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PACS.63.20.Pw Localized modes

Abstract. We present structures, based on rods, that exhibit phonon band gaps. Structure8

based on rod8 made out of segments of different materials have very large gaps or multiple gaps.
For homogeneous cylinders smaller gaps exist. Possible applications are discu8sed.

1. Introduction

Recent evidence has shown the existence of periodic materials exhibiting photonic gaps [1-4,16],
namely frequency ranges where electromagnetic waves can not propagate in any direction.

These gaps have been shown in the above references to lead to several interesting applications.
They have also led to the investigation of phonon bands in periodic structures [6-8].

The existence of phonon band gaps is not a priori guaranteed, since the details of the band

structure depend on the nature of the wave equation under study.
One of the important differences between the cases studied concerns the polarization of

the wave. Sound waves are described by a vector field which can be both longitudinal and

transverse. These equations differ from those for scalar waves [9j and transverse electromagnetic

waves as described by Maxwell's equations [5j. Sound waves thus have three branches in each

band, combinations of two transverse and one longitudinal mode, rather than one branch for

the scalar and two for the transverse electromagnetic waves. One branch may thus fill the gaps

left open by the other branches.

Kushwaha et al. [5, 6j establish the existence of phonon gaps for sound propagating in two

dimensions in a structure that consists of cylinders perpendicular to the direction of propaga-

tion. These cylinders are embedded in a different substance. While this study may have some

technological implications, it is easier to find such gaps in two dimensions than in three dimen-

sions. The structure studied in this reference does not possess gaps for sound propagating in

three dimensions.
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Economou et al. [7] as well as Kafesaki et al. [8] have obtained structures that exhibit full

band gaps in three dimensions. These structures consist of metallic spheres or cubes embedded

in plastic. The reason these authors give for the existence of their band gaps is analogous to

the tight binding approximation for electron bands. The spheres act as resonators which are

weakly coupled by the background material. This gives rise to very flat non-crossing bands

producing gaps over the entire Brillouin zone. They also note that if this mechanism prevails
it is much more difficult to find a structure based on rods that would produce gaps and indeed

they find none. The reason for this is that sound propagation along the rods tends to delocalize

the resonances thus closing the gaps.
Based on our previous work [4] we consider rods made up of segments of different materials.

This inhibits the propagation along the rods at certain frequencies and produces gaps. In fact

we obtain even larger gaps than in previous studies, as well as multiple wide gap structures.

In addition
we

show that gaps exist even in cases where the localized resonance mechanism

does not apply. Structures with homogeneous rods can also give rise to gaps in disagreement
with the resonance mechanism.

In Section 2 we discuss the physics of sound and electromagnetic wave propagation in periodic
media in analogy with electron band theory. We draw upon analogies with the two extreme

situations in electron theory: tight binding on one hand and nearly free electrons on the other.

The picture that emerges helps in understanding the physics of band gaps.
To calculate the allowed frequencies, we follow the standard procedure and solve the wave

equations in a periodic structure by expanding it in a Fourier series. The necessary formalism

is presented in Section 3. One of the difficulties in using this method is controlling the error

introduced by cutting off high Fourier components in the expansion. We estimate these errors

by studying a periodic crystal made of material with vanishing shear modulus, essentially a

periodic liquid. For such materials the long wave length limit of sound velocity can be calculated

directly. Comparing this calculation to the one obtained by using the Fourier method allows

us to estimate the errors introduced by the cutoff in k.

In Section 4 we discuss the structures based on segmented rods, these are rods that are

made of sections of different materials. To hinder sound propagation along the rod we chose

alternating sections made of materials with a large acoustic impedance mismatch, such as

heavy metal and light plastic. Such rods can then be inserted in a gas or liquid forming a

periodic structure. The large impedance mismatch between the rods and the background gas
tends to increase the size and number of the gaps.

In Section 5 we study rods made from a single material. To obtain band gaps we were

forced to break the high symmetry usually considered, and use an orthorhombic Pmmm [10]
structure as well as materials with unrealistic elastic properties. This section also presents

the convergence test resulting from the low frequency sound velocity. While the structures

discussed in this section can not be manufactured, we feel that they are important in clarifying
the mechanism that leads to band gaps.

In Section 6 we conclude by discussing possible physical applications of materials that ex-

hibit sound band gaps. These include sound filters, mirrors, materials where the direction

of propagation depends on the frequency and possible applications to surface acoustic wave

devices.

2. A Physical Description

Different waves can propagate in periodic media. One may consider scalar waves, electron

waves that are described by the Schroedinger equation in a periodic electromagnetic field,
electromagnetic waves and sound waves. The existence of bands follows directly from
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the periodicity of the medium and is thus a common feature for all types of waves. The

detailed properties of the bands do however depend on the nature of the equations. The num-

ber of components describing the propagating field plays a crucial role in determining the gap
structure and warrants further discussion.

The task of searching for periodic structures that exhibit band gaps is more difficult the larger
the number of components. One reason for this is technical, for a field with n components one

has to diagonalize an
(RN x RN) matrix where N is the number of Fourier components included

in the calculation. This implies that memory requirements increase as
n2 and time requirements

increase as
n3. The second difficulty is essential, when dealing with an n component field each

band has n branches. For phonons there are three branches, each a combination of longitudinal
and transverse waves. Gaps that are left open by one branch may be closed by other branches

and finding a structure with band gaps becomes more difficult.

Of the many wave solutions in periodic media the best studied one is that describing electron

bands in solids. We may thus borrow some of the intuition developed in that field. In this

paper we consider only linear elastic waves. In analogy, nonlinearities due to electron-electron

and electron-phonon interactions are neglected in our discussion.

When dealing with electrons nobody is surprised that insulators exist, and these imply the

existence of band gaps. Why then was it surprising when photonic band gaps were discovered?

The answer lies in using a different intuitive picture for photon and phonon bands than the

one used for electrons.

Two extreme regimes of electron bands are easy to understand physically. The tight binding
situation on one hand, and the nearly free electrons on the other. In tight binding each atom

separately has bound states. Bound states from different atoms are weakly coupled when the

atoms are brought together. This results in narrow bands separated by wide gaps. Under these

conditions it is not at all surprising that the wide gaps that exist for each value of momentum k

can overlap and produce complete band gaps. On the other hand in the nearly free picture, the

potential that splits the bands is weak. The bands closely resemble free electron propagation
with only narrow k-dependent gaps separating the bands at the edges. This makes it unlikely
that gaps exist for all k in more than one dimension.

The structures used in studying photon and phonon band gaps are composed of transparent
materials. Since waves are free to propagate in each material separately one naturally tended to

think in terms of a nearly free propagation picture and not in terms of a tight binding picture,
and the existence of band gaps was surprising. The insight gained in [8] is that spheres of

a heavy metal have their own sound resonances, and that the coupling between such spheres
through a light plastic material is indeed relatively weak, so that a tight binding picture is

appropriate. The above authors support their argument by showing that one can explain the

locations of gaps by this mechanism. They also note that when the heavy spheres touch band

gaps disappear, because the coupling between spheres is no longer weak.

Applying the intuition based on tight binding to structures made out of rods, one may under-

stand that sound can always propagate along the rods, therefore no localized resonances exist

and band gaps are unlikely [8]. Indeed structures that contain rods and lead to complete band

gaps were not found [8]. To overcome this difficulty we have introduced segmented rods [4].
These are rods made out of segments of different materials. By appropriately combining heavy
metal segments alternating with light plastic segments we have effectively created weakly cou-

pled sound resonators and propagation of sound along the rod is inhibited at some frequencies.
In addition to being easier to produce, the rod geometry allows for the insertion of the rod

into gases or liquids. These less dense materials that have a vanishing shear modulus weaken

the coupling between the heavy metal resonators, and produce larger gaps and multiple gaps
depending on the exact parameters used.
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The tight binding intuition discussed above helps us to understand some structures that

produce band gaps. It is, however, not the only possible mechanism that can result in complete
~

band gaps. To show this we discuss a structure based on homogeneous rods that exhibits

complete band gaps. Obviously the tight binding intuition does not apply in this case. Indeed

finding band gaps in such structures is more difficult and we had to use unrealistic parameters
in this case. The mechanism that produces gaps in this case is more complicated than tight
binding.

One more subject to be discussed is the choice of materials. Since
we want to minimize the

energy flow from one material to the next, it would be good to have a large acoustic impedance
mismatch. Acoustic impedances are given by:

Z,
=

/% (I)

Zt
=

li

for longitudinal and transverse waves respectively. This is why we have chosen tungsten and

polyethylene as the two materials in the graphs we exhibit.

3. Formalism

In order to calculate the phonon band structure we study the solutions of elastic waves in

periodic media. As described by Landau and Lifshitz ill]
we write the equations of motion for

an elastic medium as:

PlLi "
8a~k/8Zk

~ °~k,k ~~~

where ~i is the displacement, and a~k,k is the internal stress tensor. A comma denotes a

derivative and repeated indices are summed over.

The stress strain relations can be written as

where ~ik %
) (~i,k + uk,i). Thus

ased on
the analysis of Turbe [12] we expand the solutions of the elastic equations of

in a eriodic
in terms of Bloch

functions. The isplacement
vector ~i can

written as ~i = ~i(k)e~"~
xpanding

quantities
such

as the displacement and the

ui =
~jufe~~+~l'~ (5)

G

where we have omitted the dependence of uf
on k and

P(~)
"

~ PGe~~ ~ (6)

G

with similar expressions for ~ and /J. Thus

u~i =

~ (US'(k + G')i +
uf'(k

+ G')jj e~l~+~'"~ Ii)
2

G'
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Substituting equations (4), (5) and (6) into equation (2) gives rise to the general equations of

motion

uJ~ ~j pG-G,,u$"
=

~j( (~G-G,
~

llG-G<
)ul'(k

+ G'), (k + G)~

~,, ~,
3

+~tG-G< (US'(k + G')i (k + G)i +
uf'(k

+ G')~(k + G)ij ). (8)

As a test for convergence we also consider a simplified system with vanishing shear modulus,

/J =
0. This then gives for equation ii)

uJ~ ~j pG-G<,uf"
=

~j ~G-G<uf'(k + G')i (k + G)~. (9)

G« G,

In general for each value of k, there exist three polarization modes, one longitudinal and

two transverse. By setting /J =
0 the transverse modes have uJ =

0 and decouple, only
the longitudinal modes are of interest. In k space the identification of longitudinal modes is

nontrivial. One can, in principal, solve equation (8), and obtain for each k three eigenvalues
of

uJ.
The longitudinal modes are identified by having non-zero frequency. This still implies

solving a 3N x 3N eigenvalue problem, where N is the number of plane waves. To further

simplify this calculation, we consider a constant density where the longitudinal mode can be

identified analytically. Setting pG =
podG,o gives

uJ~pou$
=

~j ~G-G<ul'(k + G')i (k + G)1. (10)

~,

If we then multiply both sides of equation (9) by (k + G)i Ii k + G( and define the longitudinal
mode along (k + G) as

~G
~

~G
lk + G)i

j~~~
~ jk + Gj

we have

UJ~Pov~
=

~j
t~G-G< Ilk + G') Ilk + G) lU~' l12)

This definition of v~ makes equation (12) an N x N Hermitean eigenvalue problem. Equation

(12) is used in this paper to study the effects of the cutoff in k.

4. Segmented Rod Structures

The first structure we discuss is based on segmented rods. We use circular rods of radius r.

In a cubic unit cell of size a, sections of length of one material are separated by sections of

length a made out of a second material. Without loss of generality we may put < a/2.

These rods are arranged to resemble a bcc structure. We take all the rods in the
z

direction.

Centers of the rods are located in the (z,y) plane at the positions (0, 0) (a, 0) (0,a) (a,a)
and (a/2, a/2). The cylinders are arranged so that the first four have the centres of the short

sections on the z =
0 plane while the fifth one has the centre of the short section on the

z =
a/2

plane, as shown in Figure I. Thus the centres of the short segment are located on a bcc lattice.
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o

1

Fig. I. Unit cell for segmented rods.

Once we have picked the materials out of which we make the rods only two parameters may

be varied: the radius
r

and the length of the short segment I. The band structure will depend

only on these parameters.

We have used up to 887 k values to test convergence. In practice about 400 k values were

sufficient to obtain an accuracy of several percent. The high symmetry of this structure gives

rise to a relatively rapid convergence. In the cases with lower symmetry that we discuss in the

next section the convergence problem is much more severe.

To illustrate typical bands and gaps that can obtained using this structure we present results

for two sets of parameters. The short segments of the rods are made out of tungsten and the

long segments are polyethylene. The space between cylinders is filled with air.

Figure 2 shows several wide gaps. In Figure 3 we have increased the radius of the cylinder.
We chose a different way to present the results by showing the density of states as a function

of frequency. One gap is present in this plot, it is easily recognized by the vanishing of the

density of states in the gap.

The above figures clearly show that staggered rods in the configuration that we used are

efficient in producing sound gaps.

5. Homogeneous Rods

The difficulty in producing band gaps with uniform rods, was discussed in Section 2. Indeed

a
straightforward generalization of Figure I to continuous rods does not yield band gaps.

Geometries that were successful in producing gaps for electromagnetic waves [4] also failed to

produced phonon gaps. We also tried the symmetries based on a rod arrangement as described

in the paper by Ho et al. [2]. This geometry, which produced several large photon band gaps,
did not give rise to gaps in the phonon case.
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Fig. 2. Band structure for segmented tungsten-polyethylene rods. The parameters are r =
0.18,

1= 0.2.

The geometry that did give rise to a small gap was a system of cylinders arranged as follows.

A unit cell of dimensions a x a x c contained cylinders of radius r with

I) cylinders in the
z direction centered at (z, y)

=
(0, 0), (0, a), (a, 0), (a, a);

2) cylinders in the y direction centered at (z, z)
=

(0, 0), (0, c), (a, 0), (a, c);
3) one cylinder in the z direction centered at (y, z)

=
(a/2, c/2).

Figure 4 shows the unit cell in detail.

In order to produce gaps we had to use several extra features:

I) break the cubic symmetry by putting a
# c;

2) introduce different elastic moduli and densities for cylinders in different directions;
3) use unrealistic values for elastic moduli and densities.

The symmetry of our crystal was thus reduced to a Pmmm [10] symmetry. The gaps that were

obtained were still quite narrow.

The calculation using cylinders of constant bulk modulus converged rather slowly. This is

due to the low symmetry of the structure we discuss. The slow convergence when combined

with the narrow size of the gap that requires high accuracy, gave rise to computing difficulties.

Even with 2 700 plane waves no reliable results could be obtained.
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Fig. 3. Density of states for segmented tungsten-polyethylene rods. The parameters are r =
0.26,

=
0.2.

Since we were not trying to construct a realistic material but rather to make a physical point

that band gaps can be produced in structures with homogeneous rods we improved convergence

by using a Gaussian distribution for the bulk modulus [13] in each cylinder

~2~~2
~(z, y)

=
~oe~fi (13)

with similar distributions for the shear modulus and the density.

Such a distribution gives rise to good convergence and is sufficient to demonstrate the ex-

istence of phonon band gaps. In practice on the order of 900 planes waves were sufficient to

produce three figure accuracy in the bands we studied.

As a test for convergence we calculated the zero frequency limit of the sound velocity.
For a general non-homogeneous medium with vanishing shear modulus and constant density,



N°3 PHONON BAND GAPS 517

o

o

o

o

o. 5

1

Fig. 4. Unit cell for homogeneous rods. c =
1.2,

a =
1.

the zero frequency sound velocity is isotropic and is given by ~i
=

fi, where

~ lt(Zl'

Using 953 plane waves we obtained a Vo that was isotropic to within 10~~ and agreed with

equation (14) to within 5 x
10~3

The /J =
0 case discussed so far and its low energy limit were useful as a check on the

numerical accuracy and the convergence ofthe plane wave expansion. We consider the accuracy
obtained above as sufficient. This enables us to proceed and study the full problem including

shear for continuous rods. To study this case we solve equation (8).
Figure 5 shows the results obtained for a crystal with structure as in Figure 4 including both

shear and bulk moduli. We observe that gaps can be obtained.

6. Possible Applications

We have shown that structures based on rods can produce complete gaps in three-dimensional

systems. With staggered rods, very large and/or multiple gaps can exist, depending on the

values of the parameters that are used. It is much harder to produce complete band gaps for

continuous rods. The evidence we
produced had to rely on unrealistic values of the elastic

parameters. The continuous rods example served to show that gaps exist also in cases where
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Fig. 5. Band structure for continuous rods. The bulk moduli for the three types of cylinders are:

40, 40, 1. The shear moduli are: I, 1, 40. The densities are: 400, 400, 1. r =
0.18. c =

1.2, a =
I.

Units are arbitrary.

the tight binding analogy does not hold. The exact gap mechanism in this case is more

complicated.

The study of composites where phonon gaps exist is not a mere exercise in wave propagation.
Phonon band gaps can lead to several applications. The most obvious application is that of

sound filters and mirrors. Sound with a frequency inside the gap does not propagate in the

material and is thus reflected from the surface. For frequencies inside the gap we have therefore

both insulators and ideal mirrors.

A less obvious application concerns frequencies just at the edges of the gaps. It is usually
the case that the lowest propagating frequency above the gap is allowed for one value of k.

Sound at that frequency can propagate therefore only in the direction given by that k and the

crystal acts as a wave guide. A similar situation may exist at the highest allowed frequency
below the gap, usually for a different value of k. The crystal can thus act as a beam splitter
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and a frequency dependent wave guide, directing different frequencies in different directions.

Directional sound propagation in systems with band gaps is due to a different mechanism

than in the case where the directionality is due to anisotropy of the elastic constants [14]. In

particular the latter systems do not give rise to frequency dependent directionality.
Other applications may exist in the field of surface acoustic waves. Surface acoustic wave

(SAW) devices are useful because the short wave length of sound allows for more compact
devices than electromagnetic waves of the same frequency. SAW devices make use of the fact

that surface waves and bulk waves have different dispersion relations. Thus by creating a signal
with well defined frequency and wave length we may constrain it to propagate on the surface of

a solid. Still, when surface waves encounter an obstacle on the surface they may scatter into the

bulk and part of the energy may be lost. When the system is such that certain frequencies are

inside a band gap and can not propagate in the bulk signals at these frequencies are restricted

to propagate on the surface. There is no need to control both wave length and frequency,
and energy in the signal can not be lost into the bulk. No detailed study of surface modes in

systems with phonon gaps has been made so far, the studies that exist are only for the case

of photons [15]. Additional applications may result when periodic disturbances are placed on

the surface of SAW devices so that the surface band gaps can act as new means for signal
processing. As outlined above, filters, mirrors and wave guide that depend on frequency may
be obtained. These problems are now under study and the results will be reported elsewhere.
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