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PACS.03.65.Fd Algebraic methods

Abstract. The exact solution and the invariant Cartan operator of the linear nonautono-

mous system with su(I,I)eh(3) dynamical algebra are obtained by using the method of algebraic
dynamics. A novel, indirect quantum-classical correspondence of the solutions has been found.

It has been shown that algebraic dynamics can be generalized &om the linear dynamical system
with su(1,1) Lie algebra to a more complicated system with su(I,I)eh(3) Lie algebra. Nonadi-

abatic Berry's phase is also calculated.

In reference ill, Wei and Norman proved the theorem that the time evolution operator of a

quantum system whose Hamiltonian is a time-dependent linear combination of the generators
of finite Lie algebra can be expressed as a

finite product of exponentials of the generators
multiplied by suitable scalar functions. Based on this theorem, a method called algebraic
dynamics [2-4] has been proposed in the study of linear nonautonomous systems with semi-

simple Lie algebras. The essential ingredients of the method are gauge transformation and

time-dependent dynamical symmetry. The properties of algebraic dynamics are: (a) by means

of gauge transformation, the problem of a nonautonomous system can be solved under dif-

ferent gauges which correspond to different representations. By a proper choice of gauge, a

time-dependent dynamical symmetry can be converted into a stationary dynamical symmetry;
(b) by virtue of this method, the number of parameters needed for solving the quantum equa-

tions of motion (in terms of these parameters, the gauge transformation can be constructed)

can be reduced to the minimum (which is equal to the order of the algebra minus the number of

its Cartan operators) (cl within the framework of algebraic dynamics, the quantum-classical
correspondence of the solutions is readily found; id) besides, the nontrivial time-dependent

dynamical symmetries of a linear nonautonomous quantum system appear automatically in

the process of solving the Schr6dinger equation of the system. The method has been applied

to problems of the dynamical systems possessing su(I,1) [3] and su(2) [4] algebraic structures

and proved to be useful.

(* Author for correspondence (e-mail: wei©vaxfct.ct,infn,it or
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To explore the applicability of the approach of algebraic dynamics, in this paper we shall

consider a more complicated quantum system, I.e, the dynamical su(I,I)eh(3) system which

is a linear nonautonomous system with su(I,I)eh(3) dynamical algebra. The Hamiltonian

of this system can be applied not only to the problem of a generalized harmonic oscillator

in an external field [5-8], but also to the study of the laser-plasma scattering [9]. Many
related problems have been studied extensively in literature [10-15]. Dattoli et al. [16] have

employed Lie algebraic methods to get the solutions of the linear partial differential equations
generated essentially by su(2) and su(I,I) groups. Lo [17] has obtained the propagator of

the general driven time-dependent harmonic oscillator by using the Lie-algebraic technique.
Combescure [18] has studied the correspondences between a variety of physical systems with

time-dependent quadratic Hamiltonians and the harmonic oscillator by applying the scaling
properties of the time-dependent Schr6dinger equation. Cho and Kim [19] have discussed the

connection between the integrals of classical equations of motion and the Lewis-Riesenfeld

invariant for a time-dependent harmonic oscillator. There have also been many other related

works, for example, Leach et al. have studied the invariants and their associated symmetry

group generators for the time-dependent harmonic and anharmonic oscillators for classical

mechanical case using Noether's theorem and linear canonical transformation method [20-24].
In this paper, we shall give the exact solution of the linear nonautonomous quantum sys-

tem with su(I,I)eh(3) dynamical algebra within the framework of algebraic dynamics [2-4],
and address the complete set of commuting (simultaneous) invariants of the quantum system
studied.

Consider a dynamical system whose Hamiltonian is a linear combination of su(I,I)eh(3)
generators

Hit)
=

X+(t)k+ + iXo(t)ko + X- (t)k- + Xi (t)ki + X2 (t)k2 + X it)

~~~ ~~~~~ ~
~°~~~~~~

~ ~~~ ~ ~~~ ~~~~~ ~ ~~ ~~~~ ~ ~~~~~~ ~ ~~~~
~~~

where Xv (t) (u
=

+, 0, -,1, 2) and X(t)
are non-singular and real functions of time. A direct

realization of the Hamiltonian (I) is the time-dependent harmonic oscillator in an external

field. The operators I+, lo and I- form a su(I,I) algebra

l
~2

~~~~
j~

~ j~2, lo
=

-((#4 + 4#1' ~-
" l~

'

[k+, k-]
=

2ko, (ko, k+]
=

+k+; (2b)

while ii
" #> 12

=
4, and I constitute the Heisenberg h(3) algebra, which satisfy the following

commutation rule

Iii> 121 =
-I. 13)

The commutation relations between the two sets of operators are

[I+, ill
=

0, [io> ill
=

ii Ii-, ill
=

i12,
~

(4)

[I+, i~j
=

-iii, jio, i~j
=

-(i~, ii-, i~j
=

o.

The time evolution of the system is determined by the following Schr6dinger equation (assume
h

=
I)

i~'i~ it))
=

~iiti'i~(tit. (5)
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To solve equation (5), a gauge transformation fig it) may be introduced [2, 3]

Ug(t)
=

exp[iv(t)] exp[iv2 (t)k2) exp[-ivi (t)ki exp[iv- (t)k- exp[vo (t)ko], (6)

where vv(t) iv
=

0, -,1,2) and v(t)
are time-dependent and real parameters. Within the

framework of algebraic dynamics, the transformation parameters vv(t) and v(t) may be given

any real initial values. For convenience, we let fig(t
=

0)
=

1, namely

vo(o)
=

v-io)
=

Vito)
=

v~io)
=

via)
=

o. 17)

After the above gauge transformation, the Schr6dinger equation (5) becomes

I(141t)1 =

hit)141tii, 18)

where the gauged Hamiltonian flit) and the gauged wave function [Wit)) are defined, respec-
tively, as

~~~~ ~ ~~~~~~~ ~~
~'

~~~

141t)1
=

£li~ ii~it)). i101

Since the generators I+, I-, ii and 12 are Hermitian and lo anti-Hermitian, the Hamiltonian
kit) is Hermitian and the transformation ifg(t) is unitary for real vv(t) iv

=
0, -,1,2) and

v(t). The Hermiticity of the Hamiltonian implies the probability conservation of the system.

After some calculation, one obtains the gauged Hamiltonian

h
=

z+it)i+ + izoit)io +
z-it)i~ + zi(t)ii + z~(t)i~ + z(tj, iii)

where the coefficients are given by

Z+ it)
=

exPi-volt)iX+ it) i12a)

zojti
=

-vo(ti + Xojt) + 2X+jt)v-jti, i12b)

Z- iti
=

exPivo it)] iv- iti + X- iti + Xoit)v- (t) + X+ (tivi it)] i12C)

Zi It)
= exp

@j
bi It) + Xi It) + X+(t)v2 It) + jXo(t)vi(t)j, (12d)

22(t)
= exp

(@j
(b2(t) + X2(t) + X-(t)vi It) + )Xo(t)v2(t)j

+ fit It) + Xi It) + X+(t)v2 (t) + )Xo(t)vi It)] v-
(t) ),

~~~~~

Z(t)
=

vit) + vi it)v2(t) + X(t) + X2(t)vi (t) + Xi (t)v2(t)

+(X-it)viiti + jXojt)vijtiv~ it) + jX+jt)vi it).
~~~~~

As has been pointed out in references [2-4], one of the merits of algebraic dynamics is that

it allows one to convert a time-dependent dynamical symmetry into a stationary dynamical

symmetry by a proper choice of gauge. This will largely simplify the quantum problem. The

choice of the gauge transformation fig(t) is motivated by the requirement that the gauged
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Hamiltonian should consist of the Cartan operators only and all the lowering and raising op-

erators be eliminated. This requirement determines the number of the independent parameter
functions to be in r) in is the order of the dynamical algebra, r is its rank). Under the

above requirement, there are of coursi
many possibilities to construct fig(t), which correspond

to different ways of parametrization in group space and will result in different nonlinear rela-

tions between v~ it) and coefficients up it) of the Cartan operator (see below, Eq. (17)). Under

a proper gauge, a time-dependent quantum problem can be converted into two separate and

simple problems: to solve a stationary eigenvalue problem and to determine the solutions of a

set of classical equations of motion. For the system considered in this paper, a suitable gauge
is chosen through such a set of vu it) iv

=
0, -,1, 2) and v(t) that (~)

j~jjj =
const.

= ~, Zo(t)
=

0, Zi (t)
=

0, 22 (t)
=

0, Z(t)
=

0. (13)

From (12a-f) and (13), one has

~(~(jj~~l
jv~ it) + x~ jtj + xojt)v~ it) + x+jt)vi jt)j

= ~, j14a)

-vojt) + xo(t) + 2x+(t)v~ it)
=

o, j14b)

-vi it) + Xi iti + X+(t)v2 it) + )Xoitivi (t)
=

0, (14C)

v21t) + X2 it) + X-it)vi it) + )Xoitiv21ti = 0> i14di

vjt) +vi it)v2 (t) + X(ti + X2(t)vi (t) + Xi (t)v2 (t)
j14ei

+~X-(t)vi(t) + ~Xoit)viit)v2(t) + jX+it)v] it)
=

0.

Equations (14a-e) are the differential equations satisfied by vu it). Once the coefficients Xv (t)
iv

=
+,0, -,1,2) and X(t)

are specified, the above set of equations (14a-e) with initial con-

dition (7) can be readily solved. Under the special gauge (13), the gauged Hamiltonian @(t)
becomes

Rl~)
"

fl~)Tlo)> (isl

where

I(0)
=

I+ + ~i-
=

fi~ + ~(~, (16a)

fit)
=

X+ It) expi-vo It)] (16b)

The merit of the special choice of gauge (13) is that the Cartan operator
)

does not depend

on time explicitly and has the standard form of harmonic oscillator operator.
The invariant Cartan operator is

lit)
=

figi(0)fil~
=

a+I+ + aria + a-I- + aiii
+ a212 + b, (17)

(~) If we consider the gauge transformation

Ug =
exp[iu(t)] exp[iu2(t)k2]exp[iu- (t)k-] exp[uo(t)ko] exp[iu+(t)k+]

and choose Z+
=

Zo
"

Z-
=

Z
=

0, Zi/22
=

I, then we have
h

=
22(4 +ifi)

=

viZ2h, and can get

the exact solution of the system in coherent state representation.



N°6 ALGEBRAIC DYNAMICS TO SU(I,I)eH(3) SYSTEM 753

where the coefficients au (t) (v
= +, 0, -,1, 2) and b(t) are given by

a+ It)
=

exp[uo It)], (18a)

ao it)
=

-2iv- it) exPivoit)1> l18b)

a- It)
=

VI it) exPivo It)] + ~
exPi-vo it)] i18C)

at it)
=

exPivo it)]1-v2 it) + v-
it)vi (tit, i18d)

a2(t)
=

exp[vo(t)]v-(t)v2(t) (v~ it) exp[vo(t)] + ~exp[-vo(t)] )vi (t), (18e)

bit)
=

v21ti exPivoit)1[)v21ti v-it)vi it)j + )vi iti (VI iti exPivoitii + ~exPi-volt)1) i18f)

It is easy to prove that lit) is an invariant of the system. With the aid of equations (12a-f),
the equations of motion for o+, ao, a-, at and a2 are obtained

°+ it)
=

Xo(t)a+ (t) + iX+(t)ao(t), i19a)

aoiti
=

2iX-trio+iti 2iX+ (tin- it) i19bi

a-iti
=

-Xo(tia-(ti ix- judo(ti, (19Ci

al (ti
=

X2(tia+(ti + I)Xi(tide(ti + )Xo(tier(ti X+(tia2(ti> (19di

a2(ti
= -I)X21tiao(ti Xi itia-iti + X-itiai iti )XoitiO2iti i19ei

Equations (19a-e)
can also be obtained from the equation of motion for the invariant operator

lit), I-e-,
~~~~~

+ i[~i(t), lit)]
=

0. In contrast to the nonlinear equations (14a-e) for vu, the
bt

equations (19a-e) for au lead to the linearization of the quantum equations of motion, which

is realized through the nonlinear transformations (18a-f).
Now, we discuss the correspondence between the quantum and classical solutions of the system.

The classical algebraic dynamics is

~~"jl'~~ =
lk~ jq, pi, H(q,p,tjj, iv

= -,
o, +, 1, 2j, j20j

where the classical Hamiltonian and the classical algebra are given by

Hit)
=

x+it)k+ + ixoit)ko + x~it)k~ + xi it)ki + x~it)k~ + xitj, 121)

k+
= jp~, ko

= -)PQ, k-
= jq~, ki

= P, k2
= Q, (22a)

(ki, k2)
=

-1. (22b)

In (22b), (ki, k2) denotes the Poisson brackets between ki and k2. The Poisson brackets

among other classical quantities can be obtained from (22a, b). From the above equations, the

dynamical equations of kv(q, p) (u
=

+, 0, -,1, 2) can be readily obtained

~(~ =
-Xo(t)k+ 2iX-(t)ko X2(t)ki, (23a)
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~~°
=

-iX+(t)k+ + iX-(t)k- I Xi (t)ki + I )X2(t)k2, (23b)

~~~
=

2iX+(t)ko + Xo(t)k£ + Xi (t)k2, (23c)

and

~~~
=

~Xo(t)ki X-(t)k2 X2(t), (24a)

(~
=

X+(t)ki + ~Xo(t)k2 + Xi It). (24b)

It is easy to check that (23a-c) and (24a, b) are not independent of each other. In fact, one can

derive (23a-c) from (24a, b) and (22a). Comparing (24a, b) and (14c, d),
we find the following

remarkable relation

vi =
k2

= Q, v2 =
ki

= P, (25)

where kv iv
=

1,2)
are real solutions of (24a, b). The quantum-classical correspondence

relation (25) indicates that vi and v2 are determined by the classical equations of motion

of the system [10-15], while the other parameters vo and v- for quantum solution can not

be obtained simply from the classical solutions. As a result, for the dynamical system with

su(I,I)eh(3) algebra, a direct correspondence between au and kv is lacking. This is because

the structure constant matrices of the invariant operator I
are not completely Hermitian,

which follows naturally from the algebraic structure of su(I,I)eh(3). However, as will be seen

below, there exists an indirect quantum-classical correspondence. Introducing the following
transformation

vi (t)
=

fiQ(t), v2(t)
=

(t)P(t), (26)

equations (14c, d) or (24a, b) can be written as

Qit) +111it)Qiti
= /Li iti, (27ai

Pit) +1121t)Pit)
= /L2 it) 127b)

where j and ~i are defined by

If the rameters Xv(t)
are periodic functions

of time
with the same period T, namely

Xv(t + T) = Xv(t)j then (27a) and
(27b) are called inhomogeneous Hill

uations which

have wide-spread use in ccelerator physics
[25]. Once Xv (t) are

specified,
vi It) and
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the exact solution of the Schr6dinger equation (5), we first discuss how to determine vo(t) and

v-
(t). Performing the following transformations

a+it)
= )fit)f*(ti> (30ai

ao(ti
=

-)ifit)(*(ti + f*(t)((tit> 130bi

a~
it)

= j<it)<*(t), (30cj

with the aid of the differential equations (19a-c) of a+, ao and a-, we get the dynamical
equations for fit) and ((t)

~~~ ~ ~°~' ~~~~~

l
=

jxo( x-j. j31b)

It is directly proved that (19a-c) and (31a, b) are equivalent, and (31a, b)
are the homoge-

neous equations of (24a, b). This is important for establishing an indirect quantum-classical
correspondence. Through the transformations

fit)
=

fiB(t), ((t)
=

(t)1I(t), (32)

(31a, b) can also be written as

B(t) + ~i(t)B(t)
=

0, (33a)

nit) + ~~it)nit)
=

o, 133b)

where J~i It) and
J~2

(t) are determined by (28a, b). Obviously, (33a, b) are just the homogeneous
equations of (27a, b). It is seen that vo (t) and

v-
it)

can be determined by the complex solution

of the homogeneous equations (33a, b)

vo =
in (( lf(t)l~j =

in
()

lB(t)l~j, (34a)

~~

~

~

fi'
~

~ ~~~~~

As has been pointed out in reference [3], the complex solutions of (33a, b)
are necessary. The

physical significance of (34a, b) is that a continuous set of classical complex orbits corresponds

to just one quantum motion. In brief, the above analysis has established a novel, indirect

correspondence between quantum and classical solutions: an infinite and continuous set of

classical orbits of the homogeneous equations (31a, b) corresponds to one subset of quan-

tum solutions a+, ao, and a-, while the solutions of the classical inhomogeneous equations
(24a, b) correspond to the other subset of quantum solutions vi and v2 lot and 02 are given
from (19a-e)). There is a common feature between the above indirect quantum-classical corre-

spondence and the direct one in reference [3] for the su(I,I) dynamical system: an infinite set

of classical orbits corresponds to only one quantum solution. For the su(I,I)eh(3) dynamical

system, due to the inhomogeneity of the classical equations of motion, there is a one-to-one

correspondence between ki, k2 and vi, v2. However, one has to resort to the homogeneous solu-

tions (33a, b) of the inhomogeneous classical equations of motion (27a, b) in order to establish

a complete classical-quantum many-to-one correspondence.
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In what follows, we proceed to solve the Schr6dinger equation (5) of the system by using
algebraic dynamics. First consider the eigenvalue problem of the invariant Cartan operator

lit)
=

fig)(0)fij~ Let [n) denote the eigenstate of )(0),
one has

l10)in)
=

In +
)~doin),

135)

where w(
= ~.

The eigenvalue equation of lit)
can be written as

f(t)£lgin)
=

(n +
)~do£lgirl

=
In +

)~do14n(tit>
1361

where [(nit))
=

fig[n) is the eigenstate of lit) with eigenvalue in + ))wo.
Under the special choice of gauge (13), the gauged Schr6dinger equation is

I(141tii
=

fit)l101141t)), 137)

which has the following solution

14nit))
=

exPii8nit)1in)> 138)

where

en it)
=

-in +
)~do /~ fiT)dT. 139)

fit) is defined by (16b). In q-representation, the above solution [4z~(t)) takes the form

4n (t)
=

Nn (a) expj18n(t)j expj- (oq)~ /2jHn jaqi, 1401

where Nz~(a)
=

[a/fi2"nl]~/~ is a normalization constant, a~
= wo =

@, and Hz~(aq) is the

Hermite polynomial of order n. By virtue of the algebraic relations

exp[veto)F(q)
=

exp(-vo /4)F(e~%/~q), (41a)

exp[-ivi#)F(q)
=

F(q VII, (41b)

one obtains the orthonormal diabatic basis, which is an exact solution of the original equa-

tion (5)

~p~itj
=

n~i~itj

=
exPii8nit)14nit)

"
Nn(X°) ~XP (l18n(t) + V(t)I ~XP(I ()V- IQ VI )~ +

2Qj ~~~~

x exp( [xalq vi )l~ )Hn(xaq xavi ),

where x "
exp[-vo/2] is determined by the classical equations (33a, b). (42) describes

a one-dimensional harmonic oscillator in a moving and dilating coordinate x(q vi) with

an extra mean velocity potential ()v-(t)[q
vi (t)]~ + v2(t)q) and a time-dependent phase.
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ilz~(t) provides a time-dependent basis in Hilbert space like a local, moving frame in differential

geometry. The diabatic energy levels are

En(t)
=

(i~nifiit)ii~n)

= (4z~[fil~fifig[ilz~) (43)

=
(n +

j)
(UJofltl

~~~~~ ~~°~~~~
vi (t)v~ it) i(t).

An arbitrary solution of the Schr6dinger equation (5) can be expanded as

il(t)
=

~ Cz~ilz~(t)
=

~ Cn exp[18z~(t)]#z~(t), (44)

n n

where Cz~ are independent of time and only determined by the initial state of the system, while

the dynamical information is completely contained in the diabatic basis ilz~ it). The expectation
value of the invariant Cartan operator I(t) is a constant of motion

ii~it) [fit) ii~(t)1
=

~ icni~ in +
i~do.

1451

Now let us calculate Berry's phase for the system studied. Suppose the parameters Xv it) and

X(t)
are periodic functions of time with the same period T, then the dynamical equations of

vu (t) and v(t) will have periodic solutions. After one period of evolution the system returns to

its initial state except for acquiring a total phase

it
"

8z~(T)
=

-(n + )wo /~ f(t)dt. (46)
2

o

The conventional dynamical phase over one period is

Id
=

/~ En (t)dt
=

/~ (n +
wo fit) ~~ ~~~ ~~~~°~~~~

vij~ )dt_ (47j
o o

2 2a

Thus the nonadiabatic Berry's phase [26] is given by

~~ ~~ ~ ~~
~ ~~~~

~ ~'~ ~
~ ~~~

~~~~~~~
~~~' ~~~~

Up to now, we have got the exact solution of the linear nonautonomous system with the

su(I,I)eh(3) algebra. It has been shown that the essence of algebraic dynamics is to emphasize
thi dynamical aspect of an algebra and the algebraic structure of a dynamics. On the one

hand, the time evolution is introduced into algebra; on the other hand the algebraic method

is introduced into dynamics and makes its solution feasible.

The study in the present paper shows that the basic methods and concepts of algebraic
dynamics, such as gauge transformation, invariant operator, time-dependent dynamical sym-

metry, time-dependent orthonormal representation, and linearization of equation of motion

etc. can be generalized from the linear nonautonomous systems with su(I,I) Lie algebra to

a special system with a more complicated Lie algebra, I.e. su(I,I)eh(3) algebra. However,
the direct correspondence between quantum and classical solutions is lost. This is because the

structure constant matrices related to the dynamical equation of invariant Cartan operator

can not be chosen Hermitian. It is interesting that there is still an indirect quantum-classical
correspondence for the system studied, although the direct correspondence does not exist: both

the homogeneous solutions (33a, b) and the inhomogeneous solutions (27a, b) together corre-

spond to the quantum solution. The physical and mathematical implication of this indirect

quantum-classical correspondence is a subject for further investigation.
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