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Abstract. Point-like inclusions in fluid, fluctuating membranes are considered. Here the

term inclusion is used in a general sense and describes a number of seemingly disparate situ-

ations: particles in membranes or other external and localized forces (such as a laser tweezer)
which I) make the membrane locally stiffer, it) induce a local spontaneous curvature, iii) change
the local membrane thickness, or iv) the local separation between neighboring membranes. All

these situations can be described by linear or quadratic local perturbations, for which the par-

tition function is calculated exactly using a Gaussian membrane model. The deformed shape
of a membrane in response to the presence of one inclusion and the membrane-mediated inter-

actions between inclusions are thus obtained without further approximations. The interaction

between two inclusions described by linear perturbations is temperature independent and there-

fore not affected by membrane fluctuations. The interaction between two inclusions described

by quadratic perturbations is solely due to membrane shape fluctuations and vanishes at zero

temperatures; in the strong coupling limit it shows a
universal logarithmic divergence at short

length scales. Formulas for the interaction of
n inclusions are derived, which show non-trivial

multibody contributions for the case of quadratic inclusions. All these results are valid for all

temperatures and for all coupling strengths and thus bridge previously obtained results ob-

tained at zero temperatures (neglecting membrine shape fluctuations) or using perturbation

theory (for small strengths of the coupling between the inclusions and the membrane). These

exact results are obtained with general Gaussian Hamiltonians and are thus applicable to all

systems described by Gaussians forms.

1. Introduction

In many experimental situations, membranes incorporate relatively large inclusions (such as

proteins) [1-7] or host adsorbed colloidal particles or other macromolecules [8], which locally
perturb the elastic and structural properties of the pure membrane [9]. In addition to direct

interactions between inclusions, the local membrane perturbations induce spatially decaying

responses of the membrane shape and composition, which, often but not necessarily in con-

junction with thermally activated fluctuations, lead to rather long-ranged interactions between

these inhomogeneities. If the inclusions are free to diffuse laterally, they can as a result organize
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14513 Teltow, Germany. (e-mail: netztlmpikg-teltow.mpg.de)
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into ordered spatial structures. The experimentally observed behavior for such mixed systems
is very complex and shows phase separation of the different membrane constituents, randomly
mixed states, and more complicated modes of aggregation of larger inclusions [10-15]. A differ-

ent and rather new way of experimentally perturbing the local membrane structure and thus

to achieve an effect similar to an inclusion is provided by the optical tweezer method; here,

characteristic membrane distortion profiles have been observed [16].
The shape deformation of a membrane around an inclusion was theoretically studied using

the standard elasticity model of membranes [17], giving rise to attractive or repulsive inter-

actions between two inclusions, depending on the elastic properties of the two monolayers

making up the bilayer [18,19]. These calculations correspond to the zero-temperature limit,
where membrane shape fluctuations are neglected. More recently, it has been realized that

thermally activated shape fluctuations of the embedding membrane induce additional interac-

tions between inclusions [20-23]. These calculations were either done perturbatively, valid for

high temperatures and in the limit where the inclusions are not too different from the embed-

ding membrane (I.e., in the weak-coupling limit) [20-22], or using an expansion in terms of

inverse powers of the distance between the inclusions [20, 23].
In this article, we consider inclusions in fluctuating membranes. The membrane fluctuations

are governed by a Gaussian Hamiltonian, the inclusions are defined by local linear and quadratic
perturbation fields. We obtain the interaction between two (and for inclusions described by
linear perturbation also arbitrarily many) inclusions. We also calculate the membrane pro-

file and the roughness profile around a single inclusion, as is relevant for the profile of the

distance between two membranes which are held together by a gap junction [24] or a laser

tweezer [16]. These results are exact and thus bridge the previous results obtained either in

the zero-temperature limit or the perturbative regime. For inclusions described by linear per-

turbations, we obtain that the effective interactions and the membrane profile do not depend

on the temperature, I.e., fluctuations of the membrane shape are irrelevant. In this case, our

results therefore agree both with previous calculations performed at zero temperatures [19]
and perturbation expansions [22]. For inclusions described by quadratic pert~rbations we

find

the effects to be solely due to membrane shape fluctuations and thus to vanish at zero tem-

perature. In this case, there are non-trivial multi-body interaction terms, which are obtained

to leading order in a perturbative analysis. For the interaction between two such inclusions,

our exact result shows in the strong-coupling limit a logarithmic divergence for separations
smaller than the in-plane membrane correlation length. Due to its logarithmic nature, this

divergence ha( been missed both in perturbation theory [20, 22] and in calculations using an

expansion in inverse powers of the distance [20]. Combining a scaling argument with these

exact results, we derive the separation profile between two impenetrable membranes which are

held together at one point. The resulting separation profile increases linearly with the distance

from the junction point and thus agrees with previous calculations based on an effective free

energy expression [25].
Although not discussed in this article, further possible applications of the exact results

derived in Appendix A include inhomogeneous near-critical media and disordered electronic

systems.

2. Fluctuating Membrane with Inclusions

The effective Hamiltonian of a homogeneous membrane which is on average flat can be written

as [26]

y~~ =

/ d2x 6'~°
j1721jx)j ~

+ vjjxjj
,

11)
2
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where ~o is the bending-rigidity modulus of the membrane. This model is applicable to very

different situations; accordingly, the displacement field fix) then describes

I) the shape of a single membrane, subject to an external potential 1~(l), which can be due

to the interaction with some fixed extended object such as a substrate wall or a liquid
interface,

it) the separation between two membranes [27], interacting via the mutual potential V(I),

iii) the thickness of a single membrane, in which case Vii) corresponds to the elastic energy
associated with the local membrane thickness, and

iv) the position of a membrane inside a stack, where the potential Vii takes in an approxi-

mate fashion the interaction with the neighboring membranes into account [28].

To make the calculations tractable, we use for Vii)
a harmonic potential,

Vii)
=

~l~, (2)

which approximates other potentials reasonably well if the fluctuations of the membrane are

rather small. For strongly fluctuating membranes the impenetrability between membranes

becomes important and leads to long-ranged effective repulsive interactions between them [31].
In this case the harmonic approximation does not describe the situation adequately, but a

simple scaling argument can be used to obtain results for this important case as well, see

Section 5.

We will now discuss the effect of an inclusion (or any other type of local membrane pertur-
bation)

on the elastic properties of a membrane defined by Hamiltonian (1). We distinguish
four different perturbations, shown schematically in Figure 1:

a) An inclusion (to the left or an adsorbed particle (to the right) which is stiffer than the

embedding membrane constitutes a locus of increased bending rigidity. The energy term

representing such an inclusion located at x is thus
r-

[V~l(x)]2 and positive [32].

b) An inclusion can be up-down asymmetric and thus also induce a local spontaneous cur-

vature (to the left) for an adsorbed particle the same effect obtains if the adsorbate is

rather spherical than plate-like (to the right). The energy term in both cases would be

r-

V~ fix).

c) A single membrane which is locally confined by some external force or geometrical con-

straint (to the left) corresponds to a local change of the harmonic amplitude m in equa-

tion (2); the same occurs for a trapped particle between two membranes (to the right),
which hinders fluctuation in the separation coordinate geometrically. Experimentally,
this can also be achieved by so called gap junctions which locally form a connection be-

tween two membranes [25, 35, 36], or be applying a laser tweezer [16]. This perturbation

can thus be described by an additional local harmonic potential, I.e., a term
r-

l~ ix).

d) Finally, a single membrane which is locally pulled at can be described by a local linear

perturbation (to the left ). The same linear perturbation acts between the two monolayers
making up a membrane when an inclusion locally changes the preferred thickness of the

membrane (to the right) [19j. The perturbation term in this case is simply
r-

fix).
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a)

c)

~~

A

Fig. I. Schematic picture of different local membrane perturbations. a) An inclusion or an adsorbed

macro particle changing the local bending rigidity, giving rise to a pertui'bation quadratic in the local

curvature b)
an inclusion or an adsorbed particle giving rise to a local spontaneous curvature: c) an

external force or obstacle which confines a single membrane, or a trapped particle or a gap junction
between two membranes, giving rise to a strong local confining potential of the membrane height

or the separation coordinate, respectively; d) an external force or obstacle which distorts a single
membrane, or an inclusion which changes the membrane thickness locally, inducing a perturbation
coupling linearly to the membrane coordinate.

In general, one will encounter a mixture of these effects. For example, a gap junction which

binds two membranes locally will change botb the average separation between the membranes

(which is described by a linear perturbation) but also the fluctuations (or the roughness) of this

separation coordinate (which is described by a quadratic perturbation). It will be shou.n for

this case, however, that the quadratic perturbation, I.e., the change in the local roughness of

the separation coordinate, is more dominant and the linear perturbation can be neglected (see
Sect. 5). To make our calculations tractable, we neglect the effect oflocally increased Gaussian

curvature. We note that the inclusion of such effects leads to interesting and important changes
in resulting bebavior [20].

Also we only consider point-like inclusions; the perturbation Harniltonian for N inclusions

can then in general be written as

~iiilxNl)
=

(
(aiAlxi) + jA~ (xi)

,

13)

which includes linear as well as quadratic perturbations. The linear operator A(x)
occurs in

two versions where the local perturbation couples either to the local curvature or the local

height variable, I.e.,

'~~~~
"

))x)
=

v21jx) l~~
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and will be denoted by Al and A~ accordingly. With these definitions, one can describe all

different situation a)-d) depicted scbematically in Figure I. It is a well established fact that the

local perturbation of a membrane due to inclusions induces mutual interactions between them

[18-20]. Here, we derive this interaction for all values of the coupling constants, temperature,
and in-plane correlation length of the membrane, in which case shape fluctuations have to be

taken into account. For N inclusions defined by (3) the free energy FN associated with a

specific distribution of inclusions is defined as

fpl(.)e~~°/T-likllxNl)/Tj
~, ~~ ~~ ~~~~~~~'~~~ ~~~ JDI(.)e-~/°/T ~~~~~ ~ ~~ ~° ~~~

and has been calculated perturbatively [20,21] by noting that the first contribution to is) in an

expansion is equivalent to connected correlation functions. The interaction free energy A7N
is obtained by subtracting the self energy Fi>

AfNllxNl)
=

FNllxNi) NFI(x). 16)

We also calculate the shape of the membrane, (fix)), and the roughness, (l~(x)) (I(x))~,

as a
function of the distance

x
from a single inclusion located at x =

o, which are determined

from

(l(x))
=

(I(x)e~~ll°)/~)o, (7)

ll~lx))
=

ll~lx)e~~~~°~/~)o. 18)

3. Linear Perturbation

We first consider linear perturbations, I.e., we set b
=

0 in (3). This applies to the case
whire

the local perturbation breaks the up-down symmetry of the membrane. The result for the free

energy of an assembly of N such inclusions with coupling constants ai, ii
=

1, N), is given by
(see Appendix A.1)

~ ~

~~i((XN)) ~~ ~ ~ aiajG(Xi Xj) (9)

1=1 j=I

where G(xi xj) denotes the correlation function (calculated in Appendix B) defined by

Gixi xj)
e

iAixi)Aixj))o. (lo)

3.1. SELF ENERGY. The self energy F)
can be calculated from the expression for F) ((xN )

by setting all coupling constants ai equal to zero except one, which is denoted by a; the result

is
F)

=

-a~G(0) /2T. (11)

Since G(0) is a quadratic expectation value, it is always positive and the linear self energy

turns out to be negative; for example a colloid adsorbing on a membrane and inducing a local

curvature gains energy due to membrane shape fluctuations [37].

3.2. INTERACTION ENERGY. By subtracting the self energies from the general expression
equation (9) one obtains the interaction energy for an assembly of N inclusions, which turns

out to be a sum over pair interactions~

N N

AF(((xN))
=

£ ~j aiajG(x~ xj)/T. (12)

1=1 j>1
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The correlation function G oscillates with an exponentially damped envelope for arguments
larger than the membrane correlation length (see Appendix B). The amplitude of G depends on

whether the inclusions couple to the membrane height or the membrane curvature. One finds

that inclusions which couple to the membrane height attract each other ifthe coupling constants

a have the same sign, and that inclusions which couple to the membrane curvature repel each

other if the preferred curvature is of the same sign. One also notes that the result (12) agrees
exactly with the predictions from a second-order perturbation expansion [22] and that multi-

body interaction are absent (there are only quadratic terms in a~ in the expressions (9, 12)).
Since the correlation functions G are proportional to the temperature (see Appendix B), it

follows that the results for free energies and profiles have no explicit temperature dependence.
Therefore fluctuations of the membrane shape are irrelevant and the interactions and profiles

at all non-zero temperatures are identical to the results obtained at zero temperatures.
For separations smaller than the correlation length; one obtains for inclusions coupling to

the membrane height an attractive interaction

)
Xi, x~

ala2 ~~~
3~ 2fjj (Xi x )2

~°
~

'

j13)

and likewise for inclusions coupling to the membrane curvature a repulsive interaction

Afiixi,x2)
=

$
(211 (xi x~)2) i14)

For small separations, the interactions are harmonic.

3.3. PROFILE AND ROUGHNESS. The membrane profile is, according to (7), given by

lllxl)L
=

lllx)e~~~~°~/~)o. its)

It can be obtained from the two-particle free energy F)(xi, x~) by taking
a derivative with

respect to the coupling constant al, I.e.,

lllxi x~))L
=

°~£~'~~~ j16)
~

i ai=o

The result is

lllx))L
=

-aGlx)/T. ii?)

The roughness can be obtained by taking a
further derivative with respect to at, which leads

to
~ ~

(l~(xi x2))L (I(xi x2)))
=

~ ~ ~~~'~~~~
=

G(0) (18)
°~i

ai=o

and thus equals the roughness of the unperturbed membrane. This means that a linear per-
turbation has no effect on the local roughness at all.

The profile 11 7) calculated here applies to a number of different experimental situations; it I)
describes the shape of a single membrane around an asymmetric inclusion, it) the shape of the

two monolayer making up a bilayer in response to a thickness mismatch around the inclusion,
iii) the shape of a membrane on which one pulls locally using an adsorbed magnetic bead in a

magnetic field, some other adsorbed colloidal particle in an optical trap, or a
tether, and iv)

it describes the separation between two membranes which are bound at one point by a gap

junction or a laser tweezer if and only if one neglects the impenetrability of the two membranes.
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For the last example, the profile has been calculated theoretically neglecting membrane shape
fluctuations [25]. Using the form of G(x), equation (B.4), our result (17) is identical to the

one
found in [25]. This confirms our prediction made in the last section that membrane shape

fluctuations can be neglected for situations described by linear perturbations. We stress that

the result (17) does not take the hard-wall interaction into account, which is important for

two impenetrable membranes which are pinned together. This case is treated in Section 5 on

a scaling level, leading to a different resulting profile.
For separations larger than the correlation length, the correlation function G(x) is oscillatory

with an exponentially decaying envelope. For lateral distances from the binding point much

smaller than the correlation length we can use the asymptotic expansion (B.9) and obtain the

universal parabolic profile
~~2

~~~~~~~ ~
32~o

~~~~

Since for a free membrane the correlation length is set by the system size, the above results

holds for the whole membrane in this case
(if

one neglects edge effects).

4. Quadratic Perturbations

This type of perturbation is realized for all local fields or inclusions which do not break the

up-down symmetry of the membrane. The free energy of two quadratic inclusion is according

to (5) defined by
yoj~

~
jni~j~-biA~(xi)/2T-b2A~(x2)/2Tj j~~)

2 1, 2 0.

The result is derived in Appendix A.2 and reads

4.1. SELF ENERG>'. The selfenergy F)
can be obtained from the expression (21) by setting

one of the coupling constants to zero,

f)
=

~
In ~1+

~~~~~ (22)
2 T

One sees that the self energy is positive and actually diverges logarithmically as the coupling

constant b becomes large. This result agrees with the first term of a perturbation expansion,

which of course missed the logarithmic divergence [22]. The membrane fluctuations therefore

give a contribution to the free energy of adsorption or incorporation of
a

stiff particle which

is unfavorable and the strength of which depends both on the coupling constant b and the

membrane roughness G(0).

4.2. INTERACTION ENERGY. The biquadratic interaction energy, after subtraction of the

self energy, is given by

Aft (xi x~)
-

In
j~ +l~lll~lii+iiljo~~1 123)

This equation is one of our main results and deserves further discussion. First of all, it is

important to note that the biquadratic interaction is a pure fluctuation effect which vanishes

in the zero-temperature limit; this follou.s from the fact that the correlation function G is
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proportional to T itself (see Appendix B). This stands in contrast to the interaction for linear

inclusions, equation (12), which was found to be independent of the temperature. It also

follows that for finite coupling constants bi and b2 the interaction remains finite even for

vanishing distance. This is different in the strong-coupling limit, I.e., as b ~ oJ. This limit is

experimentally easily reachable and corresponds to very stiff inclusions or to the strong-binding
limit for gap junctions. In that limit we obtain

j~ j/~(~~ ~~)
p~

~
i~ I

~~~~~ ~~~
(~~)

~ ' 2 G(0)~ '

which now exhibits a universal logarithmic divergence for vanishing separation, regardless of the

precise behavior of the correlation function. For very large separations, the correlation function

becomes zero and the interaction vanishes. It is interesting to note that this logarithmic
divergence at small separations only appears in the strong-coupling limit (b ~ oJ) and thus

has been missed in previous perturbative calculations, where either the coupling constant has

been treated as a perturbation parameter [20, 22] or an expansion has been undertaken in the

inverse inclusion separation [20, 23]. For separations much smaller than the correlation length
(which for a free membrane corresponds to separations smaller than the system size and thus

applies to all values of the separation, neglecting edge effects)
we obtain with the expansion

lB.9)
AF)(xi, x2)

=
TIn([xi x2)/fjj). (25)

For a free membrane of linear size L one has approximately
(11

r3 L and therefore the strength
of the logarithmic attraction in this case only depends on L and is still of the order of the

thermal energy for tu.o inclusions which are separated by L le.

4. 3. MULTIBODY INTERACTIONS. Likewise, the interaction for an assembly of three quadra-
tic interactions is

~~~~~'~~'~~~ ~~
~

(T +~~~~))j~ +)~(0)) (T +~~~~))i +~~(0))
b3biG~(x3 xi 2bib2b3G(xi x2)G(x2 x3)G(xi x3

(T + b3G(0)) (T + biG(0) ~ IT + biG(0)) IT + b2G(0)) IT + b~G(0) '
~~~~

which has been derived by a resummation of an explicit perturbation expansion up to sixth or-

der in the coupling constants bi. By considering the most singular diagrams of the n-multibody
interaction, shown in Figure 2, we can generalize the results obtained for two and three inclu-

sions to the case of N inclusions including all multi-body interactions; the proposed interaction

energy for N inclusions is

~~~~~~~~~ ~~
~~ ii~i ~~~~)iG~j~~

~~i~~/)_i~G(~~~~

~

~/~~~nG(~j~~~
~

(27)

The first sum is over all n-body interactions, and the second sum is over all combinations of
n

out of N inclusions. This expression also fulfills the obvious symmetry relation

AF)((xN), bN
=

b' + b")
=

AF)+~ ((xN, xN+i =
xN), bN

=
b', bN+i

=
b")

+f) (xN, b') +
7) (xN, b") 7) (xN, b' + b" ),
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II 12 II II
°

~ ~
~

~~ In

Fig. 2. Leading two-body, three-body, and n-body diagrams for the case of quadratic inclusions.

The main index t enumerates the N inclusions, the subindex is used to form subgroups of n inclusions

for the n-body interactions and to ensure permutation symmetry.

I.e., the interaction between N inclusions can be obtained by contracting the position of any

two inclusions in the interaction energy of N +1 inclusions. The important result is that

quadratic inclusions, in contrast to the linear case, give nonvanishing and non-trivial multibody
interactions.

4.4. PROFILE AND ROUGHNESS. The membrane profile is not influenced by the presence

of a quadratic inclusion, I,e.,

lllx))Q
=

o. (28)

This can be seen from the fact that the first moment of a quadratic probability distribution

vanishes. The roughness profile can be calculated from the expression (21) by taking one

derivative with respect to the coupling strength bi,

i121xi x~))Q
=

2 °~~jjj'~~~ 129)

bi=0

and turns out to be

il~ix))Q
=

G10) ~~)(j)~~ 130)

For finite coupling strength b the roughness at the origin remains finite; for infinite coupling
b

= oJ one obtains

(l~(X))Q
"

G(°) ~j~~ (31)

and the roughness at the origin now vanishes. In the limit of free membranes one obtains with

the result (B.9)

(l~(x))~
m G(0)x~ If(

~

~~
(32)16~

For the roughness if
we thus obtain

ilix)
e

~/wx)2) wx))2
=

£'('
133)

The width, or the roughness, of the fluctuating membrane thus increases linearly around the

pinning site, I-e-, the point at which the fluctuations are suppressed.
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5. Scaling Theory for Impenetrable Membranes

In this section we will be interested in the shape profile of one membrane which is pinned to an

impenetrable wall at one point or (which is identical) two impenetrable membrane which are

joined at one point. The impenetrability of the membranes lead, due to the concomitant loss of

configurational entropy, to a rather long-ranged repulsion between fluctuating membranes, the

so-called Helfrich repulsion [31]. This problem has been considered using an effective free energy

expression which includes an explicit Helfrich-interaction term and thus takes the fluctuation-

induced membrane repulsion in a phenomenological way into account. Two situations have

been studied: I) Asymptotically free membranes, in which case one obtains a linear, cone-

like separation profile around the pinning site [25], and it) membranes which are bound by an

additional mutual attraction, in which case one obtains
a

cone-like profile close to the junction
point plus a characteristic overshoot in the separation profile further away from the binding
site [38]. In the following, we will be only concerned with the asymptotically free case.

In principle, the impenetrability can be taken into account by adding the hard-wall inter-

action to tbe potential Vii) used in equation ii), which however renders the resulting theory
intractable. We therefore resort to a scaling ansatz, which uses our exact results from the last

sections; this ansatz also leads to a linear separation profile. In order to check the validity of

this scaling ansatz (and of the result obtained in [25] ), we also consider the case of a polymer
pinned to a reflecting wall, a problem which can be solved exactly using path-integral methods

(see Appendix C). The exact solution for the polymer case agrees with the corresponding scal-

ing prediction and the result employing a free energy expression similar to the one used in [25],
and thus confirms our and Bruinsma et al.'s result for the case of impenetrable membranes.

Let us present the scaling ansatz: For two impenetrable membranes which do not interact

via some additional long-ranged interaction one expects the general scaling relation [39]

nix)
r~

(fix)) 134)

to hold, I.e., the roughness ii should locally equal the mean separation it). This is so because

in the absence of long-ranged repulsions, the membranes undergo frequent collisions. A gap
junction which binds two membranes locally both changes the local separation and the local

roughness of the separation coordinate, it therefore can be expressed as a sum of a linear and

quadratic local perturbation. First considering the effects of the two types of perturbations
separately land in the absence ofthe hard-wallinteraction),

we obtain
a quadratic profile for the

separation due to the linear perturbation, equation (19), and a linear profile for the roughness
due to the quadratic perturbation, equation (33). One sees that the scaling relation (34) is

violated: For small distances fi.om the inclusion the roughness is larger than the separation. Let

us now consider the hard-wall interaction. It will in general have two effects: it will decrease

the roughness and/or increase the membrane separation, such that the scaling relation (34)
be satisfied. By comparing the linear and quadratic profiles we find the linear profile to be

dominant for distances smaller than a certain crossover length. By matching the separation
and the roughness at the boundary of the membrane, we find this crossover length to coincide

with the system size. This indicates that the separation profile will differ from (19) and be in

fact linear on all length scales,

lilx))
r~

ii
r~

))x). (35)
o

Thus we obtain two different predictions for the membrane profile: I) in the case of one

localized perturbation pulling on a single membrane or for
a gap junction between two mem-

branes in the absence of impenetrability or shape fluctuations, one obtains a quadratic profile,
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equation (19), and it) for a gap junction or a binding site in the case where the membranes are

impenetrable and flexible one obtains a linear membrane profile, equation (35). The membrane

impenetrability in conjunction with thermally activated shape fluctuations, incorporated in an

approximate fashion by using the scaling relation (34), leads to a much more singular separation
profile close to the pinning site, due to the Helfrich repulsion exerted on the membranes.

This result is in full accord with the calculations by Bruinsma et al. based on the effective

free energy expression [25]

-This expression contains the Helfrich repulsion explicitly and thus takes the membrane im-

penetrability into account in a phenomenological fashion. The fluctuation-induced repulsion
is seen to be rather long-ranged and diverges strongly at short distances. The prefactor cfl is

a universal amplitude and has the numerically determined value cfl m 0.116 [29]. The Euler

equation resulting from this expression by minimizing with respect to the membrane profile
reads

~ ~n2
~~~~~~

~((3(x)
~' ~~~~

The solution for the profile including the boundary condition at the pinning site, I(o)
=

0,
is [25]

fix)
~ c(@

~
[x[ (38)

~
and thus agrees with our scaling solution (35). Whereas our scaling solution can be criticized

because of the rather uncontrolled use of the scaling relation (34), the solution (38) which

is obtained from the free energy expression (36) relies on the validity of the expression used

for the Helfrich interaction in spatially inhomogeneous situations. In principle, the Helfrich

interaction to be used in (36) will have an x-dependent coefficient.

To verify the results for the membrane profile, equations (35, 38),
we performed calculations

for the analogous system of a directed polymer, where the difference between the two situa-

tions, pinning the polymer to a wall in the presence or absence of impenetrability and shape
fluctuations, is obtained exactly using path-integral methods (Appendix C). In the absence

of the hard-wall interaction, or at zero temperatures, the average polymer path is linear, see

equation (C.3). For a polymer pinned to a hard wall and in the presence of path fluctuations,

one obtains a square root dependence of the average polymer path on the distance from the

pinning site, see equation (C.18), in agreement with the resulting average polymer path ob-

tained from applying the general scaling relation (34) to the case of polymers, see equation
(C.5). The average polymer path can also be calculated using the method of Bruinsma et al.

The effective free energy expression for polymers analogous to the one for membranes reads

The Helfricll repulsion for the case of polymers has the same functional form as for membranes

with a coefficient which can be calculated exactly (see e-g. [40]). The Euler equation for this

expression reads

~
~~~n2

~ ~~~~~ ~
lG(l~(X)

~ ~~~~
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The solution for the boundary condition at the pinning site, lp(0)
=

0, is

lP lx) m C)~~
°~

141)
o

and thus agrees both with the corresponding scaling solution (C.5) and with the exact result

(C.18). This confirms the result for the membrane profile for two impenetrable fluctuating
membranes, equation (35) or (38), and demonstrates the validity of both the effective free

energy expression (36) used by Bruinsma et al. and the scaling ansatz leading to (35).

6. Discussion

The partition functions for systems governed by Gaussian Hamiltonians including linear and

quadratic local perturbations are considered. Exact expressions for an arbitrary number of

linear and for two quadratic local perturbations are derived. The formulas for quadratic per-

turbations are generalized to an arbitrary number of inclusions by using a diagrammatic per-
turbation expansion. These results are applied to two-dimensional membranes, for which ex-

pressions for the interactions between inclusions and for the membrane profiles near inclusions

are derived. For linear inclusions, multi-body effects are absent and the calculated interac-

tions and profiles are independent of the temperature and thus insensitive to membrane shape
fluctuations. For this case, our results therefore agree with previous calculations performed

at zero temperature and neglecting membrane shape fluctuations. For quadratic inclusions,
in which case fluctuations are important, there are non-trivial multi-body interaction terms.

Also, the two-body interaction shows a logarithmic singularity in the strong-coupling limit for

short distances. Such a logarithmic two-body interaction has been shown to lead to strongly
aggregated states [25], but the present study indicates that multi-body interactions and thus

also the detailed inclusion arrangement will play an important role in determining the aggre-
gation state. Using a scaling argument, the distance profile for a membrane pinned to an

impenetrable wall at one point (or for a gap junction between two membranes) is found to be

linear and thus in agreement with the cone-like profile found by Bruinsma et al. [25] using an

effective free-energy expression. In contrast, pulling on a single membrane locally (for example
by a laser tweezer or by a

tether) without the presence of an impenetrable wall is predicted to

lead to a much smoother parabolic distortion profile. This prediction is further substantiated

by an exact calculation for a directed polymer in 1+1 dimensions (Appendix C), which yields
at an impenetrable wall and in the presence of path fluctuations a square-root-like average path
and in the absence of the impenetrable wall a linear path, in agreement with scaling theory
and the Bruinsma Ansatz.
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Appendix A

Inclusion Free Energies

A.1 LINEAR INcLusioNs. We write the Hamiltonian of the unperturbed membrane as a

general Gaussian bilinear kernel,

~o/T
=

/
dx

/
dx' I(x)G~~ ix x')I(x'), (A.1)

where G~~ is the functional inverse of the correlation function G, I.e.,

/dx G~~ ix x')G(x x")
=

d(x' x"). (A.2)

All calculations are performed with this general Gaussian measure, and are thus applicable to

any Gaussian system. We also note that we do not choose a specific parametrization of the

fluctuating field Liz), such that
z

could be an external, fixed coordinate system land L an

ordinary field), but also an external coordinate system of a fluctuating (hyper)-surface. The

perturbation Hamiltonian for N linear inclusions is given by

N

~iiilxNl)/T
=

~ aillxi)/T. lA.3)

(The proof also works for more general inclusions defined by a local gradient expansion, which

would correspond to couplings to the local area and curvature of the membrane.) With the

definition
N

~fjx) e
~ aidjx x~)/T jA.4)

1=o

the partition function can be written as

Z
=

/
Vii-) exp

/
dx

/
dx' I(x)G~~ ix x')I(x') +

/
dx ~(x)I(x)

,

(A.5)

which, using the well-known properties of Gaussian integrals, can be transformed into

z
=

/
Pi I.) exP

/
dx

/
dx' jijx)G-i ix x')i(x') ~(x)G(x x')~(x')] (A.6)

Dividing by the partition function of the unperturbed membrane system

Zo
=

/
Dl(.) exp

/
dx

/
dx' I(x)G~~ lx x')I(x') IA.?)

2

the inclusion free energy turns out to be

7(
=

-TIn(Z/Zo)

= /jxj
dx' ~ix)Gix x>)~ix')

=

j ~j ~j aiajGlxi xj lA.8)

1=1 j=1

which is the result used in Section 3.
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A.2 QUADRATIC INcLusioNs. We perform the calculation for two inclusions with different

coupling constants bi and b2, located at the positions yi and y2, respectively. Using the

definition

~(X)
"

~l~(X Yl)/~ ~ ~2~(X Y2)/~ (~.9)

the partition function is given by

Z
=

/
Vii-) exp

/
dx

/
dx~ [I(x)G~~ ix x')I(x') + d(x x' )~(x)I(x)I(x')) (A.10)

2

The result of this Gaussian integral is (up to an unimportant normalization factor which only
contributes a constant to the free energy)

Z
=

Det (G~~ ix x') + d(x x')~(x)] ~~~~ IA. ii

Again dividing by the unperturbed partition function Zo as was done in equation (A.8), we

obtain the free energy of the inclusions as

~~ ~ ~~ [~(X X~) ~ ~(X X~l'f(X)j (~.i~)

Expanding the logarithm we can rewrite the expression as

~n « i)n+ilfi
=

~j Wn (A.13)
~

n=1
~

with Wn being defined as

lvn e

/
dxi dxnG(xi x21'f(xi)G(x2 x31'f(x2). G(xn xil'f(xn). (A.14)

Introducing the fourier transformed correlation functions
we arrive at

lvn
= lfl /

dxk+t(xk
/ dqk©(qk) fl e~~L'~~L~~L+i ), (A.15)

~ ~

k=1 k=1

which by regrouping can be rewritten as

Wn
"

lfl /
dXk'flXk

/ ~k©(~k)j fl ~~~~ ~~~~~~~~~ lA.16)
~l ~l

In these expressions, all variables indexed by k are cyclic variables, I.e., one has xn+i = xi

and qn+i = qi Now the integrals over xk can be performed, leading to

Wn
=

Iii / q~©iq~)j ij )e~Yii~L-~L-1)
+

eiY2.i~L-~L-i)j iA.17)

k=I k=I

By introducing the Ising variables ah =
~1 one obtains

Wn
=

fl ~j / qk©(qk)lfl
h(ak)e~l~L~~L-i~ (P+°L'YI/~+J~"Y2/~), (A.18)

~ ~k=I

ok k=1
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~which by another regrouping can be written as

lfl~
"

(~ ~ / qk©(qk)l~
/l(ak)e~~~ ~~~ ~~~~~ "~"~+~~~~ (A.19)

k=I ok k=1

The function h(ak), which plays the role of a magnetic field in the Ising model, is given by

hj,~) e biji + ,~)/2T + b~ji ,~)/2T. jA.20)

Now the integral over qk can be performed, and after symmetrizing the transfer matrix, the

expression becomes

Wn
=

~j jj
h(ak)h(ak+1)

~ ~'~'~~~ G(0) +
'~'~~~ G(yi

2)j
,

(A.21)
2 2

la~l k"I

with periodic boundary conditions implied, I.e., an+i = al This expression corresponds to

the partition function of
an Ising ring in an external magnetic field, which can be calculated

by diagonalizing the transfer-matrix. The result is, by using the definition of h(ak in equation

(A.20), given by

Wn
=

~~ ~ ~~ G(0) +
~~~ ~~~

G2(0) +
~( G2(yi Y2)

~

~~ ~~

+ ~~/j~~~ Gj0) ~~~ ~~~~~
G~j0) + ~~ G~lYi Y2)

~

lA.22)

Reinserting this into the series expansion of the logarithm in the free energy, (A.13), the final

result for 7) is

~~i(Yl,Y2)
j

in (~i +
~~~~ i

+ ~~~~~j
~~~~~j~ ~~~

~~'~~~

Appendix B

Correlation Functions

The bilinear correlation function for the Hamiltonian defined in ii) is diagonalin Fourier space

and given by

liiq)iiq'))
=

diq q')©iq), iB.i)

where the propagator is defined as

©(q)
e

~

~.

(B.2)
tGo q~ + 4(j
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The correlation length

iii + 14~to/m)~/~ (B.3)

is the true correlation length determining the exponential decay of all correlation functions.

By performing inverse Fourier transformations one calculates the following correlation functions

Gii ix)
=

(I(o)I(x))
=

/
)e~~.~©(q) =

/ )qsjqx)©(q)
=

-)kei(vsx/(jj), (B.4)

Gi~ix)=il10)Alix))=-iVli0)Vlix))=-/)q~Aiqx)©iq)=-)ken/x/fjj), lB.5)

G~~ ix)
=

jAi(o)Ai(x))
=

/
)q5S(qz)©(q)

=
[d(x) + ~(

~~
kei(vsx/(jj). (B.6)

For large arguments, the Thomson functions kei and ker exhibit oscillatory behavior with an

exponentially decaying envelope and are given by [41]

ker(z) ~

~ e~~/"cos(-z/V5 7r/8), (B.7)
2z

k~ijz)
r~

~ ~-x/4 sinj-z II
~r

/8) jB 8)
2z

For vanishing argument x, ker(z) is positive and diverges, whereas kei(0)
= -7r

/4. For separa-

tions smaller than the in-plane correlation length, z « iii, the correlation function Gil lx) is

given by

For the roughness, given by G(0), one thus obtains

G~~jo)
=

~f(
16~o

lB.io)

The analogous results for Gi~ (0) and G~~(0) are infinity, which shows that for these correla-

tion functions the upper momentum cutoff becomes important at small distances. The results

for a finite upper momentum cutoff 27r/c and zero separation are

Gi~(0)
=

)
log Ii +

~r~((j
,

(B.11)
o

G~~(0)
=

~ l~ ~
(B.12)

'~° ~ ~fll

The results obtained with the infinite cut-off, equations (B.5, B-G), are valid for distances larger
than the inverse cutoff, I.e., roughly for x r3 c.



N°7 INCLUSIONS IN FLUCTUATING MEMBRANES: EXACT RESULTS 849

Appendix C

Polymer Profile Near an
Impenetrable Wall

For polymers all the results obtained for membranes can be calculated exactly, which allows a

valuable test of the scaling predictions for the membrane profiles near inclusions. We note that

the results (17) and (30) for the profiles in presence of a linear and quadratic perturbation,
respectively, are valid for polymers, also. This follows since the derivation only uses the Gaus-

sian property of the Hamiltonian. The correlation function for polymers is easily calculated:

The Hamiltonian of the directed polymer in 1+ 1 dimensions can be written as

~o
=

/
dx

(j jwjx)j2 + vjjx)j) jc.1)

Employing a harmonic potential of the form (2), the correlation function is obtained as [40]

~Pj~) ~
j ~-x/fjj j~ ~)$ I

with the correlation length given by (ii =

fi@. In the limit of infinite correlation length,
the results for the profiles (obtained from Eqs. (17, 30) become

ll~iz))1 ~

)
lC.4)

Using the scaling relation (l~ ix)
r-

(l(z) )2, we obtain for the polymer profile near a pinning
site at an impenetrable wall a profile

lliz))1
~

/~.
lC.5)

The presence of the hard wall changes the polymer path profile from a linear one, equation
(C.3), to a square-root profile. This prediction is analogous to the one in (35) obtained for

membranes. For the present case of polymers, this profile can be calculated exactly within the

path-integral formalism. To this end, one introduces the end-point distribution functions for

a polymer of length X

qjl, x)
=

/~ Dlj.jdjljx) ii exp

-j /~ jjvljz')j~ + Vjljz'jjdz'
,

jC.6j

qt it, z)
=

/
Dl(.)d[I(z) I] exp

/ ~° [Vl(x')]~ +

[I(x')]dz'l,
(C.7)

~
T

~
2

<~which satisfy the'diffusion equations

~~~~'~~
=

)~~~(j~'~~ ~/~qt(I,z). (C.9)
z ~o
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The normalized Green's functions in the case of vanishing potentials for these equations are

which satisfy the initial conditions q(1,0, lo) = bit - lo) and qt(I,X, lx) =

nd-point distributions for the case of an impenetrable wall can be obtained using the

qji, x)
r~

im jqji, x, d) qii, x, -d)) jc.12)

which after normalization reads

qt it, x)
r-

/~
dlx (q~ It, x, lx) q~ It, x, -I,<)) (C.14)

o

which after the integration yields

qt It, x) « erfc

fill.
(C.15)

~

Note that this expression is not normalizable. For small arguments, I.e. in the limit of an in-

finitely long polymer, the error function is linear, and so the normalized probability distribution

to find the polymer at position x at height I, defined as

pit, x)
=

qji,x)qtji, x)z-i jc.16)

where Z
=

J dlq(I, L) is the partition function of the polymer, is given by

(fix)) e

/~ dlP(I, x)
=

/~
(C.18)

and thus agrees with the scaling prediction (C.5) and the result of a calculation using

an effective free energy expression including the phenomenological Helfrich term, see equa-

tions (39-41).
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