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PACS.64.70.Pf Glass transitions

PACS.64.60.-I General studies of phase transitions

PACS.65.20.+w Heat capacities of liquids

Abstract. A fluctuation theory approach to a cooperativity onset of the dynamic glass
transition is described. Recent dielectric and heat capacity spectroscopy (HCS) experiments for

several random copolymers of n-butyl methacrylate with styrene indicate a steep linear increase

of relaxation intensities (lie, chop) and of square root of cooperativity (Nj/~)
as function of

temperature below the onset. A quasi continuous description is derived from kinetic molecu-

lar randomness. This description can be applied to small cooperativity near the onset. The

experimental indications can analytically be reproduced by means of a Landau order parame-

ter expansion adapted to dominance of fluctuation in a free volume approach to the dynamic
glass transition. An important parameter of the approach is the minimal cooperativity of order

Nf'~ cS I. The sharp onset obtained in the extrapolation is associated with the construction of

a large conditionality raster. Far below the onset, the size of cooperativity at the glass temper-

ature is theoretically estimated to be of order N~ (Tg) m 100 molecules. A new interpretation of

the ~VLF asymptote lg Q is suggested.

1. Introduction

Cooling a glass-forming molecular liquid from high temperatures, far below the terahertz

aflfast splitting temperature further anomalies are
regularly observed along the a dispersion

zone =
dynamic glass transition: the off (Johari Goldstein) splitting, or a region where the

Stokes Einstein Debye relation becomes violated [lj, or a dielectric peculiarity, e.9. the TA

temperature of Fischer [2j. It was suggested [2,3j to connect an anomaly with an onset tem-

perature Tons of a typical glass-transition cooperativity in the sense of Adam and Gibbs [4j.
Usually, the corresponding onset frequency uJons is in the mega to gigahertz range and, there-

fore, not so easily accessible by linear response experiments e.g. by shear and heat capacity

spectroscopy HCS.

But there are some substances where the onset is in frequency regions that are commonly
accessible by HCS (C( ), dielectric (e* ). and shear linear response methods [5-8j. A steep linear

onset of dielectric relaxation intensities was observed in many samples, he
r~

(Tons T) e £hT.

(*) Author for correspondence (e-mail: donthtiphysik.uni-halle.d400.de)
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Such a linearity is also described by a modified Fredrickson simulation [9j that enlarges the

fluctuation by means of molecular randomness of barrier heights and interaction parameters of

the flipping particle at each computational step. This corresponds to an effective acceleration

of the calculations at the cost of loss of high-frequency details.

The existence of a characteristic length (a for the glass transition cooperativity is a long issue

[4,10-12j. Because of the low density contrast [13j of the thermokinetic pattern [14-16j in the

liquid there are at present only indirect possibilities to determine such a length experimentally.
One possibility is a fluctuation formula from a free volume approach [10,14,16j,

((
e i

=

kBT~A(I/Cv)/pdT~
m kBT/£hCp/©)pdT~, ill

where Va is the cooperativity volume (cooperatively rearranging region CRR [4j). ACp is the

heat capacity step and dT the width of the imaginary part of dynamic heat capacitv, C('; both

can be determined by calorimetry [10,14j e.g. by HCS [17j.
HCS applied to the substances mentioned can investigate the onset region calorimetrically in

a relatively large frequency and temperature interval [17,18j. From equation (I) we then may

determine i or the cooperativity, I.e. the number of particles Na in one CRR, as a function

of AT. As reported in Section 2, Nj/~
r~

AT is indicated in several random copolymers of

n-butyl methacrylate and styrene, poly (nBMA-stat-S). Na is the number of average monomer

units in one
CRR.

The Nj/~
r~

~T onset relation means that Na becomes rather small near Tons. This gen-

erates t~v.o theoretical problems. First, since small Na values should be connected ~v.ith large
fluctuation that ,vould smear out any sharp tj-pical temperature, we must ask: how to combine

a small characteristic length with a steep cooperativity onset? Second, since small Na values

should be connected with only few particles in a CRR, being a subsystem independent from

others [4j, we ask: is there a continuous, phenomenological description of the onset applicable

to few particles? This theoretical part is the main aim of the paper and will be presented in

Section 3.

2. Experimental Indications for
a Cooperativity Onset

This section reports on some recent dielectric and heat capacity spectroscopy findings in poly
(nBMA-stat-S) indicating a cooperativity onset. The experimental details will be published
elsewhere [18,19j. This section is only to give a short experimental backgruund for the theo-

retical part in Section 3.

According to equation ii) it is ACp that indicates the glass transition cooperati,>ity. ive

expect ACp ~ 0 when an onset is approached from lower temperatures.
Figure I shows the HCS results for the 19$l mol styrene copolymer. Assuming that density

p and heat conductivity ~ have only a bend (and not a disperse step) at the dvnamic glass
transition, the temperature dispersion dT can be determined from Gauss fits of the (p~cp)"

peaks, and the ACp steps from the (p~cp)'
curves (after gauging Cj with C) from differential

scanning calorimetry, DSC). The curves of Figure I show that dT increases and ACp decreases

as a function of frequency or, mediated by the maximum of C(', Tmax(uJmax), as a function of

T. From the dT and ACp trends and equation (I)
we see that ii decreases with increasing

temperatures.
The HCS results for a series of the copolymers are compared with dielectric linear response in

Figure 2. The intensities he and ACp and the square root of cooperativity Nj/~undoubtedly
tend to zero, they are approximately linear functions of temperature, ,vith reasonable signifi-

cance, and have probably, within the uncertainties of about AT' m 10 K, a common onset for
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Fig. I. Heat capacity spectroscopy HCS results for the random copolymer P(nBMA-stat-S) with

19% mol styrene. C]
=

C( icj dynamic specific heat, ~
heat conductivity, p density. The imaginary

peaks are fitted by Gauss curves from ~vhich the temperature dispersions dT are calculated.

each polymer composition (Tab. I). Defining AT
=

Tons T, as mentioned above,
we thus

have some indication for the following near-onset behavior:

£hCp
r~

AT, he
r~

AT, Nj"
r~

AT. (2)

An Nj/~ linearity was also obtained in a series of poly(n-alkyl methacrylates) from DSC

experiments [20j. The small lengths are supported by the high sensitivity of the off splitting
scenario to small molecular variations [5j.

The inclusion of the 2$l styrene sample excludes the possibility that the dT dispersion can

be explained by chemical heterogeneity along the chain. On the other hand, the 2Slo styrene
content stabilizes the large sensitivity of homo PnBM-~ [5j to small non-controllable changes

of the splitting region.

Unfortunately there rimains
a gap of about 20 K between the extrapolated onset and the

nearest reliable HCS results, because our HCS set-up is limited to frequencies < 2 kHz and
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Fig. 2. Comparison of dielectric spectroscopy with calorimetric HCS results in the no splitting

region for three copolymer samples with 2, 8, and 19% mol styrene. Full symbols are dielectric, open

symbols HCS points. Upper part: Arrhenius diagram. The points are loss maxima, the dielectric loss

maxima are from
a

fit with a sum of two HN functions [5]. Middle part: dielectric che and HCS chop
intensities. Lower part: square root of the number of (average) monomeric units N~ in one CRR of

volume ~[. Generally: a high temperature relaxation, a cooperative dynamic glass transition, fl local

relaxation (activated).

Table I. Onset temperatures from linear regressions of dielectric (he ~ 0), calorimetric

(ACp ~ 0), and cooperatiuity (Nj/~
~ 0) data of Figure 2.

Tons

sample the Nj/~
average

2$l S 68 85 81 78

8% S 74 88 87 83

19% S 103 104 93 100

uncertainty £hT~ +10 +10 +10 +10

to sensitivities ACp/Cp > isle. The present findings do not exclude a crossover to a small

0 < ACp/Cp £ isle value for the high-temperature a relaxation beiond the onset, T > Tons.

The following theory does not consider such a crossover.
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Fig. 3. Kinetic molecular randomness. Three examples for frequent in') random chances (+++)
and rare

(frequency
~~ < Q') realizations (-Ih) of cooperative rearrangements in case of v~/vT « 1.

3. Glass Transition Onset Theory

We suggest to use an adapted Landau order parameter construction for a phenomenological
description of the equation (2) situation extrapolated to ~T ~ 0: steep linear

a susceptibility
onset with small characteristic length. The construction is based on the free volume approach

to the dynamic glass transition a of references [16, 21].

3.I. KixETic MOLECULAR RANDOMNESS. The thermal ,>elocity of molecules UT is of

order 100 m
Is ~v.hich results from vT "

(3kBT/mo)~/~ with mo the mass of the molecule or the

monomeric unit. The "velocity" of cooperative rearrangements responsible for the dynamic
glass transition, ua, is much smaller, of order va =

(a /ra, where (o is the characteristic length
of cooperativity (of order nanometers), and To a ty.pical rearrangement time (a relaxation

time). For the example (a
=

I nm and ra =

10~~
s we would obtain va =

10~~ m/s, I.e.

va « vT. In the experimental case of Section 2 we have va in the range 10 nm
Is 10 ~m/s.

The basic assumption is that for va « UT the high and chaotic thermal velocities generate
during the rearrangement time To a very large number of different local temporary

configurations with very much local chances for rearrangements (cf. Fig. 3). The frequency
of chances is denoted by Q'. These chances can only occasionally and randomly be used for

the slow a cooperative rearrangements (frequency ~a =
~). This means that the rearranging

path of each molecule has local random events of order one molecule diameter, and the paths
of different molecules are different, ~v.ith random events.

This situation will be called "kinetic molecular randomness" and is thus assumed to be

typical for molecular dy.namic glass transitions belo~v~ gigahertz frequency (va $ 10~~vT).
This randomness implies two properties of a phenomenological description.

a) High level of statistical independence of the cooperative rearrangements, also inside a CRR.

b) Independence of the a rearrangements from other dispersion zones and from high frequency
relaxations and vibrations.

This randomness, combined ~v.ith small CItR length scales, implies further:

c) Dominance of fluctuations for describing the dynamic glass transition.

3.2. KINETIC DEGREES OF FREEDOM FOR DYNAMIC GLASS TRANSITION. Trying tO

apply thermodynamic methods we must define the sy.stem under consideration. The smallest

subsy.stem representative for cooperativity is called natural subsy.stem. Being part of a total

system homogeneous at large scale, we must require that the environment of the system cannot

supply too much free volume: this would destroy cooperativity. We ha;e therefore at least the

condition that the neighbored sy.stems are also cooperative. Interested only in the a transition

we can separate (according to property (b)) the frequency region of,the
a dispersion zone.
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Fig. 4. a) Structural relaxation according to Simon [22]. E, equilibrium state at glass tempera-

ture Tg. X, glass state at T < Tg after quenching the E structure. X ~ structural relaxation to

A
=

equilibrium state corresponding to T. b) Translation of Simon's picture to an HCS experiment

at T between Tg and Tons. X'- -E glass zone
isochron reaching the equilibrium liquid

zone at E

(uJ =
const < ~on). The A". X' way would correspond to a glass zone isotherm T

=
const with

increasing frequency. The onset situation is also indicated.

A system that represents only one kind of process motion (a here, cf. also Fig. 4) is called

functional system [21]: a CRR
is

thus the natural functional
a

subsystem.
A first step for deepening glass-transition thermodynamics to the molecular level is the

question of degrees of freedom. One could think, like transition state theory, that more or less

the whole group of cooperatively arranging molecules is passing over an energy barrier and, in

that sense, has only one degree of freedom in the direction of the action coordinate available.

This is not ,>ery likely from the standpoint of kinetic molecular randomness with the dis-

tributed chances. From a thermodynamic point of view we can argue similar to Simon [22].
His arguments are related to structural relaxation from the glass state to equilibrium (Fig. 4a),
K ~ A for T < Tg (see also [21j). Let be the term "way" understand in the thermodynamic

sense
(change of state), and combine this term with the concept of Goldstein's energy land-

scape [23j. Then the relaxation X ~ A is, in the landscape, assumed to be not too far away
from the reversible way E A in the equilibrium (long times). X ~ A cannot be connected

with a single activation barrier since E. A is not connected with such a barrier. Instead

E A is a sequence of stable equilibrium states (at best with varying stability). Irre,~ersibility
of X ~ A is so attributed to the gain of ergodicitv during structural relaxation.

Let us translate these arguments to the HCS experiment in the equilibrium liquid state

at a given frequency
~ < ~ons and temperature T < Tons (Fig. 4b). ive have two zones:

the glass zone above and the liquid zone below the dynamic glass transition. Heat capacity
corresponds to the relevant slopes in the entropy-temperature diagram. In the glass zone we

have Cj~(T) corresponding to the slope of the ~ isochron (~
=

const) at X', C)(T) in the

liquid zone corresponds to the equilibI.ium slope at A'; C) > Cj~. If we assume that the

kinetic state in K', reflected by Cj~. corresponds to the equilibrium state in E, then we can

argue similar to Simon, with the translation E ~ E; K ~ K', and A ~ A'. The result is

that there is not a single activation barrier in the sense of transition state theory. By the

way, ~v.e have also an irreversibility here. reflected by the imaginary part Cj', since a periodic
heat capacity experiment is a thermodynamic cycle with a mean entropy production per time

Sirr
=

~(AexpT)~Cj/2T~, where AexpT(< dT) is the temperature amplitude of the HCS

linear-response experiment.

The number of degrees of freedom for the cooperative rearrangement of molecules is therefore

an open question. Let us try to define such a degree starting from kinetic molecular randomness

and from the preposition that the dynamic glass transition is a kinetic phenomenon.
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Fig. 5. Definition of the number of relevant degrees of freedom for functional subsystems by the

areas under the ~"(v) peaks.

In general, linear response from molecular fluctuations is regulated by the fluctuation dissi-

pation theorem, FDT. Our problem is the relation of phenomenological fluctuations of
our a

subsystem to the molecules (or, in other words, to the Boltzmann constant kB in the FDT).
It is generally accepted that all the molecules, in the average over long times, participate
,vith the same "weight" at the glass transition a

(they
are "equivalent molecules" ); similarly

they participate equivalently at the picosecond motions 16) and the ultraslo,v motions (u, [2j).
Therefore, in the average, only a

specific part of degrees of freedom (N) can be related to a

(or
u or b),

,ve have

N
=

Nu + ia + Nb. (3)

The parts iu, in, ib
can be determined by the equipartition theorem la special form of the

FDT). Assuming fur simplicity that all N degrees have the same inertia we have kBT
=

mu2,
with u the velocity for this degree. The corresponding velocity autocorrelation function is

denoted by u~ it), its spectral density is u~(~). Putting

xnu~)
- im/k~T)u~u21u~) / o, 14)

,ve have the situation of Figure 5, 1.e. we have get a peak for each dispersion zone in a x"-In
~

diagram, with

oJ

=
2
/

x"(~)dln~. (5)

o

This means that N can be partitioned according to equation (3), where

in
=

I 2
/

x"(uJ)d In uJ, (6)

in peak)

and analogously for the u and b peaks. Na must not be confounded with No, the number of

particles in a region of CRR size.

3.3. QuAsi CoNTiNuous DESCRIPTION. Since x"(uJ) depends on the temperature (e.g.

we have xi (uJ)
=

0 for T > Tons), Na is a continuous variable, not restricted to integer
values for

one
CRR. In other words, due to kinetic molecular randomness, in is influenced

by the relative time interval of the rearranging kink motion mentioned above, and by how the

mechanical (true) molecular degrees of freedom are invol,~ed in the different dispersion zones

u, a, and b. But there is also some spatial continuity. The equivalence of all molecules for

cooperative rearranging means that the ia degrees ha,~e some collective meaning. and that

they are "delocalized" in a
CRR, at least in the time scale ra of the a dispersiun zone.
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Fig. 6. Partition of
a

CRR of size V~
=

(( into partial volumes I( with partial mobilities lg~,.

The properties la) and (c) of Section 3.I, I-e- statistical independence and dominance of

fluctuations, allo~v. to sharpen the phenomenological application of the spatial and temporal

concepts to lengths smaller than (a (e.g. partial volumes l~ and local mobilities lguJ, inside a

CRR of volume j, see the example below). This is a consequence of the general property. of

collectivism: that the relative fluctuation of an ensemble is (much) smaller than the individual

fluctuation of the members. That is we shall use collective conceptions down to lengths scales

of the molecular diameter, a few angstroms, say. This property will be called "quasi contin-

uous description'" [31j. This is a highly abstract level of thermodynamic description for the

cooperative a rearrangements in collective coordinates, based on the three properties la, b, cl
mainly. resulting from kinetic molecular randomness for ua « UT

As an example we repeat [16, 21j the description of the kinetic state of a CRR by means of

partial frequencies and their fluctuations. We make a partition of a CRR into m subvolumes

( of equal and constant size (Fig. 6):

m

V~
=

(
=

Ini~. (7)~
>=l

Let us assume that a local mobility lguJ, can be defined for each partial volume, according
to the quasi continuous description, and that, despite of cooperativity, the mobilities lg~i for

different partial volumes are statistically independent, according to property 16) of Section 3.I.

This is, in principle, possible, because statistical independence does not imply- physical inde-

pendence (only: the latter implies the former). Then ~v.e have [3, 21j, with respect to mobility
fluctuations (responsible for

a fluctuation spectral density [16j),

~a =
const uJi ~2 uJm. (8)

Let be dlguJ the dispersion of the mobility fluctuation. Then ,ve obtain from the statistical

independence, equation (8),

d lg uJ + d lg uJo r~

m~/~
r~

Nj/~ (9)

Equation (9) means that dlguJ increases with the CRR size r~m; larger CRR'S contain more

partial subvolumes [ of given size.

3.4. CoNDiTioNs FOR COOPERATIVITY. The problem is now to define the Va cooperativity
in case of statistical independence of fluctuating partial mobilities lguJ,. Let us assume that

we have a coupling bet~v.een local mobility and local density (free volume) or local structure

«free entropy" ). For free volume we can then introduce a "geometrical" coupling between the

partial volumes by means of equation (7), or for the partial ;olume fluctuations, £h(,

AVa
#

flat (10)



N°4 GLASS TRANSITIONS 589

Assuming that the statistical independence of mobilities, equation (8), can be transferred to

the AK fluctuations we obtain for the dispersions

di/Vo « d/ It for m » I. ill)

This means that, in the average, inside a CRR, enlarging of local density in one l~ is coupled
with diminishing of density in another I§, # j, (or several others). This property was, when

connected with partial mobilities, called minimal coupling [16j for describing cooperativity in

a CRR.

In other words, in case of cooperativity we have a budget of free,~olume that is mainly
balanced (by Eqs. (10, 11)) within one CRR.

In mathematical terms (with consideration of dominance of fluctuation) we have the following
situation: first, for T > Tons, there is a large stock of free volume (or entropy), and there is no

need for any balance of free volume, I.e. there is no additional condition on the mobility as

a function of free volume because the latter can freely distributed. In particular, there is no

typical length scale because there is no condition on the invariance condition of fluctuation,

NAV~
=

inv. against general subsystem size N. (12)

Second, for T < Tons, however, there must be a condition because of the free volume balance

by cooperativity. Such a condition may mathematically be formulated by

lnuJ,
=

lnuJi(/), (13)

I.e. that the partial mobility fluctuation in a given partial volume I depends only from the

fluctuation of its own partial volume I, with taking the balance condition equations (lo, 11)
into account. Some consequences of this equation (13) minimal coupling are described in

references [16, 21j.
Since the balance condition has only a sense inside CRR'S this means that such partial

volumes have only a sense if they are members of CRR'S. One CRR must contain at least two

partial volumes,
m > 2. Irrespective of the ( size we have only cooperativity if we have large

domains with CRR'S. An isolated CRR would have too many borders open for an attack of

free volume destroying cooperativity. This means that the cooperativity is connected with a

large "raster of conditionality", I.e. large domains of partial volumes, where each of them is

member of
a

CRR with a volume ( which latter is independent of the raster domain size.

It seems that large domains of conditionality raster, I.e. a long-reaching enchainment of

small-scale conditioning environments, is typical for liquids at low temperatures: molecular

environments for the molecular glass transition, CRR'S themselves for ultra slow modes, or

entanglements for the flow transition of polymers.

3.5. CONDITIONALITY RASTER AT THE ONSET. We have, therefore, the following picture
(Fig. 7) for the steep equation (2) behavior, or, in the extrapolation AT ~ 0, for a sharp onset.

For large temperatures, T > Tons, there are no stable partial volumes since, if existing, they
would be dissolved in a sea of an ample stock of free volume. T

=
Tons is the point where we

have a stable domain filled with partial volumes all of which are parts of small CRR'S. That is

we have large domains of partial-volume rasters (that can define a sharp onset temperature) but

small characteristic lengths (which alone could not define a sharp onset). This conditionality

raster alone cannot define a large physical length except the domain size, so that there is no

critical opalescence at Tons. The raster is permanent for T < Tons, but the average size of the

CRR'S filling the raster can increase [4,10,16j.
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Fig. 7. The thin squares symbolize the conditionality raster of partial volumes, the bold lines define

the fluctuative pattern of cooperatively rearranging regions CRR'S (on the raster), with characteristic

length (~
=

Vj/~ For T > Tons we have at best instable fluctuations with only local rasters.

The occurrence of the CRR'S in the conditionality raster breaks the invariance equation (8)
below Tons, since there are now characteristic sizes Na or ( in the fluctuation caused at the

end by the mobility balance.

3.6. LANDAU EXPANSION FOR DOMINANCE oF FLUCTUATION. The linearity of the func-

tions ACp
r~

AT and Nj/~
r~

AT (Eq. (2)) can analytically be obtained from a Landau

order parameter expansion dominated by fluctuation. (Recall that we ha,>e no large correla~

tion lengths as in an Omstein Zemike approach to a critical phase transition, and that the

fluctuations are not connected with large correlation lengths; I.e. there is no need for a Gins-

burg criterion, instead the fluctuations
are dominating because the CRR'S are so small.) From

the book of Prigogine and Glansdorff [24j we learn that a thermodynamic situation with large
fluctuations can also be described by a potential f that is optimal in equilibrium.

Let ~ be an '"order parameter" and d be a "control parameter". We put the Landau expansion

as f
=

aid dons )~~ + b~~. Then we have for d < dons, of course,

~ '~
(dons d)~~~ (14)

For dominance of fluctuation
we characterize the caloric situation by the entropy fluctuation

of a CRR, ASa, and the size of a CRR, No, I-e- we put f
=

f(ASO, No ). Let be the control

and the order parameter respectively defined as

d
r~

Na and ~ =
AS] /No

r~

ACp, (15)

where AS] is the ms entropy fluctuation of one CRR.

The meaning of the term "control" is rather conditional for fluctuation dominance because

the usual control parameter, e.g. the temperature, is not a priori defined in this situation.

This will be discussed in the next subsection.

3.7. THE MAP PROBLEM: INVERSION OF THE PRINCIPLE OF LOCAL EQUILIBRIUM.

Map problem: dominance of fluctuations means that a common thermody.namic variable

of our subsystems (e.g. the temperature T) is introduced in the description via its inter-

nal spontaneous actual fluctuation dT (related to one CRR I.e. to the a functional sub-

system). The kinetic variable lguJ is similarly introduced by a spectral width dlguJ of the

partial mobility- fluctuation, equation (9). Both the temperature and the lguJ fluctuation

can be different in different functional subsystems, I.e. dT + dTo # dTb # dTu, and

dlguJ e dlg~a # dlg~b # d lguJu. We need, therefore, a mapping (-+), denoted by dT -+ AT
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U, V, fit

XEt

E(t),V(t),N(t) ~
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(a) / ~~
(h)

Fig. 8. a) Subsystem with mechanically simulated quantities E(t), V(t), Nit), and total system
with thermodynamic variables U, V, M. b) Principle of local equilibrium, PLE. Definition of actual

thermodynamic variables .K for a fluctuating subsystem. Details, see text.

and dlguJ -+ AlguJ in the example, from internal a
fluctuations dT, dlguJ to common

thermodynamic and kinetic ("thermokinetic") control variables T,lguJ that can be changed
(AT, A lgw) by changing the external conditions.

To illustrate the meaning of this map we shortly discuss the inverse map, well known as

principle of local equilibrium, PLE [25j. (This principle belongs to the foundations of statistical

mechanics and is more than the statement that any subsystem is in local equilibrium with its

environment in a situation that permits deviations from the global equilibrium, e.g. with

a gradient 0T/0r # 0.) Consider the usual construction producing actual and fluctuating
thermodynamic ,>ariables from molecular mechanics. Fluctuating means, of course, that the

actual values can deviate from the time average. The construction contains four steps [21j.
ill A subsystem larger than natural is mechanically simulated in a computer during the proper
time scale. We determine from the recordings for any time t:

the volume V(t) by geometry,

the energy E(t) from mechanical energy, (16)

the particle number Nit) by counting.

(2) We measure
(or calculate from computed average values for many states the equation of

state in a large system, homogeneously added from many such subsystems, so
large that all

observables have practically sharp values,

2Stot
"

2Stot (U, V, Ji), j17)

where J$tot stands for thermodynamic variables, such as entropy or temperature, which need

not have a direct mechanical interpretation. (3) All extensive observables (U, V, fit) of the

large system are reduced to the subsystem size by multiplying with N/fit (scaling according

to Fig. 8a). Since the fluctuation of the total system is small we obtain a sharp raster of

thermodynamic values, e.g. J$tot(U,V,M)scar of Figure 8b, of course for equilibrium mean

values. Varying externally U, or V, or
M

,

then J$ changes and we obtain a new horizontal

(constant) line for the scaled values. (4) Now the subsystem simulations (Eq. (16)) are pursued
with time. Each actual value E(t), V(t), and Nit) at time t is identified with the scaled raster

values of U, V, and fit from step (3). The actual off-average or off-equilibrium values of the

subsystem then are finally defined by this identification,

x it)
=

x (E(t), v it), Nit) if
x~~~ iu, v, w)~~~~,

~~.
i18)

The PLE can thus be expressed as follows: the fluctuating thermodynamic variables of a

subsystem as a function of the determined variables are defined by identification with
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the rescaled function thermodynamically measiJred for a large system. This principle permits
the temperature originally defined via an equivalence class construction without fluctuation

by the Zeroth La~v. to be included in the stock of fluctuating thermodynamic variables.

Here we need the inversion of the PLE, defining the controllable, external temperature or

temperature differences (e.g. AT
=

Tons T) from a functional subsystem situation dom-

inated e.g. by internal temperature fluctuation dT: dT -+ AT, and mobility fluctuation

d lg bl d lg bJ - A lg bl.

As an example for this map we shortly repeat the derivation of the WLF equation from
a

fluctuations [16,21,26j. From equation (9), dlguJa +dlguJr~Nj/~, and from dTa+dTr~N)~/~
temperature being an intensive variable we have

dT d lguJ
=

const (19)

where const means the independence from Na. Taking Na to be the most (sharper: the only)
important variable [4j, we have the following differential-geometric problem for a dT -+ A'T

map (where A'T is. for the moment, an arbitrary external temperature difference) what are

the integral curves in a lguJ-T diagram that are consistent with equation (19)? Under some

physically simple conditions the answer obtained is WLF: this is a set of hyperbolas with

common asymptotes lguJ
=

lg Q
=

lg Ha and T
=

T~
=

T~a (Vogel temperature for a),

(T Ta~) lg
~

=
(To Ta~ lg

~

,

(20)
UJ UJo

where (To, uJo) is a reference point. Equation (20) is the WLF equation. The usual WLF

constants are the distances of the reference point to the asymptotes in the lguJ-T diagram:
c(

=
lg(Q/uJo), cl

=
To Ta~.

We see that the PLE in thermokinetic terms can be called WLF scaling or, in its local

variant, temperature-time superposition, TTS,

dT/dlguJ
=

AT/A lguJ ~aiongwLf
=

IT Ta~) / lg(Q/uJ), (21)

where AT IA lg
uJ is here the slope along the WLF curve. Equation (21) is visualized in Figure 9.

Remark: the Gibbs distribution uses, by means of a large heat reservoir, a Zeroth Law tem-

perature that cannot fluctuate. This ensemble is too restricted for describing all the relevant

fluctuations of our CRR subsystem. Nevertheless it seems an interesting question if the tem-

perature obtained from the map is equal to the canonical system temperature from the Gibbs

distribution. A first answer is yes since the WLF equation is actually observed. A second check

would be the actual observation of the temperature dependence of the fluctuating free volume,

uf r~

x~/~, ix
see below Eq. (28), [16j), which relation was solely obtained from fluctuation.

This function shows exhausting of free volume at an exhausting temperature, TE, somewhere

near the middle between Vogel and onset temperature.

3.8. LINEAR ONSET FROM THE LANDAU EXPANSION. Let us now return to the Landau

expansion of the onset problem. We start from the statistical independence in the quasi
continuous description, equation (9): No

r~
id lguJo)~, where dlguJa is the mobility dispersion

of a CRR. From the first definition, equation (15), d
r~

No,
we have

Na
r~

d
r~

id lguJa)~. (22)

The PLE inversion map -+ transforms the internal o mobility dispersion into an external

mobility change, dlguJ -+ AlguJ. From the temperature-time superposition equation (21)
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ig m
T~

~

ig Q

Onset
6

exhausting

Fig. 9. Visualization of the WLF map from internal a fluctuation to external variables,
dlg~ -+ Alg~

or lg~, and dT -+ chT or T. The invariance condition (19) means that the area

of the hatched triangle is constant with respect to a shift along the two WLF hyperbolas; their dis-

tance characterizes the dispersion (broadness) of the guided dispersion
zone.

we transform the change of mobility to a real temperature change, AlguJ
r~

AT. This is

applied to the onset difference. AT
=

Tons T, and we have dons d
r~

(AT)~. From

equation (22) we obtain

Nj/~
r~

Tons T (23)

where we formally put Na,ons
=

0 in the quasi continuous description. Using now the Landau

equation (14) we obtain from the second equation (15), ~ r~
ACp with dons d

r~

(AT)~,

ACp
r~

T~n~ T (24)

with ACp,~n~
=

0. Equations (23, 24) describe the experimental indications of equation (2)

and Figure 2. Using the fluctuation of dielectric polarization instead of AS], we would also

obtain the third indication, he
r~

Tons T.

3.9. ESTIMATION oF THE PROPORTIONALITY CONSTANT. Now we shall estimate the pro-

portionality constant of equation (23). First ~v.e gauge equation (22). Let mons be the minimal

number of partial volumes of a CRR, I.e. mons > 2, and Ni the number of particles in a

reasonable partial volume. The product

Nf~~
=

monsNi (25)

(number of particles of a CRR needed for a minimal cooperatiuity) is invariant against the (

size of the Figure 6 partition. Let do lguJ be the dispersion of the a transition at the onset.

(For a Debye relaxation (Lorentz line for a relaxation at the onset), as compared with a lguJ
Gauss function at the half-width, we would have do lguJ e do logi~uJ

=
0.49 m

1/2.) Then,
gauging with these onset values, we obtain from equation (22)

(Na /monsNi)~/~
=

d lg uJ/do lg uJ. (26)

From the TTS equation (21) we obtain in the onset vicinity, after using the dlguJ -+ AlguJ,
dT -+ AT map from fluctuation to external variables,

Nj/~
=

monsNi)~/~~~((~°~~~ )~~ /~ (27)
0 g~J

ens oc
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Using a reduced temperature between onset and Vogel temperature,

x =
(T Ta~) /(Tons Ta~), 0 ~ x § 1, (28)

we obtain near the onset (I
x « 1)

Ni/~
=

-411 x) 129)

with the following reduced proportionality constant A

Putting
mons

= 2, Ni " I ii. e. a
minimal cooperativity

Nfi~ = 2 articles), = 3
(e.g.

a general onset of order
GHz for

Q
in the

onset) we would obtain the
estimation

A =
6/

m 10.

The experimental values tained in our copolymers
are = 4 + 0.5, dependently

from
composition although

Q
hanges

by
four

ecades. do lguJ m 2 + 0.5, Nf~~ m 1.5 +

monomeric units,

general estimation.

The main
ncertainty-

of estimation comes from Ni . the number of particles in

partial olume for he onset egion (remember ons
> 2). The

smallest perimental Na

values of igure 2 are of order I PnBMA unit, i.e. ~[ m 0.I nm~.

mechanical egrees of
reedom for this monomeric

unit is uch
arger than one. It is therefore

possible to have Ni < I.
This

would explain -4 < 10 for our
ith

moderate
deviation

from three. The A onstant
also

decreases for larger onset
JO lg~. ecause of the nonlocal aspects in the uasi scription, fi~ m I does
not

ean
to define cooperativity inside one monomeric unit.

with a complex main ransition such as lyisobutylene [27j.
The A values seem to be, from the arguments

specific,
in rticular when considered in one class.

Our
proach

is
only onsistent

for Na > N©~~, of course. This rresponds to a
distance

AT ~ 20
K to the onset. We have no redictions for No < N©~~ and

over to a T >
Tons

expansion, equation (14) for d ~ 0.

3.10. OF AT HE XHAUSTING AND THE GLASS
EMPERA-

TuRE. - Using a certain A value we can finally try to
estimate

the size of

temperature. Assume that the one A onstant
determines

this size in
the full

LF range

From
WLF,

i.e. (20,
19,

9), we

Nj/~ r~ (T -
Ta~)~~

r~ I/x.
(31)

Nj/~
=

Ail x)/x. (32)

Let be the exhausting temperature TE [16j in the middle between Ta~ and Tons, I.e. xE =
1/2.

Then we obtain

Na(TE)
"

A~. (33)

The A constant is between 3 and 15 for fourteen glass-forming substances [27j. This means

that Na(TE) is bet~v.een 10 and 225 molecules or monomeric units. Below TE we expect larger
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No values than calculated from equation (32) because additional sources of free volume must

be opened.
Let us now assume that we have no exhausting between Tons and the glass temperature

Tg, I.e. that we have only one piece of WLF equation between Tons and Tg. T
= Tg means

x = xg = (Tg Ta~)/ (Tons Ta~). Introduce a fragility measure by

F
=

Tg/(Tg Ta~) (34)

(observe: for one WLF region we have F
=

ml lg( )
= m

/c( with m e d lg uJj~ /d(Tg IT) ~T=T~
and c[ the first WLF constant with To

= Tg as reference). Typical values are F
=

2 4 for

strong and F
=

5 7 for fragile [28] liquids. We obtain from equation (32)

Nj/~(Tg)=A~~~ ~=AF~~~ ~
(35)

Tg Ta~ Tg

If the ratio (Tons Tg)/Tg
=

const, e.g. const m 0.2, then

Nj/~(Tg)
m AF 0.2. (36)

The size of this cooperativity is larger for higher fragility, as observed [10]. A typical value

obtained for A
=

10 and F
=

5 is Nj/~(Tg)
m 10, I.e.

Na(Tg) m 100. (37)

Assuming 10 molecules per nm~
we obtain ~(Tg) m 10 nm~, I.e. (a m 2 nm, also higher for

higher fragilities.
For the series of our copolymers the ratio (Tons Tg) /Tg is not constant, and No (Tg) strongly

increases with the styrene content [20j.

4. Discussion and Conclusion

A phenomenological theory is obtained in this paper that describes the cooperativity No (as
indirectly obtained from Eq. (I) in the temperature range between about 20 K below the onset

and the exhausting or glass temperature. The onset itself is probably covered by a crossover

to a weaker cooperati,~ity for a high-temperature a process above Tons. The onset can only be

extrapolated from the experiments with an uncertainty of AT~ m 10 K by means of the linear

relations equation (2).
To attack the glass-transition onset problem a rather abstract phenomenological concept of

natural functional subsystems [21j is used. The abstractness corresponds to several widespread
"canonical" properties of the experimental findings for the (structural) glass transition. E.g.

the selection of the main variables for our concept: temperature (T) and mobility (lguJ), ex-

actly corresponds to the original WLF generalization [29j: "This [WLF] treatment is quite
independent of the nature of the relaxation spectrum and the time dependence of mechanical

and electrical properties [we would add calorimetric ones]; it appears to be equally applicable

to narrow and broad relaxation distributions'". Our concept can also explain other canonical

properties of the dynamic glass transition: iVLF scaling itself [26], Kohlrausch (KWW) relax-

ation function [16], and exhausting of a fluctuating free volume [16] describing the deviations

from one total WLF equation. The concept also leads to an interpretation of the Vogel temper-

ature as the roughness of Goldstein's relevant energy landscape [21]. The WLF limit frequency
lg Q can be interpreted [19] as a "kinetic roughness" of this landscape, expressed by lgo', the

logarithm of the chance frequency (+++) in the Figure 3 molecular randomness.
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Conditions for cooperativity are analyzed in a situation that is dominated by fluctuations

and statistical independence (within and between the CRR'S). This dominance is originated
by the small cooperativity scale and by the concept of kinetic molecular randomness (Fig. 3)

assumed to be acting for molecular glass transitions below the gigahertz range.

If near the onset the mean CRR temperature fluctuation is larger than the Tons uncer-

tainty, dT > AT~, we have a problem: this dT characterizes the fluctuating thermokinetic

nanoheterogeneity in the glass-forming liquid [16j and does not easily allow to define a sharp
(I.e. AT~ < dT) onset temperature. Such an onset temperature rather demands a large scale

of something to suppress local fluctuations of Tons. In case of phase transitions the sharp crit-

ical temperature follows from large diverging correlation lengths, and a sharp first-order phase

transition le. g. melting) is connected with large phase domains.

A resolution of this sharpness problem is formally obtained by the construction of a condi-

tionality raster that can define a large raster domain size without a large characteristic length
of the CRR'S inside the domains. The extrapolated sharp onset is identified with the tempera-

ture where the conditionality raster domains land not the CRR'S) become large (Fig. 7). The

sharpness of the onset is then obtained analytically from a Landau order parameter expan-

sion adapted to the large fluctuations resting on the smallness of characteristic length for the

CRR'S.

The objection to apply phenomenological concepts down to very small CRR'S with only a few

particles is tried to be settled by arguments for a quasi continuous description of Section 3.3 [31].

We obtain a theory that is consistent for Na
~$

Nf~~, I.e. beyond about 20 K below the

onset, and describes the linear experimental equation (2) indications. The immediate Tons

vicinity is delegated to a crossover to a supposedly small cooperativity of the a process for

T > Tons-

As a by-product, our new approach opens, for the first time, a way to estimate absolute

values of the size of glass transition cooperativity theoretically. Supposing that it is the onset

parameters that also determine the characteristic length far below the onset, No at Tg is

obtained of order 100 molecules (or monomeric units), and the characteristic length is of order

2 nanometers. These estimations correspond to the experimental values obtained from the

calorimetric formula (I).

The cause for the large Q/uJons ratio, lg(Q/uJons) m 4 for our copolymers, is the necessity
of molecular kinetic randomness for functionating of molecular cooperativity with minimal

coupling (Sects. 3.3 and 3A).

We speculate about the following scenario for the dynamic glass transition. According to a

conjecture of Stickel et al. [30] the a dispersion zone consists of two (or perhaps more) more or

less different WLF pieces with narrow crossovers. Consider the WLF piece where the coopera-

tivity starts with a small number of entities, N©~~. The cooperativity onset (Tons, lg uJons) is at

the upper end, but far below the extrapolated WLF frequency Q. The cooperativity increases

with falling temperatures according to equation (32), down to the exhausting temperature TE
far above the extrapolated iiogel temperature (Fig. 9). At TE we expect a crossover to another

WLF (or Arrhenius) process with different lgo and Ta~ parameters, probably a longer [21j
glass transition using new sources of free volume from mechanisms neighbored to the original
dynamic glass transition. The validity of the original WLF equation is thus restricted to the

piece interval (Tons, lg uJons) (TE, lguJE), with lg uJons < lg Q and TE > Ta~. The lg Q and Ta~

WLF constants must therefore be interpreted as actual properties of the WLF piece considered,
and not as asymptotes that could in principle be accessible by the cooperative process.
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