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PACS.05.30.-d Quantum statistical mechanics

Abstract. We study in more details the properties of the generalized Beth Uhlenbeck for-

mula obtained in a preceding article. This formula leads to a simple integral expression of the

grand potential of any dilute system, where the interaction potential appears only through the

matrix elements of the second order Ursell operator U2. Our results remain valid for significant
degree of degeneracy of the gas, but not when Bose Einstein (or BCS) condensation is reached,

or even too close to this transition point. We apply them to the study of the thermodynamic
properties of degenerate quantum gases: equation of state, magnetic susceptibility, effects of

exchange between bound states and free particles, etc. We compare our predictions to those

obtained within other approaches, especially the "pseudo potential" approximation, where the

real potential is replaced by a potential with zero range (Dirac delta function ). This comparison
is conveniently made in terms of a temperature dependent quantity, the "Ursell length", which

we define in the text. This length plays a role which is analogous to the scattering length for

pseudopotentials, but it is temperature dependent and may include more physical effects than

just binary collision effects; for instance, for fermions at very low temperatures, it may change
sign or increase almost exponentially. As an illustration, numerical results for quantum hard

spheres are given.

1. Introduction

The use of quantum cluster expansions was introduced in 1938 by Kahn and Uhlenbeck iii, who

generalized to quantum statistical mechanics the Ursell functions Uq defined by this author

in 1927 [2]. The major virtue of cluster expansions is that they provide directly density
expansions for systems where the interaction potential is not a necessarily small perturbation;

in fact, it may even diverge at short relative distances (hard cores for instance) while usual

perturbations theories generate power series in the interaction potential, where each term

becomes infinite for hard core potentials. Starting from a quantum cluster analysis, the Beth

Uhlenbeck formula [3-5j gives an explicit expression of the first terms of a fugacity expansion
(or virial expansion) for the grand potential of a quantum gas. The expression is valid for any

potential, the latter being characterized by its phase shifts in a completely general way.
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One should nevertheless keep in mind that the words "density expansion" have a double

meaning in this context. In a dilute gas, there are actually two dimensionless parameters

which characterize "diluteness": the product n~/3b, where n is the number density of the gas

and b is a length characterizing the potential range (diameter of hard cores for instance), and

the product n~/31T, where lT is the quantum thermal wavelength of the particles. The former

parameter is small if, classically, a snapshot of the system shows particles among which almost

all are moving freely, while the few that interact are engaged in binary collisions only; the

latter, purely quantum in nature, is sometimes called the quantum degeneracy parameter, and

remains small provided there is little overlap of the quantum wave packets. The validity of

the Beth Uhlenbeck formula, as all fugacity expansions, therefore requires two independent

parameters to be small.

In a previous article [6j, we discuss one method which conveniently treats the two parame-

ters separately, and allows one to include the effects of statistics by exact summations while

limiting the expansion to the lowest orders in n~/3b. The technique is based on the use of

Ursell operators Uq generalizing the Ursell functions (for a system of distinguishable particles),
coupled with the exact calculation of the effect of exchange cycles Cl of arbitrary length I; for

short we call it the technique of U-C diagrams. The result is another expression of the grand
potential, which is no longer a fugacity expansion since it includes a summation over all sizes of

exchange cycles so that statistical effects are included to all orders. Truncating the expansion

to its first terms (lowest q values and/or low order in a given Uq) gives results which remain

valid for "dilute degenerate systems" iii, that is for all systems where the potential range is

sufficiently small, but where the degeneracy of the system may become significant (~). In this

article we will start from an expression of the grand potential which is limited to the first order

correction in the second Ursell operator U2, obtained in [6] as a trace over two particles of a

product of operators. We reduce the trace to an explicit integral where the effects of the inter-

actions are contained in a simple matrix element. The range of validity of our result is actually
similar to that of the calculations based on the use of pseudopotentials [8], another approach
where the final results automatically include the summation of an infinite perturbation series

in terms of the initial potential. The two methods are comparable, but we think that the U-C

diagram method provides more general and more precise results, basically because it includes

the short range correlations between the particles, and because all scattering channels with

given angular momentum as well as their exact energy dependence are included instead of only

one constant scattering length (2). Another point of comparison is the class of methods, for

instance discussed in [10] or ill], where a
renormalization procedure is used in order to obtain

expansions in terms of the scattering T matrix instead of the interaction potential itself Vi
in the calculations discussed in the present article, no renormalization of this kind is needed

since, roughly speaking, it is already included in the Uq's, which are the building blocks of our

method. Nevertheless, as we will see, our method is no longer valid when the gaseous system
is brought too close to a phase transition (superfluid transition of single particles for bosons,
of pairs for fermions).

We begin this article with a study of the expression of the grand potential, and show how it

can be expressed as an expression that is similar to the well known Beth Uhlenbeck formula;
actually it can be obtained from it by two simple substitutions. We then discuss the physics
contained in this general result, as well as the changes introduced by the possible occurrence

(~) For bosons. Bose Einstein condensation is excluded since it requires a summation over an infinite

number of interaction terms, a question which we will study in a forthcoming article.

(~) ~his does not mean that one could not improve the theory of pseudopotentials to include all phase

shifts, since a general expression of the pseudopotential is given by Huang in [9], but to our knowledge
this has not been done explicitly.
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of bound states. In particular we consider the effects of exchange between bound and unbound

particles, an effect which is not contained in the usual Beth Uhlenbeck formalism; this kind

of exchange may play some role in clouds of laser cooled alkali atoms [12-14] for which the

potential is sufficiently attractive to sustain a large number of bound states. In Section 3 we

apply these results to spin 1/2 particles. Finally, in Section 4, we discuss the appropriate
quantities in terms of which one should describe the effects of the potential on the physical
properties of the system, and introduce for this purpose the so called "Ursell length", which

plays a role similar to the scattering length
a. In the theoretical study of quantum gases, and

as already mentioned, one frequbntly used method is to replace the real interaction potential
between the particles by a "pseudopotential" that has no range la Dirac delta function of the

space variables), and to treat this potential to first perturbation order; in other words one

ignores the distortion of the many-body wave functions at short relative distances and the

associated effects of the inter particle correlations. The justification of this approach is based

on the physical expectation that, for a dilute gas, all the effects of the potential should be

contained in the binary collision phase shifts associated with the potential, which can easily
be reproduced to first order by a pseudopotential; meanwhile all detailed information on the

behavior of the wave function at short relative distances can safely be discarded. Our formalism

allows one to explicitly distinguish between short range effects ("in potential effects") and

asymptotic effects lout of the potential), which naturally leads to a discussion of this ansatz.

The interactions appear in terms of a matrix element of an Ursell operator, which depends on

the potential but does not reduce to it; for fermions at low temperatures, the matrix elements

contain physical effects which are not included in usual treatments of normal Fermi gases.

2. The Grand Potential

2.1. NOTATION. The basic object in terms of which most physical quantities will be written

in this article is the second Ursell operator U2> defined by:

~/ ji ~) ~-flH2(1,2) ~-fl[Hi(I)+Hi(2)( ji)
2

where Hill) and Hi(2)
are single particle Hamiltonians, containing the kinetic energy of the

particle and, if necessary, its coupling to an external potential, and where:

H2(1, 2)
=

Hill) + Hi (2) + Vnt(1, 2) (2)

is the Hamiltonian of two particles, including the mutual interaction potential l~nt Ii, 2). De-

pending of the context, it may be more convenient to use the symmetrized operator Ul'~

Ul'~(1, 2)
=

U2 Ii, 2) ~~ ~ ~~~~
=

~~ ~ ~~~~
U2 Ii, 2) (3)

where Pex is the exchange operator between particles I and 2 and
J~

has the value +I for

bosons, -I for fermions. Moreover, the "interaction representation version" of either U2 and

Ul'~, obtained by multiplying these operators by efl~il~~efl~i(~), will also be useful; we denote

them with an additional bar over the operator, for instance:

02(1,2)
=

efl~~l~)efl~~l~~e~~~21~'~~ -1. (4)

This operator and its symmetrized version 01'~ Ii 2) act only in the space of relative motion

of the two particles; they have no action at all on the variables of the center of mass.
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Finally, if the particles are not submitted to an external potential (Hi contains only the

kinetic energy), it is convenient to introduce the momentum PG of the center of mass of the

two particles as well as the Harniltonian of the relative motion:

p2
lfre>

"
+ (nt(R) (5)

Rl

(m is the mass of the particles) then, U2 Ii, 2) can be written in the form of a product:

U2(1, 2)
=

e~fll~G~~/~~
x [U2(1, 2)j~~j (6)

with:

[U2(1, 2)j~~j = (e~fl~re' e~fl~~/~j Ii)

2.2. APPROXIMATE EXPRESSION OF THE THERMODYNAMIC POTENTIAL. We now start

from relation (46) of [6j which gives the grand potential (multiplied by -fl) in the form:

Log Z
=

[Log Zj~~ + [Log Z]~~~ (8)

where [Log Z];~ is the well known value of Log Z for the ideal gas:

[Log Zj~~ = -J~ Tr Log [I J~ze~fl~i

" 'J Tr lL°8 Ii + 'JR1 (9)

and where the correction introduced by the interactions is:

lL°~ zlint
"

~~ ~il,2 ul'~ Ii> 2) Ii + ~fli)I Ii + ~f12)1) (lo)

In these equations,

z =

efl" Ill)

is the fugacity, fl
=

I/kBT the inverse temperature and /J the chemical potential, while f is

defined as the operator:

~
l

(z~~~Hi
~~~~

Similar results can be found in the work of Lee and Yang, see formulas (II.8) and (II.23) of

reference [15]. As mentioned in the introduction, equation (10) gives the correction introduced
by the interactions to the lowest order approximation in U21 see [6] for a discussion of the

higher order corrections. Using the definition of 01'~

pl'~ji
2)

=
eflHili)eflHil2)~s,Aj~ ~~

l + ~Pex
j~pHiji)~pHij2)~-flH~ji,2)

j j~~)
' ~ ' 2

as well as the relation ze~fl~i ii + J~f] =
f, we can rewrite (10) in the form:

iLog zj~~~ m
~yi,~ jujAji, 2) iii) jj2)j j14j

which expresses the correction as the average of the operator 0~'~(1,2)
over unperturbed

distributions functions f's.
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2.3. SPINLESS PARTICLES AND ROTATIONAL INVARIANCE. For spinless particles, by mak-

ing the trace in (14) explicit, we obtain:

j2 v
[Log Z]~~~ =

~

~

d~ki d~k2 f(ki)f(k2 al'~ ((ki k2 () Ii 5
(2~)

where V is the volume of the system, lT the thermal wavelength:

~~
~@

~~~~

and where al'~(k) is defined by:

Here:

~
~~

2

~~
~~~~

is the appropriate variable since 0~'~(1,2) does not have any action in the space of states

associated to the center of mass of the two particles; al'~(k) is a microscopic length, indepen-
dent of V for large systems (~), which we will call the "Ursell length" see Section 4.I for a

more detailed discussion and a justification of the numerical factors that we have introduced.

The iorrection written in (15) is analogous to a first order energy correction due to binary
interactions, while al'~(k) plays the role of some effective interaction (within a numerical

factor).
For instance, if we assume that we treat to first order in perturbation a pseudopotential (~)

of the form:

ve~l~)
"

~(~~d(~)
l19)

where
a is a scattering length (or the diameter of hard cores),

we easily obtain:

(klUl'~ lkl ~ ~( a
Ii + 'Jl 12°)

so that Ii 7) shows that, in this approximation, the Ursell length becomes independent of the

wave number k. For bosons, the correction to the grand potential then becomes:

[Log Zj~~~ cf -2a£g~/2(z) (21)
T

(~) This is true since 0~'~(1, 2) has a microscopic range and since the factor V in ii?) makes up for

the normalization factor of the plane waves that occur in the matrix element (note that all plane wave

kets in our formulas are normalized in a finite volume; hence the absence of Dirac delta functions of

momenta differences in 11?).
(~) The most usual procedure is to treat this potential to first order only, since a naive treatment of

higher orders may introduce inconsistencies. For instance, in three dimensions, it is possible to show

that all phase shifts, and therefore the collision cross section, of a zero range potential such as (19),

are exactly zero; on the other hand, they do not vanish to first order (in other words, the Born series-

for potentials containing a delta function is not convergeld). For the same reason, for a potential such

as
(19), the Ursell operator U2 vanishes exactly, while it does not if the potential is treated to first

order.

For a more elaborate discussion of pseudopotentials going beyond (19) and including waves of higher
angular momentum, see [9].
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with the usual notation:
~

~~/~~~~ (~)3
/

~~~ ~~~'~~ ~~~~

while, for fermions, no first order correction is obtained. These results coincide with the

first order terms of the well-known results of Lee and Yang; see formulas Iii and (4) for

J
=

0 of reference [16]. Nevertheless, in Section 4, we discuss the validity of this first order

approximation in the calculation of the matrix elements of U2 and conclude that, for bosons,
(20) is a good approximation while it is not necessarily the case for fermions.

At this point, it is convenient to introduce the free spherical waves (j)~/~) associated with

the relative motion of the particles, with wave functions (~):

iriJlll,mi
"

Ji ikrin'~ iii 123)

(with standard notation; ji is a spherical Bessel function, l§~ IF) a spherical harmonics of the

angular variables of r); if (k) is a plane wave normalized in a volume V:

lk)
=) ~jli)~ [T'~ II)]

~

lJl[),m). 124)

If we idsert this equality into (17) and take into account the well-known relation:

~j )T~(il =

~~)
125)

m

we readily obtain the result (~):

al'~ (k)
=

~j(21 + 1) [1 +1~(-1)~) x a(~ (k) (26)

~~~~

~~~(~)
"

~~~~~~~~~~3~~~l~~~21re>~3~~~)
~~~~

T

where [U2(1,2)j~~, has been defined in (7); rotational invariance ensures that the right hand

side of (27) is independent of
m. These results can be inserted into the integral appearing

in (15) and provide an expression of the correction to the grand potential which is a direct

generalization of the usual Beth Uhlenbeck formula to gases having a significant degree of

degeneracy:

i~°~ Ziint
"

) ~121+ ii Ii + ~/(~~)~l ~

/ d~kl /
d~k2 /i~li/1~2) X ~l~ (ki (281

~

l

For comparison, we recall the explicit expression of this formula:

[Log Zj$1'
= ~~ z~

£ ~j(21 + 1) [1 + q(-1)~)
/

dk e~fl~~~~/~ kdi (k) (29)
~

T

(~) To normalize these functions (with
a Dirac function of k vectors and Kronecker delta's of and m),

it would be necessary to multiply all the j)(/ ~(rl's by factors kfi; this operation is not necessary

here.

(~) We assume rotational invariance, so that the matrix elements of 02(1, 2) are diagonal in I and
m.
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(we temporarily ignore possible bound states), where lT is defined in (16). As already discussed

in [6j, if we replace each of the two f's in (28) by their low density limit efll"~~~~~/2~), the

integration over
d3K of

a Gaussian function introduces a factor 83/2 [~/lTj~ and, after some

algebra, we recover (29). In other words, the following substitutions are necessary to obtain (28)
from the usual Beth Uhlenbeck formula (~):

In equation (10), the first of these substitutions amounts to adding the terms in
J~

f.

2.4. BOUND STATES. The operator [U2)~(/ may be written as the sum of the contributions

of bound states and of the continuum:

[U2)~(/
=

~ (Am)(Am(e~fl~" + continuum (31)

n

where the (4lnl's
are the kets associated with the eigenstate of the relative motion of the

particles with (negative) energy -En (with appropriate symmetry for the statistics of the

particles). It is therefore not difficult to make the contribution of bound states in (15) explicit,
which provides the following term:

lL°~zl)ii~~
"

(2~l~~ v~ /
d~K

/
d~Q

f()
+ ~) f(~ ~l ~jl~14~nll~~~~~~~~~~~/~l 132)

n

Because the (4lnl's correspond to wave functions with a finite range, and because the plane

waves (q) are normalized in a macroscopic volume V, the product Vi (q(Am)(2 is independent
of V in the thermodynamic limit, as necessary to obtain an extensive correction to the grand
potential. If we rewrite the integral of (32) in the form:

/d~K /
d~q e~fl~~~~@~ l

+
1~

Ii
~

+
)j

x

1
+1~ Ii

~ )j ~ (q(Am) (~efl~" (33)
2 2

n

we may distinguish between two contributions in the correction:

[~°~ ~j~ii~~ [~°~ ~j~~~~~ ~ [~°~ ~j~~$~~ (3~)

The first contribution is obtained by ignoring in (33) the l~f's inside the brackets, which

allows one to integrate over
d3K; using the closure relations over the plane waves (q) and

the normalization of the bound states (Am) then provides the following result for this first

contribution of the bound states:

[Log Z]t(~~
=

2~/~ [lT]~~ V ~j e~~" (35)

n

(~) There are several equivalent ways to write the Beth Uhlenbeck formula; for instance, an integration
by parts allows one to replace the product k&i(k) by the derivative d&i(k)/dk while the coefficient

I/AT is replaced by ~/A(. Under these conditions, the jecond line of (30) becomes d&i(k)/dk ~

-(kAT)~a(~(k) lx. In other words, the correspondence between our result and the Beth Uhlenbeck

formula depends on the way the latter is written.

The two functions k&i (k) and -k~a(~ (k) are not necessarily equal but, when multiplied by a Gaussian

function e~fl~~~~/~, have the same integral over
d~k.
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which is identical to the term corresponding to bound states in the usual Beth Uhlenbeck

formula. The second contribution arises from the rest of the product of the brackets and is

equal to:

[Log Zj$Q~~
=

(2~)~~ V~
/ d~K

/d~qe~~~~~~@~ lf(~ + q)
f(~

q)
2 2

+Y1f() + q)+Y1f()
)j ~j I(ql~bnll~e~~" (361

It accounts for exchange effects between bound states and continuum states (~), which explains
the appearance of the scalar product (q(Am) of a free plane wave and a bound state wave func-

tion; the factors eflE» correspond physically to the Boltzmann distribution of the populations
of the bound states.

If we assume that the momenta in the continuum, which have values that are limited by
the presence of the f's under the integral, are much smaller than those contained in the

bound states (4lnl's, we can replace the product (q(Am) by (q
=

0(Am); this shows that the

effect of statistics is more important for bound states with a wave function with a significant
integral over space, as for instance the ground state wave function which has no node; states

with rapidly oscillating wave functions give almost no correction to the usual Beth Uhlenbeck

formula. Generally speaking, for bosons, the effect of statistics is always to increase the Beth

Uhlenbeck term (35). For fermions, the situation is more complicated: if the gas is only slightly
degenerate one has f2 < f so that the terms in

J~
dominate in (36), leading to a decrease of

the effects of bound states; but if the gas is strongly degenerate, there seems to be no general
rule, and exchange of bound states with the continuum may either enhance or reduce their

contribution.

2.5. SPINS. An easy generalization is to include spins; the only difference is that all the

traces must now also include spin states. It is then convenient to replace the functions f(k)
of momentum by spin operators fs(k) (corresponding to two by two matrices for spin 1/2
particles) which are functions of k and are defined as:

~~-pHi
imsifsikiimii

"
ims, ki~ ~~~_~Hiimi>

ki 1371

where Hi is the one particle Hamiltonian, including kinetic energy as well as coupling of the

spins to the magnetic field (if the particles carry magnetic lioments). Similarly, because now

the exchange of particles must also include their spin states, al'~(k) becomes an operator
Ls(k) which acts in the space of the states of two spins:

m

Ls(k)
=

~j(21 + 1) a$~ (k) [1 + q(-1)~ P$) (38)

1=o

where Pi is the exchange operators of two spins. This leads to the following generalization
of (15):

(~) The exchange effects between bound states themselves will be investigated in another article with

the study of pair condensation (BCS condensation for fermions); they are higher order in U2.
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3. Spin 1/2 Particles

We now apply the preceding calculation to the study of the magnetic susceptibility of a dilute

gas of fermions
or bosons with spin 1/2 (spin polarized atomic hydrogen provides an example

of spin 1/2 bosons [17,18]). We assume that the one particle Hamiltonian is:

Hi
=

~ ~~°az (40)2~
2

where uJo/2~ is the Larmor frequency in the (homogeneous) magnetic field and az the Pauli

matrix (operator) associated with the component of the spin along the field; we set:

~
~fl(M+hwo/2) ~~+flhwo/2 j~i)

+

which gives the following values for the matrix elements (~) of Is (k) defined in (37) :

~
~-~~~k~/2m

j~~~~*~~~
l -~z+e~fl~~~~/~~

For short we will write:

f+(I)
=

f+(ki) f+12)
=

f+lk2). 143)

With this notation we have:

[Log Z]~~ =

-J~$ / d~ki Log it qz+e~~~~~~/~~j it qz-e~~~~~~/~~j
~

= Y1£
/ d~ki Log Ill + Y1f+ Ii)] J + Y1f- Ii)] (44)

For a gas at equilibrium the operators fs(k) are diagonal in the basis corresponding to a

quantization axis parallel to the magnetic field; we then have:

Trs~,s~ /sjkij /sjk~))
=

Trs~ j /sjki)j x Trs~ j/sjk~jj

=
if+(I) + f- (I)i if+(2) + f-(2)1 145)

as Well as

~iSi,52 1/S(~l)/S(~2)PSI
"

/+(~)/+(2) + /-(~)/- (2) (46)

(the latter result arises because the trace gets non zero contributions only from the two spin

states (+, +) and (-, -), which are invariant under the effect of Pi). We therefore have:

jLog Zj~~~ =

) /
d3 ki

/
d3k2 aj~ (k) f+ (I) f+ (2j + f_ (I) f- (2jj

+2au(ki f+ilif-
21) ~~~~

where:
(ki k2(

(48)~
2

(~) We remind the reader that, except for an ideal gas, the f+'s are not the populations of the one

body density operators, but differ from them by density corrections [25].
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while al'~(k) is defined by Iii)
or equivalently (26) while au (k) is the un-symmetrized

version (~°) of the Ursell length:

au(k)
=

-£(k(02(k)
=

~j(21+1)al'(k) (49)
2

T

~o

(it would correspond to distinguishable particles). If, as in the beginning of Section 2.3, we

treat the pseudopotential (19) to first order, for fermions we obtain at (k)
=

0 and au Ik)
= a;

the first order correction is now given by:

[Log Zj. ci

-2~
x g~ /2(-z) (50)

~~ IT

which coincides with the result of Lee and Yang (Eq. Iii of [16j for J
=

1/2); but, again,

we note that a critical discussion of this first order calculation is made in Section 4 which

shows that, for fermions, the results of the Ursell approach may be different from those of a

pseudopotential theory.

3.I. DENSITY OF PARTICLES AND OF ENERGY; MAGNETIzATION. The number density of

the gas is obtained from the relation:

n =

j~
=

V~~ z)[Log Zj. (51)

Similarly, then density of internal energy is given by:

while the "magnetization" (~~) is equal to:

~
"

j£l~°~ ~l' l~~l

We therefore have to vary either z, or fl, or uJo in formulas (44, 47) we can then use the simple
relations:

dz+
= z+

~~
+ ~°~°dfl + fill

~°~°
(54)

z 2 2

and:

z+

~~*
=

f+ Ii +1J f+) (55)
8z+

(~°) Note the factor 1/2 hich does not appear in ii?) ; we choose this since the same

1/2 appears in the efinition (3) of the
symmetrized

version of U2;
gnored (high

emperature
limit for instance), the various rsell lengths become equal.

(~~) What we call here
magnetization

is not a real agnetic

moment

ampere square
meter) but a

dimensionless number
equal

to the sum of the average values of az of all atoms; in
other

maximum
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We then obtain, by making use of the symmetry in the indices I and 2:

n =
12~)~~

/
d~ki if+ Ii) + f- ill]

) /
d~ki

/
d~k2 (2al'~lk)f+il)f+12) ii + nf+11)1 +id. lf+ ~ f-1

+2aulk)f+11)f-12) 12 +1/f+il) +1/f-(2)1) (57j

where id. f+ ~o f-) symbolizes the same expression where f+ and f- are interchanged. The

calculation of M is almost the same, except that now, because of (54), f+ and f- introduce

different signs; the result is:

(
=

12~)~~
/

d~ki if+li) f- Ii)]

-) /
d~ki

/
d~k2 2al'~lk)f+ li)f+12) ii +1/f+ Ii)] -id. lf+ ~ f-)

+21laulk)f+li) f-j2) 1f+ji) f-j2)j 158)

Finally, the calculation of the internal energy w provides the result:

w = wE + wM (59)

where wE is the density of energy associated with the external variables of the particles (kinetic
and potential energy):

WE =

(24~~ / d~ki lf+ Ill + f- Ii)]
()

~ /
~~ki

/
d~k2 2a[~lk)f+li)f+12) Ii +'Jr+ Ii)]

()
+ id- lf+ ~° f-)

~

&2 ~2 &2 ~2
+2aulk)f+11)f-12)

Ii
+ ~f+ Ill] ( + Ii + ~f-12)1

(j 16°)

while wM is the density of magnetic energy:

wM = ~j° ~( 161)

We now assume that the magnetic field is sufficiently low so that the preceding expressions

may be limited to their first order expansion in uJo Cf 0. We then use the relations:

which provide:

j2
n(uJo)Cfn(0)

=
(4~~)~~ d~kifll)- ~~ d~ki d~k2fIl)f(2)

(2~)

x 4 ii +
1~

Ii iii (al'~ (k) + au Ik)j (63)
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and for the zero field magnetic susceptibility of the gas:

x = ~j~
~ =

flh
/ d~ki Ill) ii +1~ Ill)] ~flh /

d~ki
/

d~k2f(1) f(2)

x (2 al'~(k) ii +1~ Ill)] [2 + 2J~ Ill) +1~ f(2)]

+ au(k) ([Iii) f(211~ + 2Y1fli) Ii + Ylfll)lj 164)

3.2. PHYSICAL DlscussloN. / Equations (57, 58) show how quantum statistical effects mod-

ify the equation of state and the magnetic susceptibility of a gas. What determines the prop-

erties of the dilute system is not directly the matrix elements of the potential I§nt, but those

of the operator 02. Of course, if the potential is weak, the calculation may be limited to

first order perturbation theory, so that 02
may be replaced by -flint the two operators then

become equivalent. But, in more realistic situations, for instance in atomic systems where the

interaction potential at short relative distances becomes very large, the effects of the potential

cannot be treated to first order. An obvious difference between 02 and l§nt is that the former

depends on one more characteristic length than the potential, namely the thermal wavelength
lT, so that one can expect that its range will depend explicitly on the temperature. It is

sometimes argued that a description of the interactions in terms of the scattering length is

sufficient at very low temperatures, because the range of the potential I§nt remains always
much smaller than the de Broglie wavelengths of the particles. As far as the matrix elements

of U2 are concerned, this is of course true if the interaction potential is treated to first order

only but, precisely at very low temperatures, the higher order terms become significant and

02
may acquire a range that exceeds by far that of the potential itself. We will see examples

of this phenomenon in Section 4.

We now discuss the limit of validity of the results obtained in the preceding section or, since

they are equivalent, of equations (14, 39). If the particles are bosons, our theory is limited to

gases which are not too close to Bose Einstein condensation while of course the degeneracy

may be much more pronounced than for the Beth Uhlenbeck formula since z does not have

to be small. The reason is that, when a system of bosons approaches the region of quantum
condensation, the distribution function f starts to build up a singularity at low energies. One

can then see that, when
z ~ 1, the partition function becomes more and more sensitive to

terms of higher and higher order in 02, in 03, U4, etc., since they contain larger and larger
number of functions f (or of factors 1+1~ f). In other words, terms which normally remain small

corrections become dominant when the point of Bose Einstein condensation is approached; see

the discussion already given in [7], where it is emphasized (~2) that a theory limited to first

order in U2 would predict the disappearance of the Bose Einstein condensation phenomenon
and its replacement by a simple crossover between two regimes.

For fermions, the discussion is different since no special phenomenon takes place when z

reaches one; when the gas is cooled at constant density, this merely corresponds to a cross over

region where the gas is becoming degenerate. When the temperature is decreased even more,

a stronger degeneracy builds up while z =

efl" becomes larger and larger (fl increases while /J
remains almost constant if the density is fixed). It is therefore clear that z itself can not be an

expansion parameter in this region; but our perturbation series is not a z expansion and it may

(~~)Unfortunately, in [7] an assumption of this discussion is not made explicit, namely the fact that

the matrix elements of U2 should be positive (dominant character of the attractive interactions in the

matrix element).
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still converge for degenerate systems, provided the matrix elements of 02
are

sufficiintly small.

In the next section, we will see that these matrix elements are equal to the product )(au, where

lT is the thermal wave length and au is some microscopic length (the Ursell length) that we will

define more precisely later. Let us for instance discuss (57) where the interaction corrections

involve a double integral over two momenta. The first introduces the number density n; the

second contains a function Ill f), which in the limit of low temperatures is non zero only in

an energy slice of width fl~~ at the surface of the Fermi sphere; the corresponding width Ak

in terms of momentum is given by:

h~kfAk
=

~-i (65)
m

(where hkf is the momentum at the Fermi surface) so that the result of these integrations is:

The small parameter of the expansion (~~) is therefore the product kfau, which is not very
different from n~/~au for degenerate gases, and indeed remains small if the average distance

between the particles is much larger than au This result is not surprising: indeed, in the

usual theory of dilute non ideal Fermi gases [10], the expansion parameter is independent of

the temperature, which plays no particular role as long as the system is strongly degenerate.
One might be tempted at this point to conclude that the generalized Beth Uhlenbeck formula

is valid for arbitrary degeneracy of a fermionic system; nevertheless, in the next section, we

will see that the factor au itself may become very large at very low temperatures, which in

turn increases the expansion parameter and, automatically, limits the validity of the expansion

at some point. We will assume that this somewhat unexpected phenomenon is a precursor

of BCS pair condensation; if this is the case, the low temperature limit of the validity of the

generalized Beth Uhlenbeck is that the gas should remain a normal Fermi gas and, even, not

to be too close to condensation. In general, for bosons as well as for fermions, we can therefore

conclude that our calculations remain valid as long as Bose Einstein or BCS condensation is

not too close.

4. Matrix Elements of 02

We now study in more detail the values of the basic ingredient that we use to describe the

effects of the interactions on the thermodynamic properties of a quantum gas, namely the

diagonal matrix element of 0~'~ together with those of the un-symmetrized operator if the

particles have spins, see Section 3. A natural question then is the following: to determine these

coefficients, is it sufficient to characterize the potential in terms of its binary collision phase
shifts, which determine the asymptotic behavior of interacting wave functions, or is it also

necessary to include some information on the behavior of the wave functions at short relative

distances, inside the potential? For bosons at very low temperatures, is it possible, even more

simply, to reason in terms of the scattering length only?
We have already mentioned in the introduction that, in the literature on low temperature

dilute systems, it is often considered as physically obvious that the short range properties of

(~~ We note in passing that the phase occupation factor ii f) plays an essential role in this argument.
This factor occurs in all expressions, for instance, in (58), the bracket f+ ii) f- (2)] may be written

as f+ ii I + I f- (2)]. If we had ignored this factor, we would have found nauA~
as the expansion

parameter, which is a temperature dependent factor (as in the usual Beth Uhlenbeck formula).
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the potential play no role in the thermodynamics; it is then possible to replace the real potential
by an effective potential (or pseudopotential) which has the expression already given in (19)
in terms of the scattering length a. With a pojential having zero range, it becomes of course

meaningless to take into account the distortions of the wave functions inside the potential, in

other words thd contribution of particles "in the middle of a collision". But with real potentials,
it is not obvious that these contributions are non existent, in particular since statistical effects

arising from particle exchange are expected to be more important when the particles are close.

We discuss here this question in the context of the generalized Beth Uhlenbeck formula that

we have obtained, with the help of simple examples such as a step like potential mimicking a

real interaction potential, or even hard spheres. We first discuss the Ursell length au (k), which

we have already introduced above, and which depends on the temperature while a does not.

4. I. URSELL LENGTH. If the interaction potential l§nt were sufficiently weak, we could use

a
first order perturbation expression of the Ursell operator: I

U2
=

/~ dfl'e~~'~° I§ntem'~~'~° + (67)
o

which would lead to the following expression:

jkju~jkj
=

-fljkjv~~jkj +. j~8)

Inserting (19) into this result provides:

lklU2lk)
#

-fl~@/
" ~~(~ [69j

where V is the macroscopic volume and lT the thermal wavelength (16).
By analogy with this first order calculation, it is convenient to characterize the diagonal

matrix elements in terms of a length, au (k), which we call the Ursell length and which we have

defined in (49) as:
~

~U(k) ~~ ~~~~2(k). (~°)
T

This very definition ensures that, within the theory of the pseudopotential, au (k) is exactly
equal to the scattering length a. This length therefore provides a convenient tool for a discussion

of the validity of this approximation: as long as au (k) remains very close to a for all relevant

values of k, the theory of pseudopotentials and ours provide strictly equivalent results. For

identical particles, what is needed is the symmetrized Ursell length, already defined in (17,
26), which allows us to write the correction to the grand potential for spinless particles in the

form (15). This equation (15) expresses that the symmetrized Ursell length gives, within the

numerical factor in front of this integral, the crossed contribution of two velocity classes ki
and k2 to the grand potential of the system (its pressure). If the particles have spins, we have

to use (39) and (38).

In Section 2.3, we introduced spherical orbital variables from the free spherical waves
(jf/ ~).

At this stage, it is convenient to use spherical waves that are normalized in a sphere of ~ol-

ume V
=

4~R3 /3. We therefore introduce a new notation, (~2f(), but these kets are simply

proportional to the jj(():
'~~$)

Zkl ()~~~1) (~l)
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Fig. I. Steplike potential used to discuss compensation effects between the attractive and the

repulsive part on the scattering length; Vo is the depth of the attractive potential, b its range; a hard

core of range ~b 18 assumed (~ < l). While a relation between the8e three parameters can be found to

make the scattering length a vanish, the effect of the potential on the wave function inside its range
remains significant.

where xki is a normalization coefficient which in the limit of large values of the product kR is

equal to: /~
zki = j (72)

Introducing in the same way the normalized kets (~ak>im) in the presence of the interaction

potential, we can write:

~~~(~)
"

~~
[Zkl) ~ l~ (§~~~,m'§~k<,I,m))~

e
~~~~~'~ ~~~~~

j
(73)

T k'

where elk) and elk')
are the energies of the free and interacting states.

In what follows we discuss the values of the Ursell length and its k dependence with the help
of a few examples.

4.2. STEPLIKE POTENTIAL. In order to simplify our discussion, we now consider an inter-

action potential made of a hard core of diameter zb (with
z < I) and of an attractive part

lint
"

-Vo) from relative distance r =
zb to r = b; see Figure I. Our discussion is in fact

more general, but this kind of simplified potential is a convenient way to mimic the effects of a

more realistic interaction potential, containing strong repulsion at short distances and Van der

Waals attraction at large distances. For instance, it is not difficult to find a relation between

Vo, z and b which ensures that the scattering length of this potential vanishes (compensation
of the effects of attraction and repulsion at low energies). Does this imply that the matrix

elements of U2, that is the Ursell length au (k), also vanish? Not in general, since the scalar

products (~2fj ~(~2k>,1,m) in (73) are not only sensitive to the changes of the interacting wave

functions outride of the potential (which do not occur if the scattering length vanishes) but

also to their values inside the potential. In other words, for a degenerate dilute gas, all the

effects of the potential are not necessarily contained in the scattering phase shifts.
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We nevertheless note that, when the range b of the potential tends to zero, the corrections to

the scalar products are necessarily of third order in (at least ), while first order terms occur in

the phase shifts (for instance, at very low temperatures, the Beth Uhlenbeck formula predicts

a correction which is proportional to bl(). Therefore, if the potential range is sufficiently small

(compared to the two other microscopic distances, the average distance between particles n~~/3

and ~T ), one may limit the calculation to first order in b so that the contribution of the distor-

tion of the wave functions inside the potential may be ignored. Within this approximation, all

effects of the potential on the thermodynamic properties are indeed contained in the collision

phase shifts. A brief similar discussion in terms of "shape dependent terms" (as opposed to

phase shift dependent terms) appears in the two last paragraphs of Section 5 of reference jig]
Consequently, in all calculations of the thermodynamic quantities which are limited to first

order in the potential range, it is sufficient to characterize the potential by its long distance

effects on the wave function (phase shifts) only, while short range effects are irrelevant; if all

collisions take place at very low energies, all effects are then contained in the scattering length
only. On the other hand, this is not necessarily the case if higher order terms in the potential

range are included, and corrections which originate "inside the potential", corresponding to

the contribution of particles "in the middle of a collision", may appear; see also jig]. Actually,
the question remains open as to whether is would be possible, by some mathematical trans-

formation, to express these "in potential effects" in terms of the phase shifts only; this is for

instance possible in the absence of the phase occupation factors, since one then gets the usual

Beth Uhlenbeck formula for which such a transformation is known. In the presence of these

factors, we have made efforts to investigate the possibility that a similar simplification takes

place, but we have not been able to prove it. A possible conjecture is that short range and

long range effects are in general independent from each other, but this remains to be proved
by a precise example.

4.3. HARD SPHERES. For hard spheres, the interacting wave function does not penetrate
into the potential; this is a special case where all physical effects of the potential are necessarily
contained in the collision phase shifts. The potential range b coincides in this case with the

scattering length
a. But this is not sufficient to ensure that the theory of pseudopotentials

should be equivalent to our results, and we now discuss this question.

4.3.I. Analytical Calculation. In order to obtain the correction to the thermodynamic pc-
tential for hard spheres, we now perform a calculation of the scalar products which appear

in (73).

s waves. For free waves, the quantification for the wave numbers is given by:

k
=

d (74)

while, for hard spheres of diameter a, the interacting waves satisfy the relation:

k'
" ~ ~

(75)

where
n and n' are integer numbers. The scalar products of (73) then become functions of

these numbers:
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which, after a simple calculation, leads to:

~~~~~~~~~~'~~'~~~~
~

~ ~~~~ ~~~ h'
~l

Ii
~)~~)j~ lj~i)~jl

a/R)j~'
l~~l

This result, when inserted into (73) for
=

0, provides the contributions of s waves to

the Ursell length. Equivalent results for infinite volume (only
s wave) are given by Lee and

Yang [20]; we have checked that our numerical results are compatible with those of these

authors. Since na/R
=

ka/~, equation (77) shows that the scalar product is peaked around a

value of n' given by:

n'
= n El ~~) (78)

~

where E is the integer value; for low energies, ka < I and the preceding equation reduces to

n'
= n.

Assume for instance that we are interested in calculating the Ursell length to first order in

a, and in the s wave channel only. Equation (77) shows that only the term n'
= n contributes

and that the corresponding value is:

sin~ "~~ ~"
j~ ~~~~~~

~
t 1 (79)

R jn~a/ n2 [2 (a/R)]

so that (73) becomes to this order:

~(o) j~~
2~ R

~n~h~~~
I I l~

~ j~~)
~ l( 2k2 m (R a)~ R2

The first order value is therefore merely equal to a; but we will see that af~(k) may strongly
differ from this value if higher orders effects in the potential range are included.

Larger I Values. Formula (76) can be generalized to non-zero angular momentum I. The sine

functions of the free and of the hard-sphere wave-functions have to be replaced by a spherical
Bessel function and a linear combination of this function and a Neumann function of order

respectively. After normalization we obtain for (r( > a:

mi(k'a) stands for "modulus" [21, 9.2.17]:

mi(k'a)
=

/j/(k'a) + n/(k'a). (82)

The quantification conditions have to be modified; (75) now becomes implicit:

k'R +l~i (k')
= n~ +

)
(83)

where
J~i

(k') stands for the t-wave phase shift for wave number k', which is given by:
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In this definition we limit the values of the inverse tangent to the interval [-~/2;~/2[ and

mk> counts the number of times that by increasing k'a from zero to the final value the

value of inverse tangent jumps from ~/2 to -~/2. In this way we obtain
J~i as a continuous

function of k'. For large values of k'a, the effects of the centrifugal barrier become negligible
and the quantification condition becomes independent of I so that it reduces to the s-wave

expression (75).
The normalized free wave function is given by (23), so that we arrive at the following ex-

pression for the square of the scalar product:

~~~~~°~~~' ~°)
R ~~~~~~~i~~)2]~

~ k'a)2m)(~'a)
a/R ~~~~~~' ~~~~

4.3.2. Numerical Results. Inserting (77) and (85) into (73) and then into (49) or (26)
provides the Ursell length, which in turn determines the diagonal matrix element of 02

or

0~'~ for identical particles. For brevity, we just give the results of our numerical calculations

of au (k); in other words we only discuss interactions between particles in different spin states

if the particles are indistin§uishable. But there is no difficulty in treating the general case,
since the calculation of al' (k) is very similar; moreover, as soon as the wave number k is

sufficiently small, one simply has a[(k)
ct

2au(k) and a((k)
t 0. The results concerning

au (k) are shown in Figures 2 and 3 (more details about the calculations can be found in [22]).
There are two parameters in the problem,

a
and lT. As convenient dimensionless variables we

choose, either the product klT, or ka; the ratio a/lT is then kept as a
fixed parameter, which

has small values either when the potential range is very small or when the temperature is low.

Figure 2 shows that, when a « lT, and as long as klT remains smaller than 1, the Ursell

length is indeed equal to a
(with a good accuracy), so that the theory of the pseudopotential

is fully justified. For higher temperatures, we note that the low energy values of au (k) become

noticeably different from a. This is not surprising since, when T increases, we progressively
reach a classical regime of small wave packets; they no longer have a much larger spatial extent

than the potential, while this is necessary for the approximation of the pseudopotential to

apply. We therefore concentrate on low values of the ratio a/lT.
If the system is made of bosons, since the distributions f's contained in (15) have at most

the same width as Gaussian thermal exponentials, the values of klT that are relevant in the

integral are comparable to I, or smaller; Figure 2 then shows that the use of our theory or of

the theory of pseudopotentials leads to the same results; see the discussion of Section 2.3, in

Particular formula (21). But assume now that the system is made of fermions (~~), and that

the temperature is progressively lowered at constant density. If the system is degenerate, the

width of the functions f's is determined by the Fermi momentum kF, which in turn depends

on the density; in other words the width is practically independent of the temperature. Mean-

while, if the temperature is lowered more and more, lT increases so that the product klT

can take arbitrarily large values inside the integral. On the other hand, ka remains limited

to values smaller than I since, for degenerate gases where the distance between the particles
is comparable to the inverse Fermi momentum in a degenerate gas, the diluteness condition
n~/3a « 1 yields:

1 » kfa 2 ka. (86)

The departure from I of the curves of Figure 2, which fall well below this value when klT
increases, shows that significant discrepancies from a pseudopotential theory may indeed be

(~~)We are dealing here with the description of interactions of fermions in opposite spin states.
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Fig. 2. Variations of the ratio between the Ursell length au(k) and the range a of the hard core

potential as a function of the dimensionless variable kAT. The ratio a/AT, with values shown in the

upper right, is a parameter which takes small values if either the temperature is sufficiently low or the

radius of the hard cores sufficiently small.

obtained. This is even more visible in Figure 3, which uses a different variable, the product ka:

even for small values of the ratio a/lT, significant departures of the Ursell length from
a are

obtained for small values of ka; in other words, (50) is no longer a good approximation of the

generalized Beth Uhlenbeck formula. Actually, the smaller a/lT, the more pronounced these

departures are; we have an illustration of the consequences of the temperature dependence of

02, where the effects of the potential are more and more delocalized by thermal effects while

lT increases; consequently, variations of the matrix element occur even if the range of the

potential is very small and even if ka « I. In Figure 4, we plot the variations of the diagonal
element (r( [U2)re, (r) as a function of the relative position r; the results show clearly how the

second Ursell operator acquires a longer and longer range at decreasing temperatures.

A striking feature of Figure 3 is the change of sign of the Ursell length which takes place
when ka increases from zero. The origin of this change is understandable from (73), from

which one can convince oneself that the contribution of low values of k' becomes dominant

as soon as k is sufficiently large; this is because, while the scalar product ((~2f/,~(~2k<,1,m)(

with k'
t 0 decreases relatively slowly when k increases (as k~2), the exponential efl~(~)~fl~(~')

varies much more rapidly and so that it makes small values of k' dominate the sum. In other

words, what determines the diagonal matrix element of U2 is the contribution of interact-

ing states that have a very small relative energy; because these states evolve more slowly in

time than the free wave packets of energy 1i~k2 /m, the net differential result is equivalent to
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Fig. 3. Variations of the same quantity as in Figure 2, but as a function of the dimensionless

variable ka; th18 representation 18 convenient for the discussion of fermions (where it characterizes

interactions between particle8 in opposite Spin 8tate8).

an attraction. We therefore come to the conclusion that even hard cores can result in an effec-

tive attraction between fermions of opposite spins at the surface of a Fermi sphere, provided

that the temperature is sufficiently low. But other interesting features also appear; for instance

there is a strong dependence of the matrix element on the relative momentum and, for some

value of k, the Ursell length (the effective interaction) vanishes; probably more important is

the fact that the effective interaction increases almost exponentially as a function of k2, which

is nothing but the square of the relative momentum of the interacting particles. This shows

that the correction to the partition function is dominated by processes that take place prefer-

ably between particles having almost opposite momenta on the surface of the Fermi sphere
(assuming that they have opposite spins).

4.3.3. Validity of the tlrsell Expansion. We now come back to the discussion made at the

end of Section 3.2 concerning the validity of the Ursell expansion for a dilute gas of fermions.

The result of this discussion was that the expansion parameter is the product n~/~au. This

paraineter would remain a constant as a function of temperature for a gas of constant density
if the Ursell length did not vary too much as a function of temperature, so that the situation

would be simple. But in fact, we have actually found for Fermi gases that the maximum value

of au becomes larger and larger at low temperatures. This automatically limits the range of

validity of the first order U2 theory to temperatures at which the relevant values of the Ursell

length are not too large.
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Fig. 4. Variations ofthe diagonal matrix element (r([U2]~ei(r) as a function of r, for various values

of the parameter a/AT; at low temperatures, the thermal increase of the range of the operator is clearly
visible.

To determine a limit temperature, we will look for an asymptotic expression of the Ursell

length valid for wave vectors of the magnitude of the Fermi wave vector k m kF. In this case,
the terms corresponding to low values of k' in the sum over the states of interacting pairs of

(73) are dominant. When k' « kF the square of the scalar product (85) reduces to:

~2£~
~~(~2k, oo))~ "

~ ~~)
~

sin2 kfa. (87)
~

We replace the square of the scalar product in (73) by this expression and transform the sum

into an integral:

j~2 1
~~~~~~ " k)I[ k)R2

*~~ ~~~ ~~~~~
/

~~'~'~~ ~~~'
~~~~

~

~T
~j~2 ~ ~

~flekf (89)
(kFlT)~

where eF is the Fermi energy (proportional to n~/~ for a strongly degenerate gas). We are

interested in the limit n~/~a « I or k)/~a < I; we can thus replace the sine by its first order

approximation, which yields:

~
j~ jj ~ ~

l ~ ~eF/kBT (grip~ ~ (kFlT)~ lT
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The validity criterion of the Ursell expansion then becomes:

~~~~(kF~T)~ T ~~~~~~~ ~ ~~~~

which shows that the theory is valid only when the temperature satisfies the approximate

condition:
~~~~~ ~

Log [nl[)lTla)2j' ~~~~

Inside the logarithmic function in the denominator, both the factor nl[ and (lTla)2
are larger

than one, especially the latter for a very dilute gas; but since the logarithm has slow variations,

whatever parameters we choose, in practice the limit temperature fixed by this condition is

not lower than is about a tenth of Fermi temperature, a rather a high temperature compared

to the transition temperature for Cooper pairing.
Our conclusion is that, for any type of interaction, and even if the density of the gas is

fixed at a very low value, at sufficiently low temperature the Ursell length becomes larger and

larger so that the Ursell expansion is no longer a good expansion. The maximum value of

the Ursell length is obtained for pairs of fermions with opposite spins and maximum relative

momenta, which corresponds to two fermions having opposite momenta on the surface of the

Fermi sphere; this is reminiscent of the BCS pairing phenomenon, while the phenomenon takes

place at much higher temperatures (the right hand side of (92) does not coincide with the

standard expression of the critical temperature) so that stricto senm it can not be called a

precursor of this transition. Whether or not it is related to this transition, the change of sign
of the Ursell length will have a strong effect on the two body correlation function in the system

(we have seen in [25] that the second Ursell operator is closely related to the short range

properties of the two body density operator). These results are also reminiscent of the well

known work of Luttinger and Kohn [23] who predicts the occurrence of superconductivity in

purely repulsive systems, as well of the more recent work of Kagan and Chubukov [24] who also

predicts in this case p wave superfluidity in a dilute Fermi gas. We are planning to investigate
this connection in more details in a future article.

To summarize, for both fermionic or bosonic systems, the validity of the Ursell expansion
is limited, even for a very dilute gas, to temperatures sufficiently above any transition point.
Mathematically, in the case of bosons the divergence of the series arises from the distribution

function (or operator) f, while in the case of fermions its origin is the increasing value of the

matrix elements of U2 themselves.

5. Conclusion

Our formalism provides a systematic treatment of the interactions in a dilute gas where the

basic objects are not the matrix elements of the potential itself but those of temperature
dependent operators. In [25], we have shown how microscopic, short range correlations between

particles could explicitly be taken into account and calculated. In the present article, we

investigate the macroscopic properties of the gas by basing the discussion on expression (14),
which resembles a first order perturbative expression of an energy correction, while it actually

is rather different. This is mostly because the matrix element which appears in the expression
is not the matrix element of the potential itself, or

of some variety of pseudopotential, but

the matrix element of the second Ursell operator U2, which corresponds physically to a local

Boltzmannian equilibrium. Except of course in trivial cases where the interaction potential

is indeed weak for all values of the relative distances of the particles, which allows for
a

first

order treatment of the potential, this introduces significant differences; the major reason is
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the temperature dependence of the matrix elements of U2, which is in general more complex
than being merely proportional to fl (as would be the case in usual perturbation theory).
This matrix element is conveniently described in terms of the Ursell length. We have seen

in particular that, for fermions at very low temperatures, effective attractions at the surface

of a Fermi sphere may take place, independently of the repulsive or attractive character of

the potential itself. Moreover, our formalism contains naturally effects such as the statistical

exchange between bound molecules and free particles, which may play some role in experiments
with alkali atoms at very low temperatures [12-14].
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Note Added in Proofs

After completion of this manuscript, we received a preprint from H. Stein et al. [26j who, in

the case of bosons, find that the many body scattering length undergoes a divergence when

the superfluid transition is approached, an effect similar to what we obtain for fermions. The

significance of this similarity has not been examined in detail yet.
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