
HAL Id: jpa-00247336
https://hal.science/jpa-00247336

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalization of a Two-Dimensional Burridge-Knopoff
Model of Earthquakes

Kwan-Tai Leung, Judith Müller, Jørgen Vitting Andersen

To cite this version:
Kwan-Tai Leung, Judith Müller, Jørgen Vitting Andersen. Generalization of a Two-Dimensional
Burridge-Knopoff Model of Earthquakes. Journal de Physique I, 1997, 7 (3), pp.423-429.
�10.1051/jp1:1997101�. �jpa-00247336�

https://hal.science/jpa-00247336
https://hal.archives-ouvertes.fr


J. Phj.s. I FFance 7 (1997) 423-429 MARCH 1997, PAGE 423

Generalization of a Two-Dimensional Burridge-Knopotf Model
of Earthquakes

Kwan-tai Leung (~), Judith Miiller (~) and J@rgen Vitting Andersen (~.*)

(~) Institute of Physics, Academia Sinica, Nankang, Taipei 11529 Taiwan, ROC

(~) Department of Physics, McGill University, Rutherford Building, 3600 University Street,

MontrAal, QuAbec, Canada H3A 2T8

(Received 21 March 1996, revised 31 October 1996, accepted 26 November1996)

PACS.05.70.Jk Critical Point Phenomena

PACS.46.30.Nz Fracture mechanics, fatigue, and cracks

PACS.91.30.-f Seismology

Abstract. We pre~ent a generalization of the two-dimensional spring-block model of earth-

quakes previously studied by Olami, Feder and Christensen (Phys. Rev. Lent. 68 (1992) 1244).
Making the simplest possible assumption, we regard the tectonic plates as elastic media,vith

inter- and intra-plate harmonic forces, that is, forces governed by Hooke's law. The robustness

of the model ,vith respect to effects of internal strain, vectorial force and different boundary
conditions are examined and demonstrated both analytically and numerically.

In 1967, Burridge and Knopofl [ii introduced a one-dimensional (ID) system of springs
and blocks to study the role of friction along a fault in earthquakes. Since then, many other

researchers have investigated similar dynamical models of many-body- systems with friction,

ranging from propagation and rupture in earthquakes [2-1ii to the fracture of overlay-ers on a

rough substrate [12j.
Among these developments, a deterministic version of the ID Burridge-Knopofl (BK) model

was analyzed by Carlson and Langer [2j and the same model but in a quasi-static limit was

studied by Nakanishi [3]. A 2D quasi-static variant was first simulated by Otsuka [4] and

later by Brown, Scholz and Rundle [5], who formulated it as a discrete cellular automaton.

A similar model with non-conservative, continuous local variable (the force), generalizing the

model of Bak, Tang and iviesenfeld [6], was first introduced by Feder and Feder [7] in connec-

tion with their experiment. A more refined version was later developed by Olami, Feder and

Christensen [8] (OFC). Contrary to pre,;ious models, the model by OFC (henceforth called

the OFC model) is derivable under certain limit (see below) from a 2D BK model, thereby
establishing a more direct connection between earthquake problems and self-organized criti-

cality. One of its interesting features is the dependence of the values of critical exponents on

the level of conservation [8,10]. OFC argued that it explains the variance of the exponent in

the Gutenberg-Richter [13] law observed in real earthquakes [14]. llore recently, motivated

by the findings of OFC, J6nosi and KertAsz [15] and Middleton and Tang [16] addressed the

important issue of how a model ,vithout conservation law may attain self-organized criticality.
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Making the simplest possible assumption, we regard the tectonic plates as elastic media

with inter- and intra-plate harmonic forces, that is, forces governed by Hooke's law. It is worth

noting that the OFC model corresponds, in the sense of the specification of forcings, to a

restricted form of a 2D BK model. In this article, we shall examine the effects on the physical
properties of the OFC model when the restrictions are removed. The intense interests centered

on the OFC model and nonconservative models in general motivate such an examination. We

shall also discuss the influence and physical realization of certain boundary conditions.

Model

As before, our model consists of a 2D array of blocks in contact with a rough surface. Each

block is interconnected to its nearest neighbors via coil springs whose spring constants are Ki
and K2 and unstretched lengths ii and 12, along the x- and y-direction respectively. Each block

is also connected to a rigid driving plate by a coil spring of spring constant KL. The purpose
of the coil spring is to confine the block within the x-y plane. The position of the coil springs

on the moving plate, labeled by ii, j) where I < I, j < L, forms a square lattice with lattice

constants al, a2. We restrict ourselves to the situation where
a > I, and the displacements

xi,j, y~,j measured from ii, j) fulfill x~,j « al and yi,j < a2, so that Hooke's law applies. The

plate moves at constant, infinitesimal speed. Stress thereby builds up between the array and

the plate. The friction from the underlying rough surface prevents a block from moving, until

it exceeds a static threshold Fth and the block then slips instantaneously to a new equilibrium
position.

While this setup is an obvious extension of the ID BK model iii to two dimensions, previous
models [4, 5, 8] invariably correspond to a different setup in which the blocks are confined

to move in one direction. To our knowledge, this restriction was not physically motivated,
but introduced for the reason of simplicity. It is not obvious a priori whether the physical
properties of the model will be affected significantly. To find out, we lift this restriction and

start with the equations for the force appropriate to coil spring connections. The net force Fi,j
(which equals the friction from the rough surface) on a block at (I, j) is now a vector:

Fi,j
=

fL + fyi+i,/-fi,J) + f<i-I,jj-fi,JJ + ~<i,J+lJ-<~,J) ~ §i,J-~)-(~,J) ~~~

where f~i+I,j+lj-<i,j> is the force exerted by a neighboring block and fL the loading force by
the driving plate. Specifically, we use Hooke's law:

jai + xi+i
j xi

j
)ii

'I+I,J)-<i,J>
"

~~l~~ ~ ~~+~'J ~~'~ ~/jai + xi+i,j xi,j)2 + j~i+i,j
~,J)~~~ ~~~

f(+I,J)-<~,J> "
~~l~~+~'~ ~~'~ ~/jai +

~+1))~~~)i~j)~i))i+i,j i,J)~~' ~~~

Then the
x component of the force in equation II) takes the form:

F~(~ =
If Ki (2xi,j x~+i,j xi-i,j

jai + xi+i,j xi,j )ii (al xi-i-j + x~,j )ii
~ ~/lai + xi+i,j x~,~ )2 + jyj±i,j vi,jl~ ~/lai x~-i,j + x~,j )2 + jvi,j vi-i,j )2

~K2(2Xij Xi,j+1 Xi,j-1

~ ~(~2 +

1,j~~~~~~,j ~~~~~~,
j+1 ~i, j

)~
~

~(~2 #i,j

~~ ~,j)~~~~~,j
~i,j-1)~ ~~~

and, by symmetry,
F~Yj

follows by switching ~ ++ y, I ++ j, ii ++ 12, al ++ a2 and Ki ++ K~.
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Linear Version

To compare with the OFC model, we expand Fi,j to first order in the displacements ~'s and
y's. Specifying fL

=
(-KL~I,j, 0) as in [5,8], we readily find that

F(~ =
-KL~I,j Ki (2~i,j x,+i,j x,-i,j K~S2(2xi,j xi,j+i xi~j-i +

F/~ #
-Klsl (2Yi,j Yi+I,

j
#>-l,

j
~2(2#1,j #i,j+1 #i,j-1) + (~)

Thus a slip to a zero-force position for the block at ii, j) results in the following force redistri-

bution [17, 18j

j~~ ~ ~X ~~~~~
~+l,j i+I,j i,j'

~~j+1 ~ ~~j+1 + ~2°c~l l©j'

~Y ~ ~Y +
~~

~~ ~Y
i+I,j i+I.j

~
i,j'

j~Y ~ jfY +~~j~Y
i,j+I i,j+1 ~,j'

F~,j ~ 0, (6)

where Si + (al ii )lai is the internal strain of the network in the x-direction, and similarly
for 52

a e K2 /Ki and
~ e KL /Ki are measures of anisotropies in the couplings. In the bulk,

al and a2 are given by:

°~ 2(1 + S2a) + ~' °~ 2(1 + Silol' ~~~

Using equation (6), our model can be described as a coupled map lattice as was done in [8j. If

j,j e 0 is imposed at all sites as in [5,8j, Ff~
=

0 to first order and we recover the OFC model

in the limit 52 ~ l, i-e-, for maximal internal strain along the y-direction. This also follows

from the general relation equation j4), since F~ becomes linear in x for 52
=

and y =
0. The

physical rationale behind this correspondence is that leaf springs were chosen along y in the

array in references [4, 5, 8j, which by definition can only be bent but not extended. To linear

order, they are effectively fully stretched coil springs. The advantage of having different kinds of

springs along x- and y-direction is that the force is scalar and the equations linear. However, the

network is intrinsically asymmetric (not to be confused with anisotropy). This manifests itself

most clearly in the elastic moduli [20j: for the OFC model, we obtain [17j Ciiii
=

Kiai la2,
C2222

= cc, Ci122
=

0, and C1212 (shear modulus)
=

K2a21ai Clearly, setting Ki + K2 does

not render the model symmetric. In contrast, our model is symmetric: Ciiii
=

Kiaila2,
C2222

"
K2a21ali Cl122

"
0, and C1212

"

(KlK2SlS2ala2)/(Klsla( + K2S2a().
Before going further, we remark that given the underlying square lattice, neither model is

isotropic. More importantly, neither satisfies a "space filling" condition in that they do not

contract laterally when stretched. This is obvious from the way the springs are connected,
and is also reflected in the above relation Ci122

=
0, which gives a zero Poisson's ratio. This

is a shortcoming of most if not all of the spring-block models. However, the space filling
condition may be fulfilled if extra springs between next-nearest neighbors are added whose

spring constant will then be proportional to Ci122 II?). Since the addition of extra springs
introduces considerable complications into the rules of the cellular automata, we will not pursue

it here. Notwithstanding such complications associated with the implementation, it is useful to

remember that the discrete spring-block models may be systematically refined along this line,
and the general, tensorial macroscopic elastic equations may be obtained in the continuum

limit.
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i, with FBC.

For general strain (0 < 52 < 1) but FY e 0, the linear version of our model coincides

with the so called "anisotropic" OFC model [8j with our S2a corresponding to OFC'S K2/Ki
The statement [8j regarding the variance in the Gutenberg-Richter law as a result of different

coupling strengths has to be reinterpreted, in the present context, as also a result of different

internal strain.

Next, for the more general case of y~,j / 0, the two force components are locally coupled

because a slip is decided by the sign of (F~ )2 + (FY )2 -Fth We need to consider its relevance.

We examine the net change of force after a block in the bulk at ii, j) slips by a distance (dx, dy):

dF~
=

-KLdx
= -~ai l~~~; dFY

=
0. (8)

This follows from equations (6, 7), showing that FY is conserved in the bulk. The changes at

the boundary depend on the boundary conditions.

Following OFC, for "free" boundary conditions (FBC) there are three neighbors along the

edges and two at corners. Thus, the as on the boundary differ from the bulk values in

equation (7):

<~=l,L) I ~y=I,L) I ~cornerl
°~

l + 2S2a + ~' °~
2 + S2a + ~' ~~

l + S2a + ~'
~g~

<~=l,L) I ~y=I,L) I (corner> 1
°~

2 + Silo' °~
l + 2Si la' °~

l + Silo

As a result, equation (8) holds at all sites. Although equation (8) implies jF~ always decreases

in a slip event, the spatial mean
f~ fluctuates about a finite value due to constant loading.

But due to isolation for FBC, the spatial mean
iv is identically zero by Newton's third law. In

the steady state, we find that the fluctuation of FY also approaches zero, so that this coupling
of a conservative component FY to F~ is irrelevant for FBC.

Although iv
=

0 in practice, it remains interesting to see, generically, if a coupling to a

finite conservative field FY
=

const / 0 [19j is relevant in the context of more general cellular

automata, analogous to similar consideration in critical dynamics [21]. Figure I shows that
iv matters, as the exponent B defined in the Gutenberg-Richter law varies continuously. The

OFC model with FBC corresponds to the point FY e 0.

For "open" boundary conditions (OBC) there are four neighbors throughout. Equation (I)
then holds at all sites but equation (8) is modified to dFY/FY < 0 at the boundary.
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Table I. Comparisons between the OFC model and
our

generalizations for their critical

behavior. ~Y~ denotes the y-component of the force acting on a block, and iv is its spatial

average.
'

Boundary conditions Specifications of FY Critical behavior cf. OFC model

FBC l~(~ e 0 same

F~(~
/ 0, FY

=
0 same

F~(~
/ 0, FY / 0 different, new universality classes

OBC flu / 0 same (stable fixed point at iv
=

0)

Fig. 2. Snapshot of a configuration of blocks after 2000 avalanches, for L
=

20, Si
=

52
=

0.9, and

~ =
Ki

"
K2

=
Fth

"
i, showing the unphysical effect of pinned frame (denoted by D) with OBC.

The array is pulled to the right. The system evolves according to equation (10).

This implies that a system with arbitrary initial spatial mean,
flu, jvill always flow in steady

state to the stable fixed point at TV
=

0.

Therefore, ~.e ha,,e sho~v.n that the OFC model is stable against ,>ectorial perturbation for

both the free and open boundary conditions studied by OFC. Our results are summarized in

Table I. The physical origin of these results can be traced to the manner of loading along a

fixed direction (cf. Eq. (8)).
Since the boundary conditions are always important ingredients of the model, we digress for

a moment to discuss the physical realization of the OBC, ,vhich is defined [8j by an "imaginary
layer of blocks" connected around the system in order to have the same number of nearest

neighbors everywhere. Physically, such a layer corresponds to a rigid frame that attaches

to the array by springs. Since spatially uniform loading in reference [8j implies no relative

displacement between the frame and the array during loading, the imaginary layer never slips:
it is permanently pinned on the rough surface. Although this is an unphysical setup, it is far

from obvious in the Fi,j representation. i§~orking with the linearly related x~,j instead, we show

in Figure 2 how the initially square array, of blocks is distorted due to the pinning. At long times,
the distortion can be arbitrarily large so that there is no meaningful steady state for this model.

To make physical sense~ the frame has to move along with the driving plate. It is then intuitively
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clear that loading cannot be uniform: due to pulling and pushing by the frame, boundary blocks

are loaded more than in the bulk (e.g., ~hF/~
=

ii + ~~~)~hF(~~~). Incorporating such non-

uniformity, we observe numerically ii?) that tie model becomes noncritical and reaches periodic

states much like with periodic boundary conditions [10j. Therefore, we conclude that the OBC

is a mathematical convenience in that the model is rendered noncritical if it is implemented in

a physical way.

Nonlinear Version

Finally, equation (4) allows for an investigation of nonlinear effects which naturally arise from

the spring connections. However, it is no longer possible to formulate the model as a coupled

map lattice (cf. Eq. (6)), because the displacements have to be kept track of. For each slip

event, the equations F
=

0 have to be solved for the displacements ii, §) that defines the

zero-force position of the block.

Apparently this program is not computationally efficient for large avalanches and high orders.

But the second order is simple: all second order terms (12, jj2,1§) cancel in the bulk ii- e., when

ii, j) has four nearest neighbors), resulting in two coupled first order equations for la, §) in

terms of the F and ix, y) before the slip:

~~ ~j
fi

=
ji~

j ~~
j)jai~ +

?(v~
j+i vi j-i)I

Ki ' ' a~ ' '

+iii,j v~,j)lily,+i,j vi-i,j) +
(/ l~i,j+i ~i,j-i)j, (10)

1 2

plus a corresponding equation for F~(~. It yields nonlinear dependence of if, §) on
(~,y) via

the terms proportional to 1la2. Due to missing neighbors of the blocks on the edges with FBC,
second order terms in if, §) survive and one needs to solve higher order (3rd and 4th) equations

for the equilibrium positions of the boundary blocks.

Based on equation (10), we have performed simulations for different boundary conditions.

Remwkably, even with substantial nonlinearities (measured by ila2),
we do not find any de-

viation from the linear behavior for FBC, OBC and PBC. Thus, we are inclined to believe

that the important nonlinearities are not associated with the spring actions, but rather with

the force redistributions during the stick-slip motion, which are the same in the linear and

nonlinear cases. '

Summary

Using Hookean force-displacement relations, we have investigated the critical behavior of a 2D

spring-block model of earthquakes under the quasi-static limit. We find that the internal strain

is an additional ingredient in the variance of the Gutenberg-Richter law. As
a consequence of

loading along a fixed direction, the model studied by Olami et al. [8j displays striking stability
against generalization to vectorial force for both free and open boundary conditions. However,

if the loading is applied in both directions (e.g., IL
=

-(K(~, K(y),
or as shears through the

boundary), the vectorial generalization is expected to be necessary. Finally, nonlinear effects

associated with the spring actions are found to be not important.
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