mailly D., Chapelier C. and Benoit A., Phys. Rev. Lett. 70 (1993) 2020.

[4] Hund F., Ann. Phys. (Leipzig) 32 (1938) 102.

[5] Byers N. and Yang C.N., Phys. Rev. Lett. 7 (1961) 46; Kohn W., Phys. Rev. 133 (1964)
A171.

[6] Bfittiker M., Imry Y. and Landauer R., Phys. Lett. 96 (1983) A365.



N°7 PERSISTENT CURRENTS IN INTERACTING SYSTEMS 887

[7] Bouzerar G., Poilblanc D. and Montambaux G., Phys. Rev. B 49 (1994) 8258; see also

Berkovits R., Phys. Rev. B 48 (1993) 14381.

[8] Bouzerar G. and Poilblanc D., J. Phys. I France 4 (1994) 1699.

[9] Giamarchi T. and Shastry B.S., preprint (1994).

[10] Berkovits R. and Avishai Y., Europhys. Lett. (in press).

[11] Ambegaokar V. and Eckern U., Phys. Rev. Lett. 65 (1990) 381; see also Altshuler B.L.,
Gefen Y. and Imry Y., Phys. Rev. Lett. 66 (1991) 88.

[12] Kopietz P., Phys. Rev. Lett. 70 (1993) 3123.

[13] Ramin M., Reulet B. and Bouchiat H., preprint (1994).

[14] Haydock R., Heine V. and Kelly M.J., J. Phys. C 8 (1975) 2591.

[15] Kirkman P.D. and Pendry J.B., J. Phys. C17 (1984) 4327; Kappus M. and Wegner F.J.,

Z. Phys. B 45 (1981) 15.

[16] Kato H. and Yoshioka D., Phys. Rev. B 50 (1994) 4943.

[17] Bouchiat H. and Montambaux G., J. Phys. France 50 2695 (1989); see also Ho-Fai Cheung

et al., Phys. Rev. B 37 (1988) 6050.

[18] Bouchiat H., Montambaux G. and Sigeti D., Phys. Rev. B 44 (1991) 1682.

[19] Bouzerar G. and Poilblanc D., Phys. Rev. B 52 (1995) 10772.


