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Abstract. Multiple scattering of polarized electromagnetic waves in diffusive media is in-

vestigated by means of radiative transfer theory. This approach amounts to summing the ladder

diagrams for the diffuse reflected or transmitted intensity, or the cyclical ones for the cone of

enhanced backscattering. The method becomes exact in several situations of interest, such as

a thick-slab experiment (slab thickness L » mean &ee path £ » wavelength A). The present
study is restricted to Rayleigh scattering. It incorporates in a natural way the dependence on

the incident and detected polarizations, and takes full account of the internal reflections at the

boundaries of the sample, due to the possible mismatch between the mean optical index n of

the medium and that ni of the surroundings. This work does not rely on the diffusion approx-

imation. It therefore correctly describes radiation in the skin layers, where a crossover takes

place between free and diffusive propagation, and nice-versa. Quantities of interest, such as the

polarization-dependent, angle-resolved mean diffuse intensity in reflection and in transmission,
and the shape of the cone of enhanced backscattering, are predicted in terms of solutions to

Schwarzschild-MiIne equations. The latter are obtained analytically, both in the absence of

internal reflections in
=

ni), and in the regime of a large index mismatch (n/ni « I or » 1).

1. Introduction

Light undergoes multiple scattering when propagating through inhomogeneous media over dis-

tances much larger than one mean free path I. This may occur in a wide variety of situations,

ranging from the atmospheres of stars and planets to biological tissues. The theory of multiple

scattering of electromagnetic waves is an old classical area of physics [I-4], which has been

developed for almost one century, mostly by astrophysicists. This subject has been experienc-

ing an important revival of theoretical and experimental activity for one decade, motivated

by the analogy between the effects of random disorder (weak or strong localization)
on the

propagation of classical waves (electromagnetic, acoustic, seismic) and of quantum-mechanical

waves
(electrons in solids). The first weak-localization effect to be discovered has been the

celebrated enhanced backscattering phenomenon, which takes place in a narrow angular cone

around the direction of exact backscattering [5j.
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Typical laboratory experiments on
multiple light scattering involve suspensions of polysty-

rene spheres or of Ti02 (white paint) grains in fluids. In these situations the mean free path t

is usually much larger than the wavelength ~ of light, and the samples are often optically thick

slabs, of thickness L » I. The regime of interest, I. e., I « I « L, is characterized by a diffusive

transport of radiation through multiple scattering. This diffusive regime admits three different

levels of theoretical description. (I) The crudest approach is the diffusion approximation, where

the multiply scattered intensity is described by means of an effective diffusion equation. The

latter is only valid on length scales larger than I, so that is has to be supplemented by boundary
conditions. As a consequence, this approach somehow keeps a phenomenological character. (ii

The mesoscopic approach, known as radiative transfer theory (RTT), has been used for long by
the community of astrophysicists [1-4]. It is based on a local balance equation, keeping track of

the direction of propagation of the intensity. (iii) The systematic microscopic approach consists

in expanding the solution of the Max~v.ell equations in the random medium as a
diagrammatic

Born (multiple-scattering) series.

In multiple light scattering experiments the quantities of most interest are the mean diffuse

reflected and transmitted intensity, and the shape of the peak of enhanced backscattering. For

these observables the diagrammatic approach greatly simplifies in the regime ~ « t < L. As

far as mean quantities, averaged over the random positions of the scatterers, are concerned,
the diffuse radiation is described by the sum of the ladder diagrams, which, in turn, amounts

to RTT; the enhanced backscattering phenomenon is described by the so-called cyclical or

maximally-crossed diagrams, which can also be summed up by an adaptation of RTT [6, 7]. On

the other hand, the validity of vector RTT has been established on a rigorous basis [8], starting
from a perturbative treatment of Maxwell's equations, extending earlier developments [9] on

multiple scattering of electromagnetic waves in plasmas. In the regime where the random

fluctuations of the dielectric constant have short-range correlations, this approach rigorously
justifies the use of the Schwarzschild-MiIne equation of vector RTT with the Rayleigh phase
function, lv~hich ~v-ill be the purpose of the present work.

The principles of vector RTT for electromagnetic waves, taking into account their polar-
izations, are exposed in the book by Chandrasekhar iii, which also contains a formal ana-

lytical derivation of the diffuse intensity for Rayleigh scattering, in the absence of internal

reflections. This approach is needed in order to obtain predictions at a quantitative level,
concerning observables like the diffuse intensity in reflection and in transmission, and the en-

hanced backscattering cone. In particular the diffusion approximation alone cannot yield such

accurate predictions, chiefly because boundary conditions cannot be dealt with in a fully sat-

isfactory way. Surprisingly enough, in the modern era of multiple scattering only very few

authors have used RTT. Thus far the major investigations of the 1v-eak localization of light,
including polarization effects, have rather used either the diffusion approximation [10-12] or

numerical simulations [13]. Several other bulk properties of multiple scattering of electromag-
netic ,vaves have been investigated along these lines, including especially- the effects of Faraday
rotation [12,14,15] and of absorption [16]. Exact results on polarization effects

on
the backscat-

tering cone have only appeared very recently. Mishchenko ii?] has derived general properties
of the behaviour of polarizations under time reversal, obtaining thus for the first time a con-

sistent derivation of the enhancement factors in the direction of exact backscattering. The

full shape of the backscattering
cone has then been investigated by Ozrin [18], who did not,

however, come up with a full analytical solution of the latter problem. In previous works, we

have considered the case of scalar waves undergoing multiple isotropic [19, 20] and arbitrary
anisotropic scattering [21]. We have shown how RTT takes proper account of the skin layers,
where light is converted over a few mean free paths from

a free beam to a diffusive field and

vice-versa, and how it allows to deal with the effects of internal reflections due to the index
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Table1. Definitions and notations for kinematic and other wef~l q~antities.

outside medium inside medium

optical index ni n = mm

wavenumber hi
=

mu/c
=

2~/~i k
=

nuJ/c
=

2~/~

incidence angle 91 9

cos 91
=

fi
cos 9

= /1

sin 91
" iv sine

= v =

@@

parallel wave,~ector p =
hi cos91 P

=
k cos9

total reflection m < I and sin 91 > m m > I and sine > I/m
condition (i.e. P imaginary.) (I.e. p imaginary)

transverse wavevector (q( = q =
hi sin91

"
ksin9

=
kv

azimuthal angle
~2

mismatch at the boundaries of the sample. The latter effect has been the subject of much

activity recently [22-26].

The goal of the present paper is to extend our investigations to the multiple scattering of

electromagnetic waves, obtaining thus for the first t.ime a complete analytic description of

the diffuse intensity and of the backscattering cone in the regime ~ « f « L, including both

polarization effects and internal reflections. We shall restrict the analysis to Rayleigh scatterers

for definiteness. Section 2 contains general results on vector RTT. The observables of interest,

with their dependence on polarizations and index mismatch, are expressed in terms of solutions

of appropriate Schwarzschild-MiIne equations. Sum rules and other general properties are

given. These predictions are then made more quantitative in two situations: a) in the absence

of internal reflections (Sect. 3), where a full analytical solution of the problem is given; the

results of references ii,17,18] are made more precise and put in a broader perspective; b) in the

opposite regime of
a large iiiismatch of optical index betlv-een the sample and the surroundings

(Sect. 4). Section 5 contains a
brief discussion of our findings.

2. Generalities

2. I. GENERAL FORMALISM. Throughout the following we consider the multiple scattering

of electromagnetic waves by a
diffusive medium containing a low density p of identical Rayleigh

scatterers characterized by- their cross-section a, so that the mean free path I
=

II (pa) is much

larger than the wavelength I of radiation in the medium. The diffusi,;e medium has the form

of a slab (0 < z < L), infinite in the trans,~erse directions. We introduce the optical thickness

b of the sample through L
=

bi, and the optical depth T
of a point in the sample (0 < T < b)

through z =
Ti. we shall consider either optically thick slabs 16 » 1), or semi-infinite samples

(b
=

+cc). We investigate the general situation where the mean optical index n
of the sample

is different from that RI of the surrounding medium. Whenever there is an index mismatch

(m
=

n/ni # I), internal reflections take place at the boundaries of the sample. Useful

definitions and notations are summarized in Table 1.
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We closely follow the definitions and notations of Chandrasekhar iii. We measure the po-

larization of the radiation in a fixed frame, introducing spherical co-ordinates (see Tab. I). For

radiation propagating in the angular direction IS, ~2) with respect to the z-axis, the complex

components of the electric field E in the plane transversal to that direction will be denoted by
(Eo, E~). The component Eo is parallel to the unit vector 6 and contained in the meridian

plane, defined by the direction of propagation and the normal to the boundaries of the sample,
while the component E~ is parallel to the unit vector ~3 and normal to the meridian plane.

The alternative notations (Ejj, El and (Et, Er) can be found in the literature. We introduce

the following vector of four Stokes parameters, or Stokes vector for short

Ii
= (Eo((

~

"
2 Re (EoEj) l~'~~

14
=

V
=

2 Im (EOE)).

Here and throughout the following, boldface symbols represent 4-component vectors or

4 x 4 matrices. The description of polarized radiation by means of Stokes parameters is very

commonly used [27]. This formalism has many advantages: the Stokes parameters add up for

light beams superposed incoherently; a scattering event is described by a linear transformation

of the Stokes parameters, I-e-, by the action of a scattering matrix on the Stokes vector I.

We finally recall the definition [27] of the degree of polarization P of radiation described by a

Stokes vector 1:

~/jij I~)2 + u2 + v2
P

=
(2.2)

Ii +12

2. 2. SCHWARzSCHILD-MILNE EQUATION. For reasons exposed in the Introduction, we shall

use RTT to investigate the average reflected or transmitted intensity in the regime I » I. We

consider first the situation of a semi-infinite medium, for simplicity.

The mean diffuse radiation propagating in the direction IS, ~2) in the medium at depth

T =
zli is described by its Stokes vector I(T, /1, ~2), with the notations (see Tab. 1)

/1 =
cos9, v =

sine
=

fi, (2,3)

Along the lines of reference iii, the RTT equation reads

where the vector source function FIT, /1, ~2) is defined as

FIT, /t, ~2) =

/
~),

/ ~) Pl/t,
~2,

/t', ~2') ITT, /t', ~2'), 12.5)

with the Rayleigh phase matrix P(/1, ~2, p', ~S') being the matrix describing a scattering event,
expressed in the fixed frame related to the sample. Its explicit form will be given in equa-

tions (2.10, 2,11).
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The RTT equation (2.4), with appropriate boundary conditions, leads to the following linear

integral equation for the source function, referred to as the Schwarzschild-MiIne (SM) equation

r IT, ~, ~J) =
Pi~, ~J, ~a, ~Ja) Iae-~/»a

+ /~ d~, /~ jj)
/~~ ((e-i~-~')/P'pi~, ~, v, ~,) riT,, v, v)

o o o

+ /~°° dT, /~ jj)
/~~ (jj'e-i~'-~)/»'pi~, ~, -v, ~,i riT,, -v, v)

~ o o

+ /~°° dT, /~ jj)
/~~ ((e-i~+~'>/»'Ri~,) pi~, ~, ~,, vi ri/, ~~, ~~). 12.6)

The right-hand side of this equation has the following interpretation:

.
the first line is the exponentially damped contribution, with a suitable normalization jig,20],

of the incident beam, characterized by an incident direction lea, ~2a) and a Stokes vector Ia;

.
the second (third) line is the b~lk contribution of diffuse light scattered from a smaller (larger)

depth T';

.
the fourth line is the layer contribution of diffuse light scattered from depth T' and then

reflected at the boundary IT
=

0). The effect of the boundary is described by a
reflection

matrix R(/1) and a transmission matrix T(/1), namely

[rjj (/1)
~ 0 0 0

~~~~ ~~
~~

~

Re (rjj
(/~ri Ill) * Im (rjj

(~)ri Ill) *

~~ ~~

0 0 Im(rjj (/1)ri (11) * Re (rjj (/1)ri (11)*

(tjj (/1) ~ 0 0 0

~~~~ ~ ~~
~~

~

Re (tjj
(/~ti Ill) * Im (tjj

(~)ti
(11) *

0 0 Im(tit(JJ)tiiJJ)*) Re(tit(JJ)ti(JJ)*1

In these expressions rjj (/1), ri Ill) and tjj (/1), ti Ill) are the Fkesnel reflection and transmission

amplitude coefficients, respectively. The latter only depend on the inner incidence angle 9 and

on the index mismatch m, according to

rii ~~)
"

+

)fi,
ri ~~)

"

@
+

)),

t(P)
~lfiv~ ti(P)=~m~

(2.8)

In the case of partial reflection (see Tab. I), these coefficients are real, with absolute values

less than unity. In the case of total reflection, the reflection coefficients are pure phases, I.e.,
complex numbers with unit modulus, while the transmission coefficients vanish by convention.

The first t,vo diagonal elements of the reflection matrix R(/1) of equation (2.7) read

)till/t))~
=

Rii(/t)
=

i Tiil/t), )ri(/t))~
=

Ri(/t)
=

i Ti(/t), (2.9)

in terms of the Fresnel reflection and transmission intensity coefficients.
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It is advantageous to expand the ~2-dependence of all quantities in the complex trigonometric
polynomials (eik~), with -2 < k < 2. We thus set

2 2

1(~, ~J) =

~j Ilk) ip)e~k~, r(~, ~Ji =

~j r<k>ip)e~k~,

k=-2 t.=-2

~

Pltt,~,tt',~')
=

~j Pi~'ltt,tt')e~~i~-~~' 12.10)

km-~

The Rayleigh phase matrices read

2(1 p~)(1 p'2) + p~p'~ P~ 0
11

3 /1'~ l 0 0
P~°~(ll>11')

" j
~j 0 0 0 '

0 0 0

t~t'~

2/1/1' 0 ill 0

Pl~'(~J. ~J') =
Pl~~~*(/t, /1')

= ~vv' _~~,
0 0 0

~

P~~'(/1> /1~) =

Pi 2)*(~, /~
~

~~lll ~l~ i~[ji
~~~~'~ ~/ ~~'~ '

~~'~~)

and the SM equation (2.6) splits into the following five decoupled integral equations
(-2< k<2)

rlk>
j~~ ~j

~

pjk>
~~ ~~) ~~~-ik~«-tpu

~
~

d~'
~

dP'~-U-~')/P'plk)j~ /) ~jk)j~' /)
2p' '

+ /~~ dT' /~ ~~'e~"'~~~fi'P~~~ (p, -p') rl~~ IT'. -p')
~ 0

2p'

+ /~°~ dT' /~ j~) e-i~+~"/»'Rip') Plki jp, p'j ri I) IT', p'). j2.12)

2.3. SOLUTIONS TO THE SM EQUATION AND SUM RULES. We now turn to the analj-sis of

the solutions to the SIT equation (2.6). We shall investigate their general symmetry properties,
and show that they- obey some remarkable sum rules.

ive start by introducing the matrix Green's function G(T, ~J, ~2, T', /1', ~2'), defined as being
the solution, which remains bounded as either T or T' goes to infinity, of the SM equation with

a matrix d-function source term, namely

GIT, /1, ~, T', /1', ~2') =
P(/1. vJ, /1', ~2')dlT T')

+ /~ dT" /~
~))

/~~
~l'e-l~-~"i/P" Pj~, ~, ~", ~" G IT", ~", ~g", T', ~', ~g')

o o 211 o
2~

+ 1+~ dT,, i~ iii i~~
ii

e
i~ ~> Iv pi/~, ~, /~, ~~ ~i~,,, ~,, /, ~,, ~,, ~~ i~i~~

+ l~°~ dT l~ II l~~ II'ei~+~"'/~" R1ll) P1ll ~211. ~2i GIT /1> ~5 T ~ ~5)
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The source function FIT, ~J, ~2), solution of the SM equation (2.6), is then given by

FIT,11, §~) "
FIT, /l, ~9, /la, §~a) 'Ia, (2,14)

where
+oc

rl~'tl,
§~< tla, §~a) "

/ dT'e~~'/"° GjT, p, §J, T', Jla< §~a). 12.15)
o

We also define the matrix of bistatic coefficients, or bistatic matrix for short

+«

7(Pa,§~a,ilb,§~b)
"

/
dTe ~~~~F(T,-J1b;§~b,ila,§~a)

0

+« +«

=

dTe~~fib dT'e~~'/~"G(T,-ltb,~sb,T',lta,~sa). (2.16)

The invariance of the Rayleigh scattering mechanism under time reversal implies the follo,v-

ing symmetry- properties of the quantities defined so far. We introduce the constant matrices

1 0 0 0 1 0 0 0

~~ l)2
'

~~ -~/2
'

~~'~~~

0

0 0

/2~
0

0 0

/2~

the matrix K being denoted by- Q~~ in reference iii. The Rayleigh phase matrix P(lt, ~2, lt', ~2')
has the symmetry property ii, j

=
1,

,

4)

(K P)~j (tt, ~2,
tt', ~2') =

(K P)j~ (tt', ~2', tt, ~2),

IL P)~j (tt, ~2,
tt', ~2') =

IL P)j~ (-tt', ~2', -tt, ~2). (2.18)

It then follows from their definitions (2.13, 2.16) that the matrix Green's function and the

bistatic matrix obey the symmetry relations ii, j
=

1,
,

4)

lK G)
u

IT, Jt, ~g,
T'. Jt', ~g') =

jK G j~ IT', Jt', ~g', T, Jt, ~g),

IL G)
~j

fi, Jt, ~o,
T', Jt', ~o'j

=
IL G)j~ IT', -Jt', ~g'; T. -Jt, y7),

IL 7)u (tt, ~2, /1', ~2') =
IL 7)j~ iii'; ~g', Jt, ~j. 12.19j

We now investigate the asymptotic behaviour of quantities deep inside the medium, I.e., for

T ~ +cc. It is expected on physical grounds that the diffusive medium depolarises the incident

radiation, so that both I(T, /1; ~2) and FIT, /1, ~2) become proportional to the Stokes vector of

natural (unpolarized) light, namely [27]

1

Inai
=

(2.20)
0~

This assertion will be made quantitative in Section 3, where the extinction lengths of the all oth-

er modes will be determined. The asymptotic behaviour of the matrix solution FIT, /1, ~2, /1o, ~2a

then assumes the form

Ti(lla) T2(lla),0 0

FIT> ~> §~,~a> §~a) ~

~~~~ ~~~°~
jr ~ +CC). (2.21)

0 0 0

~
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Furthermore it should be noticed that the homogeneous SM equation (2.6, 2.12), without a

source term, has a vector solution FH(T, /1) in the ~2-independent (k
=

0) sector, growing
linearly as T ~ +cc. We shall refer to the latter solution, normalized as

FH(T>~) ~ IT + T0)Inat> (2.22)

as the homogeneous solution, for short.

The constant To and the functions Ti (11) and T2 Ill), which show up in equations (2.22, 2.21),
respectively, are unknown so far. It will be shown that they bear the full non-trivial dependence

of the physical observables on the index mismatch. They will also be determined analytically

in the absence of internal reflections (Sect. 3) and in the large index mismatch regime (Sect. 4).
For the time being, we pursue our investigation of general properties. The special and

homogeneous solutions to the SM equation in the k
=

0 sector can be related among themselves

as follows. The column vectors of the matrix Green's function obeying equation (2.13) become

proportional to the homogeneous solution, as either T or
T' goes to infinity:

~,fl~~ G))'(T, ~t, T', ~t')
=

(
(rH)i IT, ~t) (I, j

=
1,

,

4), 12.23)

where the constant D will be determined and interpreted in a while. As a consequence of the

above definitions, we have

~)~'(/1a, llb) 1 /~" ~ ~-fl~~(r ~) j~ _/~~) (i, j
=

1, 2). (2.24)~iilLa)
" ~~%~

/~b
~ m

0

~
~

We end up by deriving two groups of sum rules obeyed by the quantities defined above,

which are related to the F- and K-integrals, with the notations of reference iii.

.
First, we consider the F-integral, defined as

F(T)
=

/~ ~~J
/~~ () (Ii (T, ~J, ~) + I~(T, ~J,

J).) 12.25)

The RTT equation (2.4) implies dF/dT
=

0, expressing thus the conservation of the flux in the

z-direction. We consider first the F-integrals Fi and F2 associated with the special solutions

rii and r12, I-e-, the first two column vectors of the matrix (2.15). The
T ~ +cc limit

determines Fi
"

F2
"

0; the T =
0 values then yield the sum rules

~ )
((il/l)Tf)l'l/l, /la) + Tll/l16'f)l'l/l, /la)j " /la,

/~ )
(Til/l)Tf)(~ll~>

/la) + Tll/l16'f[[~l/l> /la)j " l~a. (2.26)

The lta ~ +cc limit of these equations, using equation (2.24), yields

/~ ) Iii ill)Ti Ill) + Ti[11)T2[11)j "
1. 12.27)

Similarly, we consider the F-integral FH associated with the homogeneous solution rH. This

does not yield any independent sum rule, but rather leads to the determination of the unknown

constant D, namely

~ ~' ~~'~~~
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to be interpreted as the dimensionless diffusion constant, I-e-, Dphys
"

ci13 in physical units.

.
Second, we consider the K-integral, defined as

KIT)
=

/[ ~~J2
j~~

(j (Ii IT, ~J, ~g) + I~ IT, ~J,
g)j 12.2gj

The RTT equation (2.4) implies dK/dT
=

-F, whence KIT)
=

-FT + Ko, with Ko being a

constant. Along the lines of the above derivation, we obtain the sum rules

~ )l~ Iii + Rii ll~))Tf)(~ll~> l~a) + Ii + RI (l~))Tf)[~ ll~, l~a)j " (~l ll~a) + l~l,

/ ~ )
/~

Ii + R[( i/~) l'fll~ i/~, lLa + Ii + RI iP) l'fll~ ill> Pa II " T2 (Pa + Ill 12 .3°)

and

/~ )P
Ill + R[) lP))Ti [P) + Ii + Ri[P))

T2 lP)j " To- 12.31)

The sum rules (2.30, 2.31) express that the multiple-scattering problem in a semi-infinite sample
is invariant if a finite slab of any thickness is added, or removed, from the sample iii.

2.4. DIFFUSE REFLECTED INTENSITY. The diffuse reflected intensity for a semi-infinite

sample can now be calculated, along the lines of references [19-21]. The incident radiation

is characterized by the direction (9a,~2a) and the Stokes vector Ia; the reflected radiation is

detected in the direction (9b, ~sb) and in a polarization state characterized by the Stokes vector

Ib. Our prediction for the mean reflected intensity per solid-angle element reads

~~~~ ~~ ~~ ~~~'~~'~~' ~~~
~~~~)

pb
~~~ ~~~~~~ ~ '~~~~' ~~'~~' ~~~ ~~~~

~~~~

12.32)
In the absence of index mismatch we obtain the simpler expression

A~ lea §~a 9b §~b) "

~
(Ib jL 'flpa §~a pb §~b) Ia 12.33)

2.5. DIFFUSE TRANSMITTED INTENSITY. The diffuse transmitted intensity through an

optically thick slab 16 » 1) can also be calculated along the lines of references [19-21]. A first

step consists in building up the solution r16, T, p, ~2, pa, ~2a) of the SM equation pertaining to the

thick-slab geometry. This solution can be expressed in terms of the solutions FIT, p, ~2, pa, ~2a)

and rH IT, p) pertaining to the semi-infinite geometry, by means of a matching procedure. It

turns out that only the Ii, 2) sector of the matrix solution matters, since all the other matrix

elements are exponentially small in the optical thickness b. We thus get Ii, j
=

1, 2)

r~j (T, p, ~2, pa, ~2a
~ ~~~ (rH )~ (T, p) IT finite, b T » I),

rip (b> T> p> §~> pa §~a) *

~ ~~~

~+~o ~~~~~~~ ~' ~~ ~~ ~ ~~~~~' ~ ~ ~~

(2.34)

Both expressions lead to a linear (diffusive) behaviour in the bulk of the sample IT » I,

b T » I), namely

rip16> T> p> §~> pa> §~a) *
ll~~ ~Tilpa) Ii> )

" 1>
2). 12.35)
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The mean diffuse transmitted intensity through an optically thick slab can then be derived

explicitly, again along the lines of references [19-21]. The incident radiation is characterized

by the direction lea,~2a) and the Stokes vector Ia. The transmitted radiation is detected in

the direction (9b,~sb) and in a polarization state characterized by the Stokes vector Ib. Our

prediction for the mean transmitted intensity per solid-angle element reads

~~~i~ ~~
~b ~i~~~

'

~~'~~~

With

A~19a> 9b)
"

~~
~~~~ (IbjAlpa> pb)jIa ). 12.37)

The matrix Al /1a, /1b) has non-zero elements only in the Ii, 2)-sector, namely

T((i/La)Tli/La)j[i/Lb)Tli/Lb) T[[i/La)Tli/La)Tli/Lb)T21/Lb) ° °

~j~~~ ~~~ ~

Tli/La)T21/La)T((i/Lb)Tli/Lb) Tli/La)T21/La)Tli/Lb)T21/Lb) ° °
j~ ~~~

~

2.6. ENHANCED BACKSCATTERING CONE

2.6.I. Generalities. In the regime I « I of interest, the enhanced backscattering phe-

nomenon takes place in a narrow cone around the exact backscattering direction, of angular
width of order ill. As recalled in the Introduction, the shape of the cone of enhanced backscat-

tering for a semi-infinite medium is given by the sum of the cyclical, or maximally-crossed,
diagrams. This summation can be performed by means of an adaptation of RTT. This property
has been exploited extensively in the case of scalar waves

[6,7,19-21]; it has been extended

more recently to polarization effects for electromagnetic waves ii?,18].
We restrict ourselves to a

semi-infinite medium and to normal incidence lea
=

0). We define

the dimensionless transverse wavevector of the outgoing radiation as

Q
=

qi, (2.39)

with a magnitude
Q

=
qi

=
k19

=
ki191, (2.40)

with 91 being the observation angle. We assume for definiteness that the vector Q is parallel to

the z-axis, namely Q
"

QR, with Q > 0. In order to cure the ill-definedness of the co-ordinate

system at strictly normal incidence, we choose to give the initial wavevector an infinitesimally
small positive component along £. We thus set 9a

=
0+, ~2a =

0, so that #
=

R and ~3 =
f.

We then introduce a Q-dependent matrix of bistatic coefficients, 7~j IQ, /1a,~2a, /1b,~sb). The

latter is defined, in analogy with equation (2.16), in terms of the matrix source function
r~j IQ> lL,§~>lLa> §~a). This matrix solves the Q-dependent SM equation, obtained by replacing
in equation (2.13) the exponential damping factor exp(-Tll1') by exp Ii iQ n)T/p'),
where n is the unit vector in the direction IS', ~2'), so that Q

n =
Qv'cos ~2'.

We now turn to the explicit shape of the enhanced backscattering cone. It can be ex-

pressed Ii?,18] in terms of the values at normal incidence of the bistatic coefficients, 7u IQ)
=

7v IQ> Pa "
1, ~2a =

0, pb "
1, ~2b "

0). To be more specific, the total reflected intensity near

the backscattering direction, I.e., for 9 < 1, kt » I, and Q
=

k19 > 0 fixed, reads

AIQ)
=

A~ + A~ IQ) ASS
= ~~~)

~~~
(I~ )L j7~ + 7~ IQ) 7~S )Ia). 12.411
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.
The first term in equation (2Al), given by the sum of the ladder diagrams, coincides with

the expression (2.32) for the background reflected intensity. At normal incidence it assumes

the general form

711 712 0 0

7~
"

~(pa
"

1, ~9a "
0, pb "

1, ~9b "
0)

"

(~ ~(~ ~

,

(2.42)
712 711

0 0 0 ~44

where the three constants ~ii, 712, and 744 only depend on the index mismatch.

.
The second term in equation (2.4I) is given by the sum of the maximally crossed, or cyclical,

diagrams. It represents the contributions of the interference between the sequences of any
number IN > I) of scattering events and their time-reversed counterparts. At normal incidence

we have Ii?,18]
711(Q) 712(Q) 0 0

~~~~~~'~~~~~~
~~~~~~ 33~Q)

'
~~'~~~

0 0 0 144 IQ)

with

ii2lQ)
=

17441Q)
7331Q))>

133 (Q)
= )17331Q) + 7441Q)1 712 (Q)>

1441Q)
=

17331Q)
+ 7441Q)1 + 712(Q). 12.44)

.
The subtracted third term in equation (2.41) is the contribution of the single-scattering

(N
=

I) events, which are their own time-reversed counterparts, and must not be double-

counted. At normal incidence it reads

1 o o o

ss
3 ° 1 ° ° (2.45)7 =j o o -i o

o o o

i~

The actual calculation of the Q-dependent bistatic matrix 7(Q> Pa §~a fib, §~b) goes as follows.

By expanding the Q-dependent SM equation in the trigonometric polynomials (e~~~), we

obtain the following system of coupled equations (-2 < k < 2)

r(~~(T, p)
=

P~~~(p, pa) Iae~~~~~~~/~~

+ £~dT£~ Ill ei~~~/~Pik~
(J~> J~)

~

~
ikJJk-J iQiT T)v/~iriJ~ (T> ~)

+ /°°dT l~ ll'e~~'~~/~'P~~~ (~L>
-~L)

~

~
i~~ JkJ iQ(T T)v/l~i r~~~ (T l~)

+
/"d/ /

(~(e-i~+~')/~'R(~~) Pik)(p, p~) ~ ik-JJ~-j (Q(T + T')v'/p'lrlJ~ (T', P')>

o

~

l~

~-2

(2.46)
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where
v has been defined in equation (2.3), and where the Jn(z)

are the Bessel functions, which

admit the integral representation

I"Jn(z)
=

/ ~~ exp(iz
cos ~2 in~2), (2.47)

~~
2~

and possess the symmetry property

J-niz)
=

Jni-z)
=

i-i)"Jn(z). 12.48)

2.6.2. Linear Polarizations. We now investigate the case where the initial beam is linearly
polarized, and a linear polarization of the outgoing beam is detected. Let ifia and ifib be the

respective angles between the directions of the polarizations and the direction of the Q-vector,
I.e., the positive z-axis. The corresponding Stokes vectors read

COS~ lfia COS~ lfib

~~
~~~~()

'

~~
~~~~~)

~~'~~~

0 0

By inserting these expressions into the results (2.41-45),
we obtain that A~ and ASS only

depend on the relative angle

~
= ifib ~la (2.50)

between the directions of both polarizations, namely

AL
=

~j~l
i~~

1711 C°S~ i~ + 712
Sin~ ~i

A"
-

~jml
1)4

~°~~ ~' ~~~~~

whereas A~(Q) depends separately on both polarization directions:

~~ ~~~ ~(~ i)4
711 IQ) C°S~ ~fia C°S~

~fib + 722 (Q) Slll~
~fia

Slll~
~fib

+ (2'f12 IQ 'f33 IQ) 'f44 IQ COS lfia Sin lfia COS lfib Sin lfib

~
1'f44

IQ) 'f33 (Q)) (Slll~ ~fia C°S~
~fib + SIn~ lfib COS~ lfia (2.52)

We define as usual the enhancement factor B(Q)
as the ratio between the total reflected

intensity and its background value:

AL ~ Ac jQ) ~ss
B(Q)

" ~~
(2.53)

Right at the top of the backscattering cone, corresponding to the exact backscattering di-
rection IQ

=
0), the expressions (2.41, 2.43) simplify to

~~~~~ ~(~~ i)4 ~~ll ~~ll ~ ~12 ~44) Slll~ i~) (2.54)
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The enhancement factor thus reads

The maximal enhancement factor Bjj is observed for parallel detection, I.e., ~
=

0, whereas

the minimum Bi corresponds to perpendicular detection, I.e., ~
=

+~/2. These extremal

values read

Bjj =
2

~

,

Bi
"

'~~~ ~'~~~ ~'~~~
12.56)

4711 2712

A celebrated and universal feature of the enhanced backscattering cone is the triangu-
lar shape of its top. Within the present formalism, and in analogy with previous studies

[19-21], this phenomenon is described as follows. For Q « I, and for I, j
=

1, 2, the solution

r$~ IQ, T, /1) of the Q-dependent SM equation has a term linear in Q that is proportional to

the homogeneous solution (rH)~ IT, /1), namely

rv IQ, T, ~L) =
ru IT, ~L)

Ci QlrH)~ IT, ~L) + OIQ~) Ii, J
= 1>

2). 12.57)

The constants C~ are then fixed by requiring that the above solution falls off as
exp(-QT) for

QT » I. This general property will be checked explicitly in Section 3 in the absence of internal

reflections. We thus obtain Ci
"

C2
=

Till)
= T2 Ii),

so that

7~j IQ)
= 7v (Till)~ Q + OIQ~) Ii, J

=
1, 2), 12.58)

and finally

~4~iQ)
=

-4~10)
1 (

+

IQ~))
12.60)

The sharpest cone, namely the smallest width AQ> is observed for parallel detection, I-e-,

~
=

0, where we have

~Q(( ~())~2' ~~'~~~
i

The universal features of the top of the enhanced backscattering cone described so far only
depend on Q and ~. The full shape ofthe enhancement factor B(Q) weakly depends separately

on the directions ifia and ifib of both polarizations. This phenomenon will be illustrated in

Section 3.2 in the absence of internal reflections.

2.6.3. Circular Polarizations. We end up by investigating the case of circularly polarized

beams at normal incidence. The corresponding Stokes vectors now read

l/2 1/2

Ia
"

~~
,

Ib
"

~~
,

12.62)

aa ab
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where the helicity is aa =
I (respectively, aa =

-I) if the incident beam has a left (respectively,
right) circular polarization, and similarly for the helicity ab of the detection channel. By

inserting these expressions into the results (2Al-45),
we observe that the various backscattered

amplitudes only depend on the relative helicity

I
= aaab, (2.63)

according to

~SS
=

~
ji z)

~(ill +1)~ '

~~
" ~jm

)
1)4 ll~~~ ~ l~~~ ~ l~~~~~'

~~~Q) ~j~[
~~4

~~~~~~
~ ~~~~~~ ~~~~~~ ~'~~~~~~

+ (2712 IQ) +'f33 IQ) +'f44 IQ)) ~j (~.fi~)

The enhancement factor Bz(Q), defined in analogy with eiuation (2.53), is larger for the

helicity-preserving channel IL
=

1) than in the channel of opposite helicity IL
=

-1). In

particular, right at the top of the cone, we
have

Bi
"

2, B-1
=

~~~~ )~ ~~~ ~~~
(2.65)

'fit ~12 ~'f44

The maximal value of the enhancement factor in the helicity-preserving channel is exactly equal

to two, because A~
=

A~(0) and the single-scattering contribution vanishes. Corrections to

this exact factor of two for denser diffusive media (ill not very large) have been measured in

a recent experiment [28], and given a theoretical interpretation in terms of recurrent double

scattering [29].
Another consequence of the result (2.64) is that the characteristic triangular shape of the

cone only shows up in the helicity-preserving channel. The associated width, defined in analogy
with equation (2.60), reads

~~~ ~~~~~~~/)~
~~~~

~~'~~~

3. Exact Solution in the Absence of Internal Reflections

This section is devoted to the exact solution of the various SM equations introduced in Section 2,
in the case where there is no optical index mismatch between the sample and the surroundings,

so that there are no internal reflections: the reflection matrix R(/1) vanishes. Therefore the

SM equations (2.6, 2.12, 2.46) involve convolution kernels, which only depend on the difference

of optical depths T
T'. The problem is, however, still non-trivial because of the semi-infinite

geometry (0 < T < +cc). We have found it worthwhile to expose a self-contained derivation of

the Wiener-Hopf technique, and of the results known previously, and already exposed in the

book by Chandrasekhar Iii.
The vector RTT problem is considered in Section 3.I. The outcomes concerning diffuse

re-

flection and transmission are compared in detail with those corresponding to multiple isotropic
scattering of scalar waves [19, 20]. Section 3.2 deals with the enhanced backscattering phe-

nomenon. We derive closed-form expressions for the five functions describing the full shape of

the enhanced backscattering cone, up to the numerical solution of the 9 x 9 system (3.74). The

present analysis thus goes one step further than the recent work by Ozrin [18].
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3.I. DIFFUSE REFLECTION AND TRANSMISSION. In this section we derive the exact so-

lution to the SM equations (2.6, 2.12) in the absence of internal reflections, obtaining thus

predictions for the diffuse reflected and transmitted intensity. We introduce the following
parametrization

AjT) + BjT)ji ~L2)

r1°~ IT, ~)
=

~)~
,

CIT)~
D(T)~

r(1)
~~, ~)

=

ri-1) *

~~, ~)
= ~

°

,$)(~
~~

rl~'(T> ~)
=

r~~~~ * (T, ~)
=

F(T) j)~
,

(3.1)

o

where v
has been defined in equation (2.3). The functions A(T), ,F(T), obey the integral

equations

~4 =

~
(/1(Ii +12 )e~~/~~ + (Ma + M2)

* A + (M2 M4)
* B),

B
= (((2 3/1()Ii -12)e~"~~ + (Ma 3M2) * A + (2Mo 5M2 + 3M4 * B),

C
= ((/1aI4e~~/~" + M2 * C),

D
= (va(2paIi + iI3)e~"~~ + (JIO + M2 2fiI4) * D),

E
= (vaI4e~"~° + (Ma M2 * E),

F
=

~
((p(Ii 12 + ipaI3 )e~~/"~ + (Ma + 2M2 + M4 * F), (3.2)

where the brace shows that the equations for A(T) and B(T) are coupled, while the other

four are decoupled. In the above equations, the star denotes the convolution between a kernel

M(T T') and a function A(T), defined as

(11 ~ A) (~)
= /~°° M(~ ~'iAj~')d~'. 13.31

The kernels entering equation (3.2) are the following even functions

M2pIT)
=

/~ ~~p~Pe~'~'/" (3.4)
~

2p

3.I.I. Preliminaries. As recalled above, the integral equations (3.2) are exactly solvable

because of their convolution structure, which suggests to utilize the Laplace transformation.

Along the lines of references [19-21], the Laplace transform of a function A(T) defined for

0 < T < +cc will be denoted by a(s) (the corresponding lower-case letter), and defined as

+m

a(s)
=

/
A(T)e~~dT, (3.5)

0
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while the Laplace transform of the kernels M2p(T) read

m2P13)
-

[
M2P(T)e~~dT

=

~
dl~i ~l~~ 13.6)

I-e-, explicitly,

~°~~~
s

~~
~

~'

m2(s)
=

(mo(s) 1),
s

Dl4(3)
"

~0(8)
~~'~~

3

We also define for further use the following linear combinations of the above kernels

ji(s)
=

1-
~ jmois) m~is)j,
4

#~(s)
=

l ((mo(s) m2(s))
,

s

4~is)
=

1- (mars) + m~(s) 2m41s)),

44(s)
=

1 lmo18) + 2m218) + m418)1,

~~~~~
~~~~~'

~~ ~~

which we shall refer to as
the kernel functions. Both the kernels m2p Is) and the kernel functions

#n(s) are even functions of s, analytic in the s-plane cut along the real axis from -cc to -1

and from +I to +cc.

In the following we shall need to factorize the #n (s) into the corresponding so-called Wiener-

Hopf H-functions, defined from reference iii by the identity

4n(s)
= ~ j~~

(
~_~~

(n
=

1,
,

5), (3.9)

together with the condition that Hn(s) is analytic in the left half-plane Res < 0. Consider

first the case of a rational function of the form

Mfl
(S~ z()

#(s)
= ~(~

,

(3.10)

fl(8~ p()
b=1

with 2M zeros and 2N poles at arbitrary positions, with Re za > 0, Re pb > 0. The factorization

(3.9) is elementary in this case, and the associated H-function reads

N

fl(~ Pb)

His)
= ~jj~

(3.ll)

fl(8 za)

a=1
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This expression can be recast as a complex contour integral, yielding thus an explicit repre-
sentation of the H-functions in the general

case:

where the
vertical contour can be placed at Rez = 0. In the

present
case it

especially for
the

f
numerical aluation,

to change ariables

H~(s)
= exp

~ ~~~
dfl

~

~~~"~~~
(Re s < 0), (3.13)

~ o
sin fl + s2 cos2 fl

with

~~~~~~i~i~~~~~i~~~~

ii~~iit~
fl ~i

~~~~~_~ ~ ~
3 ~~t2 p(p cot fl II

The following ,~alues of the H-functions will play a role hereafter. First, the kernel functions

have the following series expansions around the origin

3
2 ~ #3 Is)

"

(
~~~ ~

'

l
2 ~,

,

j2 IS)
" j ~ I~

j3,15)

ii IS)
" j fi~

1 3
2 ~,~ ~

3 23~2 +
,

45(8)
" § 10~

Equation (3.9) yields Hn(0)
=

if /@, hence

Hi (0)
=

V§, H2(0)
=

V$, H3(0)
=

H4(0)
=

~~, H5(0)
=

V§. (3.16)

Second, for large s, namely (s( ~ +cc with Re s < 0, the functions Hn(s) with n
# 2 go to

unity, while we have H2(s) m -s.
Finally, the values of the H-functions at s =

-I can be

accurately determined from the integral representation (3.13, 3.14). We thus obtain

Hi(-I) =1.277973, H2(-1)
=

3.469485, H3(-1)
=

1.465877,

H4(-1)
=

1.396 266, H5(-1) =1.203 622. (3.17)

3.1.2. Homogeneous SM Equation and Diffuse Transmission. The solution to the homoge-

neous SM equation is a priori of the form

AH IT) + BH(T) Ii ~L~)

r~j~, ~~ =

AH(T)
j~ ~~~
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We deduce from the integral equations (3.2) for the functions AH IT) and BH IT), in the absence

of source terms, the following equations for their Laplace transforms aH Is) and bH Is)

1( mars)
~is))

a~(s) + (m41s) m~ is)) b~is)
=

A~is),

13m~ is) ma is)) a~ is) + (( 2moisi + sm~isi + 3m4 is)) bH(si
=

BH(s), 13.19)

with right-hand sides

AH Is)
=

/ ~~)~

~~

(ma It) + m2(t))aH(t) + (m2(t) m4(t))bH(t)j,

BH(s)
=

/
~ ,)~ ((ma It) 3m2(t))aH(t) + (2mo(t) 5m2 It) 3m4(t))bH(t)j. (3.20)

On the other hand, the asymptotic behaviour (2.22) implies

~H(8)
"

)
+ ~(~) IS ~ °)> (3.~l)

while bH(0) is expected to be finite iii this limit.

The determinant of the 2 x 2 linear system (3.19) can be factorized as (16/9)#1(s)#2 Is).
This system cali be put in diagonal form by looking for linear combinations of the lines of

equation (3.19) involving only #i Is) or #2 Is) acting on the unknowns. We thus get

#i (s)aH(s)
=

~
((3 2s~)AH(s) + BH(s)), (3.22a)

8s

§~2 IS) ((1 8~ )bH(8) 8~~H(8)) " (~H IS) + ~HIB)) (3.~~~)

We now solve these equations by means of the so-called Wiener-Hopf technique. We consider

first equation (3.22a), and we start by investigating the case where #i Is) is a rational function

of the form (3.10), with zeros at s =
+zi,a and poles at s =

+pi,b. We observe that aH(s)
is regular for Re s < 0, while the right-hand side of equation (3.22a) is regular for Res > 0.

Moreover, equation (3.20) implies that this right-hand side grows at most linearly as s ~ -cc.

Hence the solution of equation (3.22a), normalized by the condition (3.21), reads

Nfill 8/vi,b)

~~~~~
2~~ N~ 2~~ ~~~' ~~'~~~

fill 8/Zl al

a=1
'

where c is a constant, yet to be determined. Similarly, the solution of equation (3.22b) reads

bHIs)
=

~

(l
cs)~j~ qH2(s)), (3.24)

where q is another constant. The notation c and q follows reference Iii. These two constants are

determined by expressing that the right-hand side of equation (3.24) remains finite as s ~ +1.

We finally obtain
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Table II. Comparison of variow q~antities of interest, defined in Section 2, from the known

exact sol~tions in the absence of internal reflections. First row: isotropic scattering of scalar

waves, from reference fig). Second row: Rayleigh scattering of electromagnetic waves (Sect. 3

of this work). Third row: relative difference of second case with respect to first one.

isotropic scattering Rayleigh scattering ~jy~(scalar waves) (electromagnetic waves) °

())(/((() To =
°.71° ~~~ ~° ~

~'~~~ ~~~

~~~j~~~~~~
1~~~~, (ii

=
2.518 237 ~~ ~~~ "

~'~~~ ~~~
~~ ~ ~~ ~ ~~

j(~(((~ ~(i, II
=

4.22768~ l~~~ ~ ~~~ ~'~~~ ~~~

~~~~~~~~~~t Bjj =
1.752088 -6.9

B
=

1.881732
at t°P ° Cone Bi

=
2 6.3

Of
t~~C°r'e ~~ ~~~

~~~~

=

.~~~ ~~ ~

The representation (3.13, 3.14) permits a numerical evaluation of these numbers, and of all the

subsequent quantities, with arbitrary accuracy. We thus get

c =
0.872 941, q =

0.487 827. (3.26

It is worth noticing that the exact solution derived above does not require to determine the

auxiliary functions AH (s) and BH(s) explicitly.
The observables of interest can now be deduced as follows.

.
The constant To is obtained by comparing the result (3.23) with the expansion (3.21), namely

This number is remarkably close to the celebrated value for isotropic scattering of scalar waves,

recalled in Table II.

.
The functions Ti(11) and T2(11) are obtained from their definition (2.24), yielding

Til/~)
=

(aHl-lll~) + Ii /~~)bH(-lll~)), T21/~) = (aHl-I/~L)> 13.28)

I-e-, explicitly,

Ti(/1)
= )q/1~H2(-ill1), T2(/1)

= ~~t(/1+ c)Hi(-i/~t). (3.29)

In order to make a comparison with the case of scalar waves, we must take into account that

the above results describe a single polarization state, and should be compared with half the

corresponding quantity for isotropic scattering of scalar waves, determined in references [19,20],
and denoted there by Ti(/1), and hereafter by Tsca,(~J). At nearly grazing incidence, both
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3.0

z.5

z-o

$1.5~

i-o

o.5

~0 0.2 0A 06 0.8 1-o

/L

Fig. I. Plot of angular dependence of transmitted intensity in the absence of internal reflections,

against ~J =
cos6. Full lines: ri(~L) (lower curve) and r2(~L) (upper curve), corresponding to both

polarizations channels for Rayleigh scattering (this work). Dashed line: meal(p)/2, corresponding to

half the result for isotropic scattering of scalar waves, from reference [19].

functions Ti(P) and T2(p) vanish linearly, according to

while in the scalar case we have Tsca,(/1) /2 m
(vi12)/1

=
0.866025 /1. At normal incidence,

both functions take the common value

~~~~~ ~~~~~
nil+~lll-11 ~~~~~~~ ~~~~~

which is again very close to the corresponding number in the case of scalar waves (see Tab. II).
The full functions Ti(11) and T2(11) are plotted in Figure 1. They hardly differ from each other,
and from half the corresponding scalar quantity Tsca,(/1)/2.

In order to underline the main novelty with respect to the scalar case [19,20], namely
polarization effects, we plot in Figure 2 the degree of polarization PI defined in equation (.2.2),
which reads in the present case

p
T2 l~L) Ti l~L) j~ ~~~~ "

T2 (~L) + Ti l~L)

This quantity has a maximum at grazing incidence, namely

and vanishes at normal incidence, as it should.
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o.15

o lo

o,05

0
0 0.2 0A 0.6 0.8 1.0

/L

Fig. 2. Plot of angular dependence of degree of polarization P(~J) of diffuse transmitted intensity,
in the absence of internal reflections, against ~J =

cos6.

3.1.3. Inhomogeneous SM Equation and Diffuse Reflection. The special solution of the full

inhomogeneous SM equation can be derived by solving the six equations (3.2), along the lines

of the previous subsection.

Let us begin with the functions A(T) and B(T). Their Laplace transforms a(s) and b(s) still

obey equations of the form (3.19), albeit with the contributions of the source terms in their

right-hand sides:

Ajs)
=

(~(Ii + I~)
~j~~

+
/ ~~(~_

~~
((mo(t) + m2(t))a(t) + (m2(t) m4(t))b(t)j,

B(s)
=

((2 3~()Ii I~) ]j~~

+
/ ~~(~_

~~
limo it) 3m2 it)) ait) + (2mo(t) 5m~ it) 3m4 it)) bit)] 13.341

These equations can be solved by means of the Wiener-Hopf technique, along the lines of

the previous subsection. The undetermined constants can be fixed in terms of c and q, given
by equation (3.25), and we finally obtain

The other four functions C(T), .,F(T) are easier to determine, since the last four lines

of equation (3.2) are uncoupled. We thus obtain the following closed-form expressions for
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their Laplace transforms

~~~~
l

~~~ia
~~~~~~~ I~ I/lla)>

d(8
3 llava12/laIl + iI3

4 1 8/l~
~~ ~~)~3 (~l llla

)>

~~~~ ~~~~ ~~ ~~~~~ ~~~/lla
)>

jj8)
=

3 tla (/LlIl 12 + iJl~I3

8 1 sjL

~4(8)l£4(~ II jLa). (3 3fi)

The above results (3.35, 3.36) allow us to give the following expression for the full bistatic

matrix in the absence of internal reflections:

2

'f(/La>§~a>/Lb>§~b)
"

~ 'f~~~(/La>/Lb)e~~~~~ ~~~> (3.3i)

k=-2

with

~~°~(lla>lib)
" )llallb

~ ~
~ /~a/Lb )

~a ~£b Q/~b
~a ~£b o o

~ ~ lla+Pb ~ ~ Vfi ~

Q/La
~a jfb 1

~ ~ /La/Lb
~ ~a jfb o o

~ Vfi ~ ~ ~ lla+lib
~ ~

'

0 0 0 0

0 0 0
~~~~ H(H(

/La + /Lb

-2~Ja~JbH(H( 0 -i~JbH(H( 0

7~~~(/1a> /1b) "
7~~~~~(lla, llb)

"

~

~~~f~~~ _~j ~~a ~b ~i~~ib
~~ ~~ ~~ ~ ~

0
0 ~

/H)~

/l1/l1 ~/ll illa/lI °

'f~~~l/la>/lb) "'f~~~~~l/la>/lb)
"

(~~)~ ~/)~ _/~~ _j(j~ HlHl> 13.38)
~

~~ i
o o~

~

and with the notation H(
=

Hn(-lll1a), H(
=

Hn(-lll1b).
At normal incidence (/1a = /1b =

1, ~2a = ~2b "
0), the above expression simplifies, and it

agrees with the general form (2.42), with

3H)(-1)H](-1) 3H((-1)
~ ~ ~~~'~~~ H/(-1) + 2Hj(-1) ~

8
'~ ~

'

3H)(-1)H](-1) 3H((-1)
'~~~ H)(-1) + 2H](-1) 8

~'~~~ ~~~'

~~4 =

~~~~ ~~
=

-l.086 530. (3.39)
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We now derive a few special results of interest from the above general expressions. First,
neglecting polarization effects, the total diffuse reflected intensity in the normal direction is

given by

'~~~ ~'~~~ ii~~) ~~~( ~)
~'~~~~~~' ~~'~~~

This number is slightly above the corresponding value ~(l, I) for isotropic scattering of scalar

waves (see Tab. II).
The interesting polarization dependence of the enhancement factor at the top of the backscat-

tering cone, described in general terms in Section 2.6, can also be made fully quantitative in

the present case. For linearly polarized beams, the extremal enhancement factors (2.56),
cor-

responding to parallel and perpendicular detection, read

Bjj =
1.752 088, Bi

=
1.120158, (3Al)

while the width of the triangular cone for parallel detection (2.61) is

Aojj
"

0.704 063. (3.42)

For circularly polarized beams, the enhancement factors (2.65) in the helicity-preserving chan-

nel and in the channel of opposite helicity read, respectively,

Bi
"

2, B-i "1.250989, (3.43)

while the width of the triangular cone in the helicity-preserving channel (2.66) is

AQI
"

0.407 487. (3.44)

The most significant of these numbers are again compared with their analogues for isotropic

scattering of scalar waves in Table II.

3.1.4. Extinction Lengths of Non-Diffusive Modes. The exact solution of the inhomogeneous
SM equation in the absence of internal reflections, derived in Section 3.1.3, also allows us to

predict the extinction lengths characterizing the exponential fall-off of the various non-diffusive

polarized components of the intensity of radiation, deep in the bulk of
a

semi-infinite sample.

These quantities do not depend at all on the index mismatch, so that the results derived below

are quite general.
Let us take for definiteness the example of the component of the intensity described by the

function D(T), defined in equation (3.I). Its Laplace transform d(s) is by construction analytic
for Res < 0. The explicit expression (3.36) shows, however, that it is actually analytic in

a larger domain, defined by Res < lll1a and Res < s3, where s3 is the first pole of H3 Is ),
namely the first zero of the kernel function #3 Is). Here first means having the smallest real

part. We have s3 =
0.914815 < < lll1a. The first singularity of d(s) is therefore a simple

pole at s = s3. We have thus demonstrated the exponential fall-off D(T)
m~

exp(-Tl13), with

a dimensionless reduced extinction length 13
"

1/s3
"

1.093 l16.

More generally, all the extinction lengths are given by the locations of the first singularities
of the corresponding Laplace transforms. We thus obtain

BIT)
m~

E(T)
m~

e~~°~, C(T)
m~

e~~/~5, D(T)
m~

e~~/~3, FIT)
m~

e~~/~4, (3.45)

while the function A(T), pertaining to the diffusive sector, does not fall off, but it rather admits

the limit value A(+cc)
=

Ti(lla)Ii + T2(lla)12 deep inside a semi-infinite sample.
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Thus there are altogether four different dimensionless extinction lengths, in
=

I/sn
In

=
1,3,4,5), where sn is the zero of the kernel function #n(s) having the smallest posi-

tive real part. Table III gives the exact values of the extinction lengths in, together with the

corresponding approximate values if", predicted by the diffusion approximation [10]. This

approximate scheme consists in brutally truncating the kernel functions #n(s) to the second

order of their series expansion in s, given in equation (3.15).

3.2. ENHANCED BACKSCATTERING PEAK. We now derive analytical expressions for the

five functions describing the polarization dependence of the enhanced backscattering cone at

normal incidence, according to the general formalism exposed in Section 2.6, in the absence of

internal reflections. We start by introducing the following parametrization

ATT) + B(T) Ii ~L~)

no) (~, ~)
=

A(T)
,j))~L

jiD(Tj E(Tjj
~L

r~~~(T,~L)
=

-rl~~~*
IT> ~L) = v ~~~j

(
j~~~j ,

iF(Tj

~L~

rl~~(T,
~L) =

rl~~~*(T> ~L) =
iG(T) + iH(T)i j)~

,

(3.46)

o

that slightly differs from equation (3.1).

Table III. Dimensionless red~ced extinction lengths of the vario~s polarized components of
the dijfwe intensity. First row: exact extinction lengths, ded~ced in Section S-I-I from the

sol~tion to the SM eq~ation. Second row: approximate extinction lengths, obtained by means

of the dijfwion approximation f10j. Third row: relative difference of second case with respect
to first one. Fo~rth row: notations wed in reference f10j.

~XaCt diffusion approximation A(%) ~°~~~~°~

of ref. [I0j

ii
=

I if"
= =

0.447213 -55 ii
5

t3
=

1.093 l16 I(i~
=

~~
=

0.786 796 -28 t[
21

14 =
1.349 587 I(i~

=

~~
=

l.046 536 -22 12

16 =
1.172 669 it"

=

~
=

0.774596 -34 13
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Equation (2.46) implies that the eight real functions A(T),
,

HIT) obey the following sets

of coupled linear integral equations, as shown by the braces

~
~

~(~l +12)~ ~ + (~00 + M02) * A + (M02 fi104) * B

2Jfi3 * D + 2(M20 + M22) * G),

~ ~~~~l +12)e ~ + (MOO 3M02) * ~ + (~~00 5M02 + 3M04) *B

+ 2(-2Mii + 3M13) * D 2(M20 + 3M22) * G),
~~ ~~~~

~ ~~~ll *A + 2(Mll M13) *~

+ (~00 + M02 2M04 + M20 2M22) * D + 2(Mll + M13 + M31) * G),

~
~~~

~~~~ ~ ~ ~~° * ~ ~~2 * ~

(~ll + M13 + M31) * D + (MOO + 2fi102 + M04 + M40) * G),

~ ~~~
~ ~ ~~~ ~ ~ ~~~~ ~ ~~

(3.47b)

F
=

(Mii * c + [Moo Mo2 M201* F)

~
~~~~~ ~ ~~~ ~~~~ ~~~ ~ ~~~~~ ~ ~ ~ ~~~~~ ~ ~~~ ~~~~ ~ ~~

(3.47c)

H
=

~
(I3e~~ + (-Mii M13 + M31) * E + (Moo + 2Mo2 + Mo4 M40) * H).

8

The kernels involved in these equations read

1 ~
Mpq(Q>T)

=
~/1Pv~e~'~'/"Jq(Qv(T(ll1), (3.48)

2/1

where v has been defined in equation (2.3).

3.2.I. Preliminaries: Kernels and H-Functions- The explicit solution of equation (3.47) again

involves the Laplace transforms a(s),
,

h(s) of the functions introduced in the parametriza-

tion (3.46). In a first step, we must therefore evaluate the Laplace transforms mpg IQ, s) of the

kernels Mpq IQ, T). Let us take the example of moo IQ, s). The representation (3.48) yields

moo(Q> 8)
"

/) ~~
~~

/~ ~~~~~~
~~~

~~
~ ~~~

~~~~
~~ ~~~

~/ dfl

$

where 8 is Heaviside's function, and dfl is the solid-angle element on the unit sphere of n, with

co-ordinates X
= vcos~2 =

sine cos~2, Y
= v sin ~2 =

sine sin ~2, Z
= /1= cos9. Performing

the T-integral yields

~~ l
(3.50)moo IQ, Sl =

/
p i s cos e iQ Sine C°S ~
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The denominator can be transformed by a suitable rotation in the Y-Z plane into I aZ',

with

a =

fi. (3.51)

(3.52)
We thus °btaJ~

mooio,s)
=

mo(a).

It turns out that all the kernels involved in equation (3.47) can be treated similarly, and

expressed as linear combinations of the m2p la), which have been determined in equation (3.7),
namely

We are again led to consider
the

kernel
unctions

#n la),
defined

in equation (3.8).
though

the latter only depend on
the variable a of equation (3.51), the associated

H-functions Hn IQ

depend separately on both
variables Q

4nla)
=

~ j~ ~~( j~ _~~,
13.54)

with the condition that the Hn IQ, s) be analytic in the left half-plane Re s < 0. For a rational

kernel function #(a) of the form (3.10), the H-function reads

8 fi~)
H(Q, s)

=
~jj (3.55)

fl
(~

@j)
a

a=1

In the present case, the functions Hn(Q>s) still possess the integral representation (3.13), up

to the replacement

fl ~
i(Q, fl)

=
arctan Q2 + tan2 fl. j3.56)
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3.2.2. Derivation of ~44(Q). We begin with the exact solution of the 2 x 2 system (3A7b),
yielding, after a Laplace transformation, c(Q, s) and f(Q> s), and ~44 IQ) through c(Q> -1)

=

-~44(Q)14. The determinant of this linear system can be factorized as
-(9/8)#1(a)#5(a).

Along the lines of Section 3.I, the system is made diagonal by setting

BIQ> s)
=

8ClQ, s) 2QflQ, s)>

no> s)
=

lQ/2)CIQ> s) 8flQ, 8). 13.57)

The inverse formulae read

a2cjQ, s)
=

sio, s) 2Qf(Q, s),

O~jjo,8j
"

jQ/2)iQ>8)-8fjQ>8)> 13.58)

and the new functions obey

45(a)BIQ>8)
=

-jI4
+

no,s),

411a)no,8)
=

)14
+

no>s)> 13.59)

where )(Q, s) and I(Q, s) are defined in analogy with equation (3.20).
The solution of equation (3.59) reads

B(Q,s)
=

cl
+

~~ I4H5(Q,s),
I s

f(Q,s)
=

fi+ ~~ I4Hi(Q,s). (3.60)
1 s

This expression involves, besides the corresponding H-functions, four constants, yet to be

determined. The s ~ l limit of equation (3.59) fixes two of them:

c2 " (I4H5[Q> -1), j2
"

~QI4HI[Q> -1). 13.61)

The last two constants, ci and fi, are then fixed by requiring that c(Q, s) and f(Q> s ), as given

by equation (3.58),
are finite for

a ~ 0, I.e., s ~ Q and s ~ -Q. Skipping lengthy details, we

finally get

~~~ ~~~
ii Q~)~ (HI l~~

~~
+ HI IQ, ~Q)) ~~'~~~

where

fi£441Q)
=

Q~ll + Q)~Hi IQ, -Q)Hilo> -I) + Q~ll Q)~HilQ, -Q)Hilo, -I)

+11 Q)~HilQ> -Q)Hilo, -I) + Ii + Q)~HilQ> -Q)Hilo> -1)

-8Q~Hi IQ, -Q)H5(Q> -Q)Hilo, -1)H51Q> -1). 13.63)

3.2.3. Derivation 0f733(Q). The 2 x 2 linear system (3A7c) yields, after a Laplace transfor-

mation, e(Q> s) and h(Q,s), and 733(Q) through h(Q, -I)
=

(1/4)733(Q)13. The determinant

of this system can be factorized as
(9/32)#3(a)#4(a). Its exact solution closely follows the

lines ofthe previous subsection. We are led to consider the linear combinations

ilo>s)
=

-8elQ,s)+2QhlQ,s),

£jQ>s)
=

-lQ/2)ejo,s)+shlo,s)> 13.64)
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which obey

431a)ilo,s)
=

)13
+ EIQ,s),

441a)ilo,s)
=

jI3
+ ~llQ>s). 13.65)

The solution of these equations is fully similar to that of equation (3.59). We are thus left with

'~~~~~~
" ~i Ii Q~)~ iHilo)~Q)

+ Hi(Q, -Q))' ~~'~~~

and with

fi£331Q)
=

Q~ll + Q)~HilQ, -Q)Hllo> -I) + Q~ll Q)~Hi IQ, -Q)Hllo, -I)
+11-Q)~HilQ,-Q)Hilo>-I)+11+Q)~HilQ>-Q)Hilo,-1)

-8Q~H31Q,-Q)H41Q,-Q)H31Q,-1)H41Q,-1). 13.67)

3.2.4. Derivation of711(Q)> 712(Q), and 722(Q). The determinant of the 4 x 4 linear system
(3.47a), after a Laplace transformation, can be factorized as

(81/256)#1(a)#2(a)#3(a)#4(a).
Its exact solution, along the lines of the previous cases, involves algebraic manipulations on very
lengthy expressions. Some of them have been either carried out, or just checked, by means of

the MACSYMA software. Furthermore, the final step of this calculation, involving the solution

of the 9 x 9 linear system (3.74), must for practical purposes be performed numerically.
In a first step, the system (3.47a) is put in diagonal form by introducing the linear combi-

nations

ilo, 8)
"

20~ajQ> 8) Q~blo> 8) 2Q8djQ> 8) + 2Q~g(Q> 8),

I(Q> s)
=

-2a~a(Q> s) + (-2a~ 2Q~a2 + 2a~ + 3Q~)b(Q, s)
+2Q8(-2a~ + 3)d(Q, s) + 2Q~ (2a2 3)gjo, s),

d(Q> s)
=

Qsb(Q> s) + (a~ + 2Q~)d(Q> s) 2Qsg(Q, s),

I(Q, s)
=

(Q~/2)b(Q, s) + Qsd(Q, s) j2a2 + Q~)g(Q, s). j3.68)

These new functions obey

<~j~~~j~,~~ 218~
1)iii

12~ ~~~~~
+ no>8)>

~Q2~~~~j~jjjo,8j
=

+ BjQ>8),
s

j~ja)ijo,s)
=

(~~[ +@lQ>8)>

~i4(a)§(Q>8) ~~~~~~ ~~~~ ~~~~~
~ ~~~'~~~ ~~ ~~~

where A(Q> s), B(Q> s), D(Q> s), and g(Q> s) are defined in analogy with equation (3.20).
The formulae inverse to equation (3.68) read

4a~(a~ I)a(Q>s)
=

a~(2a~ + Q~ 2)I(Q,s) + Q~b(Q>s)

+4Q81°~ i)ilo>8) 2Q~1°~ i)JIQ>8)>
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4a~(a~ I)b(Q,s)
=

-a~(2a~ + 3Q~)I(Q,s) (2a~ + 3Q~)b(Q,s)

-12Qs(a~ I)d(Q,s) + 6Q~(a~ I)J(Q,s),

2a~(a~ I)d(Q> s)
=

Qsa2P(Q> s) + Qsb(Q,s)

+21a~ -1)(a~ + 2Q~)I(Q,8) 2Qsja2 -1)jjo,s),

8a4ja2 ijgjo,s)
=

Q~a~ijo,sj +
Q~ijo,sj

+4Qs(a~ I)d(Q,s) 2(a~ 1)(2a~ + Q~)I(Q,s), (3.70)

so that we have

ijo, -11 + 4QijQ, -II + 2ilQ, ~~l,~~~jQ)Ii + 7121Q)12
" 2jl Q~)~

a(Q, -lj + 2j(Q> -II
(~'°)721[Q)Ii + 722 [Q)12

" 2(1 Q~)

The solution to equation (3.69) reads

&(Q> s)
= al + a2s +

~~ Hi IQ> s),
l s

~~~'~~
"

~~
~ ~~~ ~ ~~~~ ~

))
'~~'~~'

d(Q> s)
=

di
+ d2s +

~~
H3 IQ> s),

I s

~~~' ~~

~~
~ ~~~ ~

l

~~

8

~ ~~' ~~' ~~'~~~

where ai>. ,g3 are 13 Q-dependent constants to be determined.

The s ~ l limit of equation (3.69) fixes four of these constants:

a3 =

~Q~I2HI IQ, -1), b4
=

-3Q~IiH2(Q, -1),
~

(3.73)

d~
=

-(QIIH~IQ, -i), g~ =

-~ (Ii + iQ2 i)I~ jJi~jo, -ii.

The last nine constants are then determined by expressing that the functions a(Q,s),
,g(Q,s) have the expected regularity properties at the points where the inversion formulas

(3.70) are singular, namely a2
=

0, I-e-, s =
+Q, or

a2
=

1, I-e-, s =
+ 1+ Q2. We thus

obtain the following system of nine linear equations

I Q> /~)
+ b (Q>

fi)
=

0, (3.74a)

I (Q,
fi)

+ b (Q,
$@)

"
0, (3.74b)

I(Q> -Q) + 2J(Q, -Q)
"

0, (3.74c)

I(Q, -Q) 6J(Q, -Q)
=

0, (3.74d)

d(Q> -Q) + 2J(Q, -Q)
"

0, (3.74e)
j

(b(Q, s + 4d(Q,
s + 2J(Q,

s )) 8Qi(Q -Q)
"

0, (3.74f)
s s=-Q

I(Q, Q) 6i(Q, Q)
=

0, (3.74gl
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d(Q, Q) 2§(Q, Q)
"

0, (3.74h)

3)
(b(Q>

s) 4d(Q> s) + 2j(Q, s)) + 10Qi(Q, Q) + 44Qi(Q. Q)
"

0, (3.74i)

where (a) and (b) express the regularity of the functions a(Q, s),
,

g(Q> s) (absence of pole)

at s =
+ 1+ Q2; (c) to If) express their regularity (absence of double and of simple pole)

at s =
-Q; (g) to (I) express the absence of double pole at s = Q> as well as the propor-

tionality of the residues of the simple poles to the right null vector of the system (3A7a),
v

" 13 2Q~> 3 + Q~> 2Q~> Q~/2).
The last of the above properties implies that the four functions A(T), BIT), D(T), and G(T)

fall off as
exp(-QT). The dimensionless extinction length in the diffusive sector thus reads

I(Q)
=

I IQ in units of the mean free path I, I.e.,

L(q)=
=

(3.75)
Q

in physical units. This simple result holds for any value of the transverse wavevector q. More-

over, since it is a bulk property of the problem, it also holds in the presence of an index

mismatch, just as the extinction lengths of the non-diffusive sectors for Q
"

0, determined in

Section 3.lA.

By inserting the explicit forms (3.72) into the expressions (3.74), we obtain a 9 x 9 linear

system for the Q-dependent constants (al, a2, bi, b2, b3, di, d2, gi, g2 ), whose coefficients have

complicated expressions involving the functions Hn IQ, s). This system has been solved formally
by means of the MACSYMA software: the outcome for each constant contains thousands of

products of up to seven H-functions, so that this approach is of no practical use. The above

system is however easily solved numerically, for any given value of Q. This is the way we have

chosen to follow for practical purposes.

3.2.5. Summary of Results. We have achieved the exact analytical determination of the

enhanced backscattering cone in the absence of internal reflections. Its dependence on polar-
izations is contained in five functions of the reduced wavevector Q. Two of them, ~33(Q) and

~44 IQ), are given explicitly in equations (3.62, 3.66), while the other three, ~ii IQ), ~12(Q),
and ~22 IQ),

are determined analytically, up to a last step which consists in solving numerically

a well-posed 9 x 9 linear system, for any fixed value of Q.
The following regimes are of special interest.

.
For small Q, I.e., in the vicinity of the top of the cone, ~ii IQ) nf12 IQ), and ~22 IQ) have the

common characteristic triangular shape given by the general result (2.58), while 733 IQ) and

744 (Q) have a smooth dependence on Q~ The enhancement factors and widths of the triangular

cone, for linear and circular polarizations, have already been given in equations (3.41-3.44).

. For large Q, I-e-, in the wings of the cone, the leading contributions come from low-order

scattering events, as usual. The single-scattering contribution (2.45) is of little interest, since

it is subtracted in the formula (2.4I) for the enhanced backscattering peak. The leading
large-Q behaviour of the enhancement factor is thus given by double-scattering events. The

contribution of this class of events can be obtained by solving equation (3.47) to first order

in the kernels Jfpq. As it turns out, for large Q these kernels become small, as expected, but

also local in the T-variable: Jzlpq IT, T')
m mpq IQ> 0)d(T T'). Furthermore, only the following

kernels contribute to leading order in I IQ:

~~~ ~
S

~~~ ~
S

~~ ~ ~

~~
~~~ ~

S
~~~ ~

~

~ ~~ ~

~~
j~ i~~2Q' 4Q' 16Q' 4Q' 16Q' 16Q'



N°3 MULTIPLE RAYLEIGH SCATTERING OF ELECTROMAGNETIC WAVES 475
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Fig. 3. Plot of enhancement factors Bjj(Q) for linearly polarized beams at normal incidence and

parallel detection, in the absence of internal reflections, in two cases defined in the text. Upper full

line: case iii (~a
= lfib =

0). Lower full line: case iii) (~a
=

~b
=

~/2). Dashed line: same quantity
for isotropic scattering of scalar waves, from reference [19].

so that we are left with

We end up by illustrating a few interesting features of our results. We first consider linearly
polarized beams at normal incidence and for parallel detection, in the following two geometries:
(ii both polarizations parallel to Q, I.e., ~a

= ifib "
0,

iii) both polarizations perpendicular to Q> I-e-, ifia
= ifib =

~/2.
The enhancement factors, given by equation (2.53), namely

are plotted in Figure 3. Both curves coincide with the result (3.4I) at Q
"

0, while they are

slightly different from each other at Q # 0. The enhancement factor of isotropic scattering of

scalar waves, from references jig, 30j, is also shown for comparison.
Similarly, we consider linearly polarized beams with perpendicular detection, in the following

two cases:

(iii) one polarization parallel to Q, I.e., ifia =
0, ifib =

~/2,
(iv) both polarizations at 45° with respect to Q, I-e-, ifia =

-ifib
=

~/4.
The enhancement factors,

~~~~ ~~~ ~ ~~~~~~12(~~~~~~' ~~~~ ~~~ ~
'~~~ ~~~ '~~~~~~71~~~~ ~~~ ~

~'~~~~~~'

(3.79)

are plotted in Figure 4. Both factors coincide with the result (3.4I) at Q
=

0, while they are

slightly different from each other at Q # 0.
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Fig. 4. Plot of enhancement factors El (Q) for linearly polarized beams at normal incidence and

perpendicular detection, in the absence of internal reflections, in two cases defined in the text. Lower

full line: case (iii) (~a
=

0, ~b
=

~/2). Upper full line: case (iv) (lfia =
-~b

"
~/4).
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Fig. 5. Plot (full line) of enhancement factor Bi(Q) for circularly polarized beams at normal

incidence in the helicity-preserving channel, in the absence of internal reflections. Dashed line: same

quantity for isotropic scattering of scalar waves, from reference [19].

We end up by considering circularly polarized beams at normal incidence. The enhancement

factors Bi (Q) of thi helicity-preserving channel, and B-i (Q) of the channel of opposite helicity,

given by inserting the above results into the general expressions (2.54), (2.63), are
plotted in

Figures 5 and 6, respectively.
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Fig. 6. Plot of enhancement factor B-i(Q) for circularly polarized beams at normal incidence in

the channel of opposite helicity, in the absence of internal reflections.

4. Large Index Mismatch Regime

Previous works [19-21] on multiple scattering of scalar waves suggest that the SM equations

cannot be solved analytically in the presence of internal reflections, which take place whenever

the index mismatch m =
n/ni is different from unity. However, and interestingly enough, it

has been shown in references [19-21j that the problem becomes again tractable by analytical

means in the regime of a large index mismatch (m « I or m » I), at least in the case of scalar

waves. The intuitive origin of this simplification is as follows. If the ratio m
of both optical

indices is very small (respectively, very large), there is total reflection for almost any incidence

angle outside the medium (respectively, inside the medium), except for a narrow cone around

the normal incidence. As a consequence, the radiation undergoes many internal reflections at

the boundary of the sample, and hence many scattering events, before it can exit the medium.

In this section we extend this approach to the Rayleigh scattering of electromagnetic waves.

4.I. DIFFUSE REFLECTION AND TRANSMISSION. In this section we investigate the diffuse

intensity in reflection and in transmission in the large index mismatch regime. To do so,

it is advantageous to consider the matrix Green's function G(T, /1, ~2, T', /1',~2'), which obeys
equation (2.13). We anticipate on physical grounds that only the ~2-independent sector (k

=
0)

is important. We thus rewrite equation (2.13) as

G1°~ IT, /1, T', /1')
=

P~°~ (/1, /1')d(T T')

+ £~ dT
~ IIl e~~~"~/»" P~°~

i~L ~L
G~°~ IT

~L T ~L)

+ /~~ dT" /~ ~~" e~"" ~~'/"" P1°'(/1, /1") G1°~ IT", /1", T', /1')

~ o 211"

+ /~~ dT" /~ ~~" e~~~+~"'/"" P1°) (/J, /J") G1°~ IT", /J", T', /J')
o o 211"

/~~ dT" /~ ~~j e~l~+~"~/"" (1 R(~J" P~°) (~J, ~J"
G(°) IT", ~J", T', ~J'). (4.1)

0 0 ~/L
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The above observations suggest to treat the small matrix 1- R(~J) as a perturbation. In the

limit of an infinite index mismatch (m
=

0 or m =
+cc), this matrix vanishes identically. The

rest of equation (4.I), without the last line, has a zero mode of the forin

i i o o

Mnat"inat@Inat" 14.2)

o

o o

~

independent of
T

and ~J. This is demonstrated by the identity

/~
-i

~~~~t '~~°~ Ill,11')
=

Mn~~ fo~ ~jj ,~ (4.3)

Along the lines of references [19-21j, we expect that the Green's function becomes propor-

tional to the constant matrix Mnat, with a diverging prefactor, in the large index mismatch

regime. We thus look for
a singular expansion of the form

G~°'IT, /L,
T', /L'j

"
cmnat + Gi~

IT> /l> T', /L') +
,

14.4)

where it is understood that the constant C diverges as m ~ 0 or m ~ +cc, while Gf'
stays finite, and the dots stand for higher-order corrections. We insert this expansion into

equation (4.I), and then act on both sides with the operator f~~" dT f~~ (d/J/2)Mnat. Integrals

over the finite part Gf' of the Green's function cancel out, so that we are left with a simple
expression for the constant C, namely

C
=

~, (4.5)

with

T
"

~ ~'
7i

"

/
21~dl~(1(l~l' 7~

"

/
21~dl~T~(l~l' (~'6)

~ ~

The above quantities only depend on the index mismatch m. They are interpreted as the mean

flux transmission coefficients of one boundary of the sample, averaged over incidence angles. 7j
and Ti correspond to prescribed polarizations, while T is also averaged over both polarization
channels.

More explicitly, the expressions (2.8, 2.9) of the Fresnel intensity coefficients allow us to

perform the integrals (4.6) in closed form, for both m > I and m < I. It turns out that both

cases can be gathered in the following formulas, valid for m > I:

~jj~j
~

i
j

1

~

412R~ +1)

m m 3m(m + 1)2'

mi im)
=

lTi II)
=

~]lili~l~ in
i +

y~~~~~~~(~~~~i)3
~~ ~ ~ (~~~~~j)/~+

~~'
~~'~~

As expected, the flux transmission coefficients vanish in the regime of a large index mismatch,
according to

~ ~ ° ~ ~l' ~
~'

~
~i'

(4.8)
m ~ +cc 7jj m m,

Ti Q3 1,
T m j.

m 3m 3m
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Fig. 7. Plot of mean flux transmission coefficients, against optical index mismatch m. Upper
dashed line: ]j(m). Lower dashed line: Ti(m) (also corresponds to scalar waves). Full line: their

average T(m).

The knowledge of the matrix Green's function yields by equations (2.16, 2.22-2.24) the

following predictions for observables of interest in the large index mismatch regime

'~~~~~'~~~ ~ ~~f~ ~~'~ ~'~~'

q(jL) QS

~~
(i=1,2),

T

~

4

~'~ 3j~'
(~.~)

These leading-order resulti in the large index mismatch regime are very similar to those ob-

tained in the case of isotropic jig, 20] and arbitrary anisotropic [21] scattering of scalar waves.

Figure 7 shows plots of the mean transmission amplitudes T, 7jj, and Ti, against the index

mismatch m. It is worth noticing that the reflection and transmission coefficients for scalar

waves coincide with Ri Ill) and Ti Ill),
so that Ti was already involved in the predictions of

references [19-21j for scalar waves.

The behaviour of the quantities investigated above in the large index mismatch regime
involves, besides the leading asymptotic behaviour in I IT derived above, finite parts related

to the Green's function Gf~ Moreover, Gf' also governs the (non-divergent) large index

mismatch behaviour of all the other quantities, like e.g. the entries of the bistatic matrix 7)~~

outside the Ii, 2) sector, or the bistatic matrices 7))~ for k # 0. These finite parts cannot

be determined analytically in general. In the case of isotropic scattering of scalar waves, the

finite parts of some simple observables have been determined jig, 20j, either analytically or

numerically.

4.2. ENHANCED BACKSCATTERING CONE. We now extend the above analysis to the

enhanced backscattering cone. In analogy with the case of scalar waves, treated in refer-

ences [19-21], we want to show that the bistatic matrix 7(Q) takes a simple scaling form in
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the regime of small Q and large index mismatch, where enhanced backscattering is dominated

by long-distance effects.

To do so, we look for a solution to the Q-dependent SM equations (2.46) in the form

F(~l(T, /J) m
a(Q)e~o~mnatdko, (4.10)

for m « I or m » I, and Q « I. The above ansatz is justified as follows: the exponential
fall-off in exp(-QT) is quite general (see Eq. (3.75)); the ~2-dependent sectors (k # 0) are

again neglected; the proportionality to the matrix Mnat is assumed because of the structure

(4.2, 4.3) of the zero mode of the RTT problem at Q
=

0.

In analogy with Section 4.I, we insert the form (4.10) into equation (2.46), and then act on

both sides with the operator (~" dT f~~ (d/J/2)Mnat. The integrals which do not involve the

small matrix 1- R(/J) can be performed exactly; their Q-dependence is given by moo IQ, 0)
=

ma (iQ)
=

arctan(Q) IQ m 1- Q2/3, by equation (3.7). The Q-dependence of the integral
involving 1- R(/J)

can be neglected. Consistently neglecting all corrections of order Q~> we

obtain

'~ ~~~ ~ 2Q T
~~'~ ~' ~~' ~~'~ ~~

i ~
2

This prediction of the leading behaviour of the enhanced backscattering cone in the large index

mismatch regime is again very similar to the case of scalar waves [19-21].
We end up by giving a few consequences of the above predictions in the large index mismatch

regime. In the case of linear polarizations, the enhancement factor (2.55) at the top of the cone

reads B(0)
=

2 cos~ ~. It assumes the maximal value Bjj =
2 for parallel detection, because

the single-scattering contribution is negligible. The width of the top of the cone (2.61) reads

Aojj *

~~. (4.12)

This last result also gives the width AQI of the top of the cone of enhanced backscattering for

the helicity-preserving channel (2.66) in the case of circular polarizations.

5. Discussion

In this paper we have extended to the Ilayleigh scattering of electromagnetic waves our previous
investigations [19-21] of multiple scattering of scalar waves in a thick-slab geometry. Both

the setup and the formalism of the present work closely follow those references, so that only
the main lines of the derivations have been reproduced here. The main advantage of this

approach, based on RTT, is that the role of skin layers, and especially the effects of internal

reflections, are incorporated in a natural way. The present approach has no phenomenological

or approximate character, besides the restriction of its validity to the regime I « I « L,
in contrast with the widely used diffusion approximation. Only few analytical results iii,18]
had been obtained for electromagnetic waves along this line of thought, since the pioneering
work of Chandrasekhar iii. It is, however, worth mentioning that the vector RTT formalism,
including the effects of internal reflections, has been exposed earlier [31, 32], although these

authors only solved the SM equations numerically in some specific situations, rather than

investigating their general properties. We have first derived general results on vector RTT in

Section 2, where the mean values of observables are expressed in terms of solutions to vector

SM equations, including the effects of polarizations and of internal reflections. Closed-form
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expressions for these general predictions are then derived in two cases, namely in the absence

of internal reflections (in Sect. 3), and in the regime of a large index mismatch (in Sect. 4).
In the absence of internal reflections (m

=
n/ni

"
I), the SM equations have been solved

by means of the Wiener-Hopf technique. We have presented in Section 3 a self-contained

exposition of all the exact results known so far Ill. More importantly,
we have given the first

complete analytical derivation of the cone of enhanced backscattering, completing thus the

analytical results of references Iii,18],
as well as some less accurate estimates, obtained either

by means of the diffusion approximation or by numerical simulations [10,11,13]. As a general
rule, illustrated by the first three items of Table II, quantities which are either averaged over

the polarization degrees of freedom, or do not depend on polarizations at all, are found to

be very close to the corresponding figures in the case of multiple isotropic scattering of scalar

waves. A similar observation has been made in reference [21], where various observables were

compared for isotropic and very anisotropic (forward) scattering of scalar waves. The prototype
of such quantities is the thickness To of a skin layer, expressed in units of the transport mean

free path I*. This number is hardly sensitive to the anisotropy of the scattering mechanism

nor to polarizations: it always comes out to read To * 0.71 [4j.
Other observables, such as the detailed shape of the cone of enhanced backscattering, have

a more or less pronounced dependence on the polarization channels of the incident and de-

tected beams. The last two items of Table II illustrate this point. The first quantity under

consideration is the maximal enhancement factor, right at the top of the cone. The value Bjj
of equation (3Al), corresponding to linear polarizations and parallel detection, as well as the

value Bi of equation (3.43), corresponding to circular polarizations and detection in the channel

of same helicity, are compared to the analogous result for scalar waves with isotropic scatter-

ing jig, 30j, denoted by B: the figures are definitely different from each other, although relatives

differences are less than 10%. Second, the width of the triangular top of the backscattering

cone is considered. The value Aojj of equation (3.42), corresponding to linear polarizations
and parallel detection, as well as the value AQI of equation (3.44), corresponding to circular

polarizations and detection in the channel of same helicity, are compared to the analogous
result for scalar waves with isotropic scattering jig, 30j, denoted by AQI relative differences

are more important in this case, going up to some
40%. Finally, so far there are essentially no

analytical results concerning the RTT approach to the general problem of multiple scattering
of electromagnetic waves, taking into account the combined effects of anisotropic scattering
and polarizations. We can infer from the results of reference [21] on the multiple scattering
of scalar waves that the anisotropy of the scattering mechanism will have little residual ef-

fects, once the principal scaling is taken into account by expressing observables in terms of the

transport mean free path I*.

In the presence of internal reflections (m
=

n/ni # I), analytical predictions for the various

observables of interest have been derived in the large index mismatch regime (m « I or m » I),
along the lines of previous investigations of scalar waves, with isotropic [19,20] and arbitrary

anisotropic [21] scattering. The effects of internal reflections have been studied [22-25] using
several variants of the diffusion approximation. Reference [26] provides a recent overview of

these approaches to the subject. Within the framework of RTT, the drastic simplification

which takes place in the large index mismatch regime has a clear intuitive explanation. Since

the transmission through the boundaries of the sample is small, radiation is reinjected many

times before it can lea,~e the medium. As a consequence, the skin layers become very thick and,

more importantly, the radiation field is uniform over most of these layers. The results (4.9)
turn out to have the very same form as for multiple scattering of scalar waves, either with

isotropic jig, 20] or very anisotropic [21] scattering. Most certainly, the very same analytical
forms also hold true in the more general case of multiple scattering of electromagnetic waves,
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including both anisotropy and polarization effects, and they are expected to provide an overall

satisfactory description of the full dependence of physical quantities on the index mismatch,

especially in the range of most interest (m > I).

The present investigations of multiple Rayleigh scattering of electromagnetic waves, as well

as the previous ones on isotropic and anisotropic scattering of scalar waves [19-21], have so

far only dealt with the mean intensity, averaged over the random positions of the scatter-

ers in the sample. For any given sample of scattering medium, however, the intensity has

strong fluctuations, which manifest themselves as speckles. For instance, the probability law

of the fluctuating intensity at a given point is known as Rayleigh's law: p(I)
m~

exp(-I/(I)).
The generalization of Rayleigh's law to polarized radiation is fully characterized by the four

Stokes parameters [33]. Various correlation functions, aiming at a more detailed description
of intensity fluctuations and speckle patterns, have been the subject of recent theoretical and

experimental investigations [34]. We mentiun the extension of these results, in order to include

polarization effects, as an interesting open problem.
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