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Abstract. Within a Kuhn-Tucker cavity method introduced in a former paper, we study
optimal stability )earning for situations, where in the replica formalism the replica symmetry may
be broken, namely (I) the case of a simple perceptron above the critical loading, and (iii the case

of two-layer AND-perceptrons, if one learns with maximal stability. We find that the deviation

of our cavity solution from the replica symmetric one in these cases is a clear indication of the

necessity of replica symmetry breaking. In any case the cavity solution tends to underestimate

the storage capabilities of the networks.

1. Introduction

In a recent paper [ii,
we introduced a new kind of cavity method, with which we could solve the

learning problem for perceptrons with Q- and Q' state Potts model input and output neurons.

In this method, the Kuhn-Tucker conditions, which lead to optimal stability in AdaTron type
learning processes, have been built into the cavity formulation. In subsequent papers we

extended this method to the problem of the generalization ability of
a perceptron trained for

optimal stability [2j, and to the problem of storing of correlated patterns [3j.
In the present paper, we apply our method to cases where in the replica formalism the replica

symmetry is broken, namely (I) to perceptrons with Ising neurons above the critical loading
and (it) to two-layer AND perceptrons.

Cavity ideas were first applied to neural networks by MAzard [4]; and Kinzel and Opper [5].
The approach of Griniasty [6j, whose work will be discussed below in comparison with our own

findings, employs ideas introduced by MAzard. Our formulation of the cavity method, on the

other hand, was inspired by the just-mentioned work of Kinzel and Opper. In another original
approach, Wong [7j employs ideas which are related to ours and Griniasty's.
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2. Simple Perceptrons above the Critical Loading

We use the definitions as in [2], which are simpler than those we had to introduce for the Potts

model case
[lj. Our perceptron has N input neurons k

=
I,..., N, whose possible states are

Sk "
+i, and one output neuron

s', also with possible states +I. The couplings leading from the

input neurons to the output neuron are assumed to be real numbers, which are
collected into the

coupling vector J
:=

(Ji,
,

JN) with the Euclidean length L
:= (J(

=

(J) +.. + J()~/~, which

is kept fixed, while the components Jk are adapted to certain tasks by "training processes"
(see below). The relation between input and output is

INs'
=

sign ~j Jk Sk
,

(i)

k=1

which can be considered as a binary classification of the possible inputs, or as answers on

qitestions.
Now we assume that there is a training set of p input-output pairs, where the inputs are

("
.=

(((,.. ,(() for ~ =
i,..

,
p, and the corresponding desired outputs are (P. Here and in

the following, unless otherwise stated, we assume that all input components and the outputs

are independent random numbers, which take the values +i with equal probability.
The optimization task, which the perceptron then has to fulfill in course of the training by

adaptation of the components of the coupling vector J, is the minimization of a Hamiltonian,
which performs a weighted count of bad classifications (see below) of the training examples.
Among these Hamiltonians are that of Gardner and Derrida [8j, which simply counts the bad

classifications, namely

it
:=

~j V(EP)
:=

~j
@(~ (E~ IL) ). (2)

» v

Here @(x)
=

i for x > 0,
=

0 else, and E" is defined as usual as the "oriented field" acting

on pattern ~,
N

l~~
"

(~ ~ ~k~~
,

(~)

k=I

while L
=

(J( as above. Bad classifications are those, where E~ IL is < ~c, I.e. for
~ > 0 they

are not necessarily wrong but lack a presclibed amount of stability, which is measured by ~.

There are p =. n N such "questions with prescribed answers", I.e. ~ =
i,..., p, and it is

assumed that the loading parameter a
remains finite, while N ~ cc and p ~ cc. Furthermore,

the stability parameter ~ is to be maximized, if error-free classification (I. e. ii
=

0) is possible.
Gardner and Derrida [8j evaluated not only the number of errors li above the critical loading

nc(~c), where for positive ~c error-free classification is no longer possible, but they also tried

to evaluate the so-called Almeida-Thoitlewline aAT(~). Above this line, within the replica
formalism, replica symmetry breaking (RSB) is necessary. Surprisingly, Gardner and Derrida

found in [8] that OAT > ac for ~ > 0: However, this was due to a
subtle integration error

recently discovered by Bouten [9], who proved that OAT (~)
=

ac(~),
as expected. Bouten also

showed that replica symmetry is always broken, if the distribution of local fields possesses a

gap. So these results, on which we will comment later, provide a test for our cavity approach.
Other Hamiltonians, on which we comment at a later stage, are (see [10, iii) the Perceptron

function and the AdaTron function with

VIE~)
= l~ (E~/L)l~ @l~ (E~/L)1, (4)

with x =
i and z =

2, respectively,
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2. I. REPRESENTATION oF OPTIMAL COUPLINGS. Instead of minimizing the weighted error

rate f(a, ~) :=
ii/p, one can of course also maximize ~(a, Ii for the given training set. Since

we are above the critical loading ac(~), f p of the training examples are badly classified.

There is however an exponentially large number fit of partitions of the training set into a

"good fraction" and a "waste fraction" of size ii Ii p and f p, respectively, from which one

has to choose the optimal one. Namely, fit
ct exp(c p), with c =

f In f (I f) In(I f).
We nevertheless assume, that every one of these combinations has been trained for optimal
stability, e.g. with the AdaTron algorithm [12j. The optimal perceptron with error rate f is

then given by the partition leading to maximal ~.

The couplings of a perceptron trained for optimal stability can always be expressed in the

form [12j

j~
=

~ zv(»jv (~)
p/ k

»el(i-jjpj

with the so-called "embedding strengths" x" of patterns, which do not belong to the fp badly
classified patterns. As can be shown using Lagrangian multipliers [1,12j, these embedding
strengths have to fulfill the so called Kuhn-Tucker conditions, see below. Without restriction

of generality, these are usually formulated by fixing the length L of the coupling vector J in

such a way that the stability limit for
~ > 0 corresponds to E"

=
i, I.e. L

=

~~~ With this

convention, which we always use in the following, unless otherwise stated, the Kuhn-Tucker

conditions are :

either (x" > 0 and E"
=

i)
or

(x"
=

0 and E" > 1). (6)

In fact, the AdaTron algorithm (without overrelaxation)

da"
=

max(-x~, i E") (sequentially or in parallel) (7)

simply fixes the x" repeatedly to values which fulfill (6): If it converges, the conditions are

necessarily obeyed.
Using the "oriented correlation" matrix

B~~
=

("(~ ~j ((([ (8)
N

~

and the definitions (3) and(5),
we can write for the oriented field E"

E"
=

~j B""x". (9)

v

With the Kuhn-Tucker conditions we have finally

~2 jj~p~pu~u_ ~jj~v (i~)
N

P>" P

The basic idea of the cavity method here is, to add a pattern, I.e. the "cavity", to a set of

perfectly trained patterns. By calculating the necessary adjustments to embed this pattern we

gain valuable information about the whole system. As in iii,
we therefore add a new "question

with desired answer" ((°, (°) to the training set, assuming one simple groundstate.
We note that the distribution of the oriented fields E° acting on it, before any further

adaptation has been performed, which in the following always will be indicated by the ', is
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Gaussian with average 0 and variance (J(~
=

L~
=

~~~. Of course the error rate f has to

remain constant. Therefore, as will be seen below, the best strategy is, to give up and add the

new pattern to the "waste fraction of the training set", if the oriented field f° acting on
(° is

smaller than a certain number Z < 1. For self-consistency, Z is determined by

where t :=
f° IL and z :=

Z/L. On the other hand, if f° is > 1, then it is not necessary to

embed f° in the couplings, since it can be added to the set of those correctly classified training
patterns, which need no explicit embedding (see [13j) by the AdaTron algorithm, [12j. Thus,

only for Z <
f° < I, I.e. z < t < ~, the new pattern must be embedded in the couplings, and

the implementation strength xP of the other patterns must be corrected by dxP (see below),
to compensate for the influence of the new pattern.

As we have just seen; the parallel AdaTron algorithm would in a first step try to embed (°;
if necessary, with the "bare" embedding X°

=
i f°. This generates a perturbation BP°X°

of the pattern ~. In a second parallel step, all those patterns ~, which are stored explicitly,
then have to respond by d~"

=

-B"°x° to the disturbation by x°, because the Kuhn-Tucker

conditions still have to be fulfilled. At pattern 0 these corrections generate a response field

gx°
=

~j B°~dx~
=

~j (B°~)~x°
,

(12)

»,i~M>oj v.uM>ol

which reditces the effect of the AdaTron step with x°. Therefore, one has to enhance x°
=

i f°

by an amplification factor I/(I + g) (> I). Now the (B°")~
are I/N

on average, see (8).
Therefore one gets immediately

~j (B°")~
= a

P(~~ > 0) =: aeR. (13)

M,j~H>0j

aeR is the percentage of exhausted degrees of freedom, I.e., if pattern 0 is as typical as the

other random patterns ~ =
l,.

,
p, one has to postulate

~

g = -ae~ = -a
P(Z <

E° < ii
= -a

/
Dt 2 (-11. (14)

z

Note that we have constructed our algorithm in such a way that the further correction steps,
which are necessary to regain the Kuhn-flicker conditions exactly, do not change the response

at pattern 0 in the thermodynamic limit ~v.hen convergence is achieved. A proof is given in

the Appendix, where we also show that in this limit one can assume that the x~ and BP" are

statistically independent.
With our approach, the final embedding strength for (° is then given by (i f°) /(i + g).

Furthermore, ~v.e now identify the distribution of embedding strengths of all patterns with that

of pattern (°. Putting the Gaussian distribution of the cavity field fi°, felt before training,
into (10) gives

~

L~
=

oL Vt ~ (is)
/

i + g

With L
=

~~~ this implies
~

i
=

~ /
Dt (~ t)~ (16)

+ §
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After multiplication with i + g, this finally leads to our '~Kuhn-Tucker cavity result"

~ ~

l
= a

/
Dt + a~c

/
Dt (~ t) (17)

~

= a (1 + ~2j vi +
°~ (e-~~/2 e-z~/2j j~~)
@

This result will now be compared with that of the cavity approaches of Griniasty [6j, and

lvong [7j. Their different result is equivalent to the replica formalism in the replica-symmetric
approximation [8,10j; therefore ~v.e use the suffix "RS" to indicati their result. We have already

shown in [ii that below ac, where replica-symmetry is exact, our Kuhn-Tucker cavity approach
and the RS approach agree; however in the present situation, where a is > ac, they disagree.

When Griniasty derives the constant of integration in [6j, he uses a simple method which in

all cases known to us gives the correct RS result: The reaction factor g is assumed to vanish,
while at the same time also the B"U with ~ # v are neglected. With these two neglections one

obtains instead of equation (10)

~ ~ (19)~2
=

X(s ~RS XRS
fit

~~~~~~
N

M

Thus, instead of equations (17, 18), the "RS" cavity result would be

~

l
= aRs Dt (~ t)~

Equation (20), which is identical with the result obtained by Griniasty [6j or Wong [7j, agrees

with the result of the replica calculation of Gardner and Derrida [8,10j from the replica-

symmetric approximation; the expression abbreviated by M in equation (20) yields the differ-

ence between our acav (=
a obtained from Eq. (18)) and aRs. Because of z < ~, it is M < 0

and therefore aRs > acav. For z ~ -cc, I.e. for f ~ 0, one has M
=

0, and thus for a < ac

it is aRs = ncav, as already mentioned.

Although the numerical results differ, there is an interesting formal relationship between

the basic equations in Wong's approach [7j and the one presented here: equation (6) in [7j

agrees formally with our equation (16), and our reaction strength g corresponds to -a X

in [7]. However -a x in [7j differs from our g, which is given by equation (RI, by a term

corresponding just to the expression JzI in equation (20). The difference arises from a
d-function

contribution to I'(t) at t
= z in [7j, where lit) and t in [7j are the oriented fields after training

and before training, respectively. Probably this difference, which only comes into play above ac,

where M is # 0, is relevant with respect to the combinatorial explosion, which conflicts with

the assumption of a unique optimum made in all the approaches. Research on this problem is

in progress.
In Figure i, for error rates of f

=
0.2 and 0.02, the learning capacities a(~, f)

= acav

and aRs, respectively, as obtained from our Kuhn-flicker cavity theory, equation (17), and
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Oc~

aRs
3

2
~ °~

i

J= 0 02

0
0 2

Fig. I. For two different error rates f the storage capacity o is presented as a
function of the

stability ~ for both estimates (17) and (20).

with the replica-symmetric approximation (20) respectively, are plotted against the stability

~.
Obviously, the learning capacity obtained with the Kuhn-flicker cavity theory is lower,

particularly at small values of ~, i.e. for
~ =

0 and f
=

0.2, acav is only 10/3, whereas aRs is

15.53. This means at the same time that for given ~
and a, our error rate f would be larger

than that obtained with equation (20). This is a strong hint that the assumption of a unique

optimum for the distribution of those patterns, which are put to waste, is wrong. Therefore,

one cannot say in advance, which approach is better: Rather what has been gained is the

following: Since both approaches agree below ac(~, f
=

0), but not for f > 0, we can use the

different results as a criterion for the necessity of replica-symmetry breaking for f > 0, which

agrees with the recent rigorous proof of [9j.

2.2. COMPARISON wiTH A ONE-STEP-RSB CALCULATION. Majer et al. [llj have per-
formed a calculation above ac (~, f

=
0) within a one-step replica-symmetry-breaking approxi-

mation. From equation (2), they obtained the following result for the free energy
/E)

"
alla, ~)l

~~~ fi~iw 2x(1 ~wAq) ~
~~~~2~u~~~~

+
° /

Dz0 In
/ ~

Dzi exp
'° (A zi

fi )~
ma - 2

/q

+ exPi-Wxi4~i~R~1 + 4~1

ii
,

(211

with A
= ~ z0@ and Aq

=
1- q0. The parameters qo, w and x have to be chosen such

that the number of errors is maximized. In the limit qo ~ 0 one regains the RS result.

In Figure 2 the stability
~ is plotted against the error rate f for three different values of

a.
Obviously there is only a small difference between the results of the RS and the i-step

RSB calculation, in contrast to our cavity results, which differ considerably from both replica
calculations, I.e. with our estimate, the stability increases much more slowly with increasing

a > ac.
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f

Fig. 2. The stability ~ is presented as a function of the error rate f for a =
2.0, 0.8 and 0.4 Results

are shown for the cavity-method and the replica calculation in RS and 1-step-RSB approximation.

For f < I, we can compare these different estimates with simple simulations: For a < 2

one can train perceptrons to optimal stability by means of the AdaTron algorithm. If one then

skips the pattern with the largest embedding strength, I.e. the one which was most difficult

to store, and re-learns the remaining patterns, one gets an enhanced stability, which agrees
within the error limit with the replica calculation, and not with the cavity results, as we found

in the simulations.

Thus, for f > 0, our Kuhn-flicker cavity method yields a
non-sufficient approximation for

~(a, f). In the following we try to find the reasons for the discrepancy and to estimate at the

same time the quality of the I-step RSB calculation. For this purpose, we need the distribution

of the oriented fields t, which according to Majer et al. [iii is

where V has been efined
for

such that the is

The arameters qo> w and x are
determined

for given a and ~ from

equation (22) he of the local fields can be determined; in particular a

b-peak at t = i is
btained, which represents the

patterns,
which are

the training.
However,

our interest is in the field-distribution before the dditional training.

This
tribution can be obtained by

in [6j to the present
case.

ccording to [6j, after
addition

of the pattern f°, the quantities zo/fi

the local oriented
fields felt before and

after

the additional
training,

respectively.

The exact value of lo esults from a ompromise
between

the ncrease the
nergy

V(lo
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representing the increase in energy of the ii f)p patterns, which had been stored before the

addition of the new pattern.

Thus we can determine the field before the corrections by simply eliminating V(lo) and lo

in (22): With the abbreviations uo "
zo/fi and vi "

zi/li, the integrand in equation (22)
is

+ exP(-Wx) 9(~ /&
(Ho + vi)) + 9(uo + vi

)ld(t
(Ho + vi))

~~~~~~~~2j~(~~~~~~~~
~~~ ~~~~~~~ ~~~~~ ~~ ~~~

+ exp( -wx)@(~ /& t) + 9(t ~) (23)

Here the first term describes the patterns, which have been successfully embedded (I.e. with

V
=

0), the second term those, which are badly classified and put to the waste (I.e. with

V
=

I and lo zo@ zi@
"

0), and the final term the patterns which are stored without

embedding. The denominator fit in (23) is the integral over all fields t in (23) and serves for

normalization. Thus, we have no longer a
Gaussian field-distribution before learning.

In the cavity picture, this non-Gaussian distribution of the fields acting on an untrained

pattern stems from the fact that there are now many ground states available. If we add a

pattern to such a multitude, every groundstate will still see a Gaussian distribution of the

local field I°. However the particular ground state, which after training appears as the one

with the highest stability, is likely to have a higher-than-average local field for the new pattern,
thus being able to store it more easily. Our field-distribution before learning is then effected

by this selection. At the end of this section we will shortly comment on how an intrinsic cavity
approach for RSB should take this selection effect into account.

In Figure 3, for ~ =
l and a =

i, the local fields are presented for the three approximations
mentioned, namely for our cavity method, and for the RS and RSBI approximations. One can

see that in RSBI, the distribution of the local fields before learning the additional pattern,
although strongly non-Gaussian, is still everywhere continuous, and for t

= ~ even continuously
differentiable.

Comparing the results of our cavity theory with the RS approximation. one can see that for

increasing a > ac

. on the one hand, the error rate f obtained with the RS theory is much better than that

obtained with our cavity method (if the error rate obtained with RSBI is considered as

target approximation), see Figure 2; whereas

. on the other hand, the value of the limiting negative field value t := to
"

z/~ (m -0.5

in Fig. 3), below which patterns are no longer learnable, is almost exactly the same with

our simple cavity approach and the much more complicated RSBI calculation.

If we accept the local fields from RSBI as a good approximation, then again the Kuhn-

Tucker conditions (6) must be fulfilled after learning, and with (17) we can calculate the

loading aRsB-KT from the RSBI field-distribution, calculated with the parameters q, w and x.

To this purpose, in the above-mentioned formula one only has to replace the Gaussian measure

Dt by the RSBI field-distribution of those patterns, which are explicitly embedded, I.e. from

to to ~(= ii in Figure 3. This is related to nRsBi in a similar way as acav is related to aRs
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0.2 ' '
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0.0
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t

Fig. 3. The probability densit» P(t) of the local fields t before learning is presented as a function

of t at a =
I and

~ =
l. Again results are sho~vn for the cavity-iuethod and the replica calculation

in RS and I-step-RSB approximation. The distribution after training is given by pushing the middle

segment to a d-peak at ~ =
l in every case. The cavity-method vields an error rate f

=
o.29092,

the replica method gives f
=

o.13073 in RS and f
=

o.13576 in 1-step-RSB approximation. The

fraction of explicitly learned patterns is o.55042 for the cavity approximation and o.71062 and o.66745

respectively for the replica calculations.

For three values of ~, the resplt fKT
i=

fRsBi-KT of such a calculation is presented in

Figure 4. For comparison also the results of the two simple approximations, fcav and fRs, are

presented, together with the RSBI replica result fRsBi Obviously, the improved cavity result

fKT is only slightly higher than fRsBi, which is already a criterion for the quality of the RSBI

calculation compared with the RS theory.

One expects therefore that the rigorous result should lie between our fKT as an upper and

fRsBi as a lower bound, so that further replica symmetry breaking steps should give only

a slight improvement. Precisely, we expect both a slow monotonous increase of the error

rate fRsBn with increasing
n

in a RSBn calculation, [14j, and a slow monotonous decrease

of fRsBn-KT, and at the same time a decrease of the relative number of explicitly embedded

patterns and of the averaged embedding strength. As a consequence, aRsBn-KT, which is

calculated from a
formula analogous to (17), increases slowly. For n ~ cc, the RSBn replica

result and the RSBn-KT cavity result derived from the RSBn field-distribution should agree.

We have thus found a method leading to an upper bound for the error rate f(a,
~c) as a

function of a and ~c, if the local fields before re-learning are known. In [14j, Fontanari and

Theumann derive an upper bound for f at ~ =
0, evaluated in RS approximation at the AT

line for finite temperatures: For o $ 50, our RSBI-KT upper bound is lower, whereas for

o > 50 the bound in Figure 2 of [14] is lower.

That the RSBI itself is not yet sufficient, has already been shown by Majer and Engel [i ii.
Moreover, also the fact that after our RSBI-KT cavity learning there is still a gap in the

field-distribution, which is according to Bouten [9j responsible for RSB, points to this fact.

Additionally, in this approximation the condition is violated that the number of explicitly
embedded patterns should not exceed the number N of coupling degrees of freedom, see equa-

tion (23).
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Fig. 4. The error rate f is presented as a
function of

o
for

~ =
l.25, 0.5 and 0. The results are

given for the cavity method, the RS and I-step-RSB approximation as well as the result fKT, which

is calculated by putting together the Kuhn-Tucker conditions and the local fields of the RSB-solution.

The best estimate is ver» likely between these RSB-graphs, I.e. fRsB and fKT, and probably closer

to /%SB.

In connection with Wong's paper [7j it is interesting to note the following: Using the RSBI

distribution of fields in connection with equation (6) in [7j one reproduces self-consistently the

RSBI result for a of hlajer and Engel [iii. The slight difference to our result arises again
from a contribution of a d-peak, which is present in Wong's approach, but not in our's. This

contribution, much smaller now, which in turn originates from the mentioned gap, leads again
to terms corresponding formally to M in equation (20). Thus once more the difference between

our results and those obtained with Wong's approach, both starting with the above-mentioned

RSBI field distribution, shows that also the RSBI calculation, albeit a good approximation, is

not yet exact.

The results discussed here have recently been supported by a complicated 2-step-RSB cal-

culation: Whyte and Sherrington find in [15j that in fact the next step in the replica breaking
scheme raises the error rate f, but only by an amount which is typically O(10~~). This agrees

very well with the predictions that we could make from our findings.
As already mentioned, the results of the cavity methods are necessarily insufficient above ac,

since the combinatorial possibilities to select the "waste patterns" are not considered. However,
with our approach it should also be possible to get equations, which are equivalent to RSBI,
without using the replica trick, I.e. as in the seminal book [16j on spin glasses.

To achieve this, one considers a multitude of ground states, which are ordered in an ultra-

metric structure. If one decreases the stability constraints, the number of different ground
states is assumed to increase exponentially. If one now adds a pattern to this ensemble, a

lower embedding strength is therefore favoured, which gives a higher storage capacity com-

pared to the Gaussian one of our equation (17). This approach has the appealing trait, that

the number of patterns, which have to be misclassified, gets lower as more degrees of freedom

become available for the approximation. Within the replica method, in contrast, one has to

take the "worst" value of the order parameters for technical reasons. Work on an intrinsic

cavity approach for a > ac is in progress.
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inputlayer
with 2N

flexible weights

hidden layer

weights
=

I

output neuron with

threshold 1/2

Fig. 5. The AND-machine with tree structure (NRF). The weights between the intermediate layer
and the output neuron are fixed. A threshold between o and I at the output-neuron takes care that

there only is a positive output if both intermediate neurons are positive.

3. The AND-Machine

For multilayer perceptrons, replica symmetry breaking is a general phenomenon, when optimal
learning capacity for a given stability or optimal stability for given capacity are required. As

a consequence, the optimal capacity is not easily estimated. Griniasty and Grossman [17j
have calculated the storage capacity of the AND-machine and gave arguments, which made a

suppression of replica symmetry breaking credible. However, with our method we are able to

check their proposal and find that replica symmetry is broken.

3.i. MODEL DESCRIPTION. The AND-machine is a simple example for a multi-layer per-

ceptron. Multilayer perceptrons have been introduced to overcome the limitations of single
layer perceptrons, which are limited to linearly separable classifications [18j, whereas with

sufficiently many units in the additional layer(s) between the input and output units, every

Boolean function can be implemented. However, at the same time, the analytical treatment

of the models becomes much more complicated, and in general, the space of solutions is no

longer simply connected. The RS approximation yields then results which contradict the ex-

act bounds derived by Mitchison and Durbin [19j. However, the necessary RSB calculation is

rather complicated for such models. A multilayer model, which has been studied in this way, is

the so-called committee machine with 3 (or any other odd number Nh of) hidden itnits [20, 21j.
Here the intermediate hidden layer consists of three neurons, and the output is given by the

majority vote of these hidden neurons. The maximal capacity of the system decreases from

ac m 4.02 for the RS approximation to ac m 3.0 for the RSB-ansatz. This is for the case of

non-overlapping receptive fields, see Figure 5.

In contrast to the mentioned case of the committee machine, for the AND machine the

number Nh of intermediate neurons is arbitrary (> 2); here the output unit gives a positive

vote iff all intermediate neurons vote with +i. This AND machine was at first treated by
Griniasty and Grossman [17j, both with non-overlapping and also with overlapping receptive

fields (NRF and ORF cases, respectively). Within a replica-symmetric approach, the authors

find for the case of an equal number of patterns with output +i and i for N
=

2 intermediate

neurons a critical capacity of ac m 3.5 (ac zi 3.3 with simulations), for the case of overlapping
receptive fields, and ac m 3.66 for the NRF case

iii]. At the end of their paper, Griniasty and

Grossman discuss the validitv of their RS approximation and find support for their assumption
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that only a single minimum contributes to their solution. Griniasty [6j repeated the calculation

with his cavity method and got the same results. Wong's recent result iii
on this problem will

be commented upon below. In the following, we use our different cavity method.

3.2. CALCULATION oF THE LEARNING CAPACITY. As we have seen, our method yields a

convenient way to recognize the necessity of RSB. Xdditionally one gets a rough quantitative
estimate, to which extent the actual solution is approximated. At first

we study the AND

machine with Nh
"

2 and non-overlapping receptive fields (NRF case). Since this does not

necessitate an additional effort and the argumentation is simplified, we assume that both

subnetworks are trained with optimal stability,, as long as the optimal capacity ac is not yet
reached.

lve assume p+ =
a+N and p- =

a-N patterns with positive respectively negative output.
Then the parameter b is defined via

1 + b
(24)a~ = j °.

The (+)-patterns must be trained in both subnets, since both intermediate neurons must vote

positively, whereas for the (-)-patterns one can choose at will a subnet with a negative vote.

From this fact, Griniasty and Grossman [iii derive the sharp bounds

~
§ ac f

~
(25)

for the maximal capacity ac, which also applies with overlapping receptive fields (ORF case).
Moreover, recently Wendemuth [22j w~s able to generalize the method of Mitchison and Durbin

[19j and obtained for the AND-machine as a lower bound the sharper condition

4 (1 hi iog~ (3j
~ °~' ~~~~

which also applies both to the NRF and the ORF case.

Let us consider fictitiously all possibilities to distribute the responsibility for the (- )-patterns

among the Nh subnetworks; these patterns, including the (+)-patterns, shall then be trained

to optimal stability. Afterwards
we select that distribution, which leads to maximal stability

~ =
min(~ci ~c2).

In both subnetworks
=

1, 2 we have N input neurons, and in both subnetworks the couplings

are defined with embedding strengths x(
as

J,k
"

~x(("((~. (27)
~

»

++Here (" is the desired final output. As before, we define the oriented correlation matrix B,
the length L of the coupling vectors and the oriented local fields E

~y»u
I

~v ~u j ~» ~u j~~j
~ p/ >k ~k

k

Li
=

JIJ>
=

j~oxiBi~xi 129)

P>U

E~
=

~jB"~~). (30)

u
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The embedding strengths x(, for I
=

1, 2 and all ~, together with the Ef, fulfill again the KT

conditions

either (x( > 0 and Ef
=

ii
or (x$

=
0 and Ef > 1). (31)

Additionally, we know that for our optimal choice,
a

(- )-pattern can have ~ positive embedding
strength only at one of the subnets, since otherwise the less stable subnet could enhance

the stability by reducing its unnecessarily positive x$ to 0 and relearning the other patterns.
Furthermore, in the thermodynamic limit, both stabilities should be equal, I.e. L(

=

L]
=:

L~.

Let us assume again that there is only one groundstate, and add a new pattern. Again this feels

a normally distributed random oriented field E) with variance L~ in each subnet. A (+)-pattern

must be classified correctly in both subnets. So we need, in case of @) < 1, positive embedding
strengths x)

=
(i E)) /(i + gi ), where the response factors gi have still to be determined. In

contrast, for a (-)-pattern we can choose the subnet with negative intermediate output. As

we will see below, it is best to embed the (-)-pattern in that subnet, where the oriented field

is larger, so that the embedding strength can be smaller. The field-distribution P(t) for the

larger oriented field t, with normalized couplings, (E$~~
=

Lt), can be calculated from the

Gaussian distribution of the fields (ti, t2) of the two sublattices as follows:

j
~

t

~~~~ ~~~~~ ~'~~ ~ ~~ /h ~
~~ ~~~

If again we assume that x" and BPU are uncorrelated, then the answer g of the patterns,
which had already been implemented and now must keep the KT conditions, is similar to

equation (14), namely

£ (B°~)~
= -ae~ =

-aP(xP > 0). (33)

(xf>o)

Identifying again the distribution of the embedding strengths with the probability distribu-

tion for x° and normalizing the couplings to i, we get

~ ~

g = -a+
/

Vi a-

/
Vi16(t). (34)

Here the first and second parts describe the influence of (+)- and (-)-patterns, whereby
compared with equation (32) a factor 1/2

~v~as taken into account, since only one of the two

subnets is needed for (-)-patterns. The capacity for finite stabilities is again calculated from

the KT conditions (31) through

~2
~

jj~m~Pu~u
~

jj ~M~M
=

~j~M (35)
1 fi~ ? fi~ ~ ~ l

vu p p

~

= a

/
dx, x,w(x~)

=

~' /
Vt (o+ + a-16(t))

(~c
t). (36)

+ g
-c~
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Again, with K =
i IL and multiplying by (1+ g),

we obtain finally from our cavity method

~

i
= a

/
Vi (~

~
+

~
lb(t)) (i + ~c(~c

-11). (37)
2

Obviously, every other strategy to store a pattern would lead to a
smaller learning capacity

with our method. The maximal capacity for ~c =
o is then with our method (I.e. with a =

acav)

o o

(a/~)cay
"

~ /
vi +

/
vi 4~(t)

2 2

4
~

16 16
~~~~

This corresponds again to the limit g =
-i of equation (34) and is compatible with the exact

bounds (25), although it is somewhat lower than the improved lower bound (26). This, again,
is no surprise, since we always expect a somewhat too low estimate from our method in case

of RSB situations.

Now. in contrast, we perform the "handwaving approach" mentioned by Griniasty, see [6j,
++

to neglect the non-diagonal terms of B and assuming at the same time g =
o. Instead of

equation (37) this leads to "RS" results, namely

I
"

j
~~S,~~RS,< XRS.~

j
~(~~S,~~~

~

= aRs

/
Vi )

+ lb(t)) (K t)~. (39)
2

For ~c =
o this yields instead of equation (38) the result of Griniasty and Grossman [iii, namely

(a/~)Rs
"

+
~

o.045422528. ~ (40)

These results are for non-overlapping receptive fields (NRF). For finite ~c and b
=

o, the

maximal capacity ac is compared for both approximations in Figure 6. Additionally, also the

result for overlapping receptive fields (ORF, ofuii, see below) is presented as the dashed curve,
which is slightly lower for the present case, but not always. This will be discussed later in more

detail.

The fact that the RS result differs from our cavity result is, according to our experience, a

strong hint for the necessity of RSB. The extent of replica symmetry breaking seems to increase

with higher loading and larger percentage of (-)-patterns.
For a+ = a- the maximal capacity according to our theory is (oc)cay

=
3.2, whereas

equation (26) leads to ac > 3.31 and the RS approximation to (ac)Rs
"

3.667. Probably the

true result is again smaller than the RS value, but not too far from it. Thus, for a+ = a-,
the RS approach yields again a good estimate although replica symmetry is broken: The

limit g =
-I, above which the system is obviously over-determined concerning the number of

couplings, is already reached at (ac)cay, i.e. below (ac)Rs.
The local stability has not been checked by replica calculations. Recently, however, Wong

could use his cavity method iii to check a large class of multilayer perceptrons and found that

for the AND-machine replica symmetry indeed is broken.
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Fig. 6. The storage capacity of the AND-machine is presented as a function of ~ for b
=

o. The

results for the cavity method and for the replica calculation are given. The storage capacity aiuii

of the fully connected AND-machine, see 3.3, and aperc of the simple perceptron are presented for

comparison

Our cavity method is not only applicable to the present case of an NRF-AND machine, but

also for NRF-machines with arbitrary Boolean outpi~t functions: If one has found the optimal
strategy similar as above, the steps leading to equation (37) are identical, and one only has to

substitute the embedding strengths, which compensate the normally-distributed random field,
in this equation.

Formally this leads to the following equation for the storage capacity a =
mini(aj): If t

is the random vector describing the oriented fields of the subnets and x,,~(t) the embedding
strength following from the optimal learning strategy for the subnet I (without taking into

account response g), then

1
= a~

j
vt j~(x~ (tjj + ~x,~

(tjj. (41j

Here the different desired outputs, analogous to the (+) and (-)-patterns in case of the AND-

machine, have to be taken into account according to their respective probabilities. The optimal

storage capacity is obtained, if one of the subnets has reached its capacity limit. If the output
value follows from a Boolean function, for which all the neurons in the intermediate layer

are equivalent, then all the a~ are identical. The formula analogous to (39), giving an upper

estimate for the storage capacity, was for
~ =

o already determined by Engel et al., [21j, and

was described in a more abstract way in [6, iii. In a formulation similar to (41), this upper

bound is determined from

1
= a~ Vt x)~(t). (42)

In contrast, the results for ac obtained from equation (41) with the cavity method are lower

estimates. For the committee-machine, because of acav < 2, they violate the lower bound of

Mitchison and Durbin [19j, a > 2, and ~re therefore ~v~ithout interest.

More interesting would be a RSB calculation as suggested at the end of the section on the

simple perceptron for
a > ac, since then relevant estimates from below for the true capacity

for this model could be derived.
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3.3. THE AND-MACHINE WITH OVERLAPPING RECEPTIVE FIELDS. Also the fully con-

nected AND machine can be treated with our cavity method. This corresponds to a machine

as in Figure 5, but with identical patterns presented to both subnets. Thus the index I
=

1, 2

of the description of the patterns (((), e.g. in (27), is now dummy, and in particular it is

ii "12"'I.
A very important parameter for the fully connected AND machine is the overlap

R :=
£~ JikJ2k of the two subnets.

Since also for this case one expects RSB, we can no longer expect that R agrees for different

approaches, as it happened with the generalization problem treated in [2j. Therefore ~v~e can

no
longer simply compare with the RS results of [17j.

For the local fields fi and t2 one gets for given R

~~~~~'~~~
2~

11
~~~

~~
/~~~~2~ ~~

~~~~

However, the probability density of the field fi of a
(+)-pattern needing explicit embedding is

not influenced, since again

For the (-)-patterns the situation is more complicated. Negative correlations of the

simplify the
storing of these patterns,

hereas
positive correlations enhance the

probability

that a (-)-pattern, I.e. one which is already wrongly by one of the ubnets, cannot

be stored
tomatically by the other one,

I.e. that it must be xplicitly. In the limit

b ~ -l, I.e. hen exclusively (-
-patterns

must be bedded, Ji =
-J2 (with R

arbitrary
couplings Ji, is a eneral of the problem in the

or

i

it)
=

2PR (ti t,
)

=

/

~ /~ ~ ~~~~ ~ ~~ ~~ - ~~
~

' ~~~~
and one obtains (32) as special case for

again the arguments llow
from

equation
(33) ff.

For
the

sponse
g the apacity

a
get

-

a~~
lJt

-
a-_/

l~t
~1@)

6)

~ ~ £cc ~ Iv ~ v ~ l~ ~l - Ill1 ' ~~~~

Similarly as for the problem in section 2.3 of [2j, only,

levant,
for

hich R
is

roduced
fconsistently.

For couplings
one

obtains
= ~j JikJ?k =

k k ~" ~v

~ <,
o~

= a- / au
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Fig. 7. The overlap R of both subnetworks of the fully connected AND-machine is presented as a

function of the bias parameters b from (24). The result for the cavity method gives a higher correlation

of the subnetworks compared to Figure 3a in [17j. We have R
=

0 at b
=

-1/3, which means o- =
2a~,

in contrast to R
=

0 at b
=

0 in iii].

In equation (48) the above-mentioned strategy for the storing of patterns was used: For

the (-)-patterns the subnet with the smaller oriented field, here t2, is unchanged, whereas

the (+)-patterns
are explicitly embedded in both subnets I, if the field ti is < t~. Again one

multiplies with (1+ g) to simplify, (48).
For t~ =

0 it is again g =
-1, and therefore one obtains R from

o t, o c~

0
=

dti dt2 PR(~i, t2) (-ti ~2 +
~

d~i d~2 PR(6, ~2) (-ti) t2 (49)
~ ~

~~

The result for R(b) is presented in Figure 7. One should note that it deviates from the

result obtained by Griniasty and Grossman in ii?]. From a comparison with Figure 3a in ii?]

one finds that our value for R is systematically larger, which as mentioned above has a

negative effect on the storage capacity.
In Figure 8 the capacity of the fully connected AND-machine is presented for the case that

the capacity in (47) is calculated for
~ =

0 with the R determined from (49). For b
=

0 we

get R
=

0.217 and a =
3.113, as opposed to R

=
0 and a =

3.512 obtained by Griniasty
and Grossman [17]. Again we expect that the KS-approximation gives the better estimate.

However, our estimate for b £ -0.65 is above the lower boilnd (26), as it should, and in the

limit b ~ -1 one gets acfuii ~ cxJ.

Apart from the fact that different capacities ac are obtained with the replica and the cavity
approach, there is a second hint on RSB: The replica calculation with the KS ansatz yields an

overlap R between the subnets, which is not reproduced by our "optimal" learning algorithm.
For the generalization problem, see [2], the perfect agreement of the results obtained with the

two approaches was a clear hint on the correctness of the solution, and in particular on the

correctness of RS. In the present case, however, one finds that the RS solution apparently
yields the optimal capacity only, when an additional component to the coupling vector J is
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Fig. 8. The maximal storage capacity of the AND-machine is presented as a function of the bias

parameter b from (24). The result of the cavity method for the tree structure is compared to the

RS-result from [17j and the cavity result for the fully connected AND-machine. The largest deviations

occur for small values of b. For the fully connected AND-machine the storage capacity is again smaller

than with the replica calculation (see Fig. 3b in [17j). We have oc-iuii = oc-tree at b
=

-1/3, when

R
=

0. For b ~ -l we have ac-iuii ~ cxJ as in [17j.

introduced, by which the overlap R between the subnets is reduced, but the embedding of the

patterns is actually weakened.

In fact, in [6j, Griniasty suggests a non-trivial training process for the fully connected AND-

machine, by ~i>hich patterns in the non-affected subnet are unlearned, influencing in this way
the correlation R. According to our considerations, however, this is not optimal, since after

deleting the additional component one can enhance the stability or store additional patterns,
using the same distribution of tasks with respect to the different patterns. Thus it is not

astonishing that Griniasty [6] with his training process obtains a smaller capacity (ac
=

3.0)

as with a stochastic algorithm, which leads to oc =
3.3 ii?]. This discrepancy, which demands

an additional component to the coupling vector, by which the subnets are decorrelated, should

become smaller by a RSB calculation.

4. Discussion

As we have stated already in ill,
our cavity approach is usually technically simpler than a

replica calculation. Moreover, it gives the exact result as long as calculations within the

replica approach under the assumption of Replica Symmetry (RS)
are correct. Here we have

shown additionally that for models with Replica-Symmetry Breaking (RSB), e-g- the simple

perceptron above ac, one gets different results, as one should, with our "Kuhn-Tucker cavity
method" and the RS approximation: This would not be the case e.g. with the different cavity

approximation of Griniasty [6] or Wong iii, since their methods are always equivalent to the

replica calculation in RS approximation. However, although our cavity theory "indicates the

necessity of RSB"', if RS does not suffice, it is still far from being exact, since the combinatorial

explosion of distributing the set of patterns into "good" patterns, which are stored, and "bad

ones", which are not, is not considered.
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From the results of the present paper it can be seen in detail that for cases with RSB,
Griniasty's "RS-cavity theory" approach usually yields too optimistic estimates, whereas in

the same cases, our Kuhn-Tucker cavity method is apparently "too pessimistic" in the error

rates. However, the limiting negative field value, below which patterns are no longer learnable,
(e.g.

m -0.5 in Fig. 3), is well approximated by our theory, and as shown above, the theory
also gives good results, if one starts with the field-distribution obtained by a 1-step-RSB

calculation.

Moreover, the RS approximation follows for our models, except of the last-mentioned case

of the fully connected AND machine, always from the "formally crude", but consistent ap-

proximation of vanishing response-factor g and vanishing off-diagonal elements B~", as stated

already by Griniasty [6j. For this fact we do not yet have a deeper understanding.

With our Kuhn-Tucker cavity-approach, we follow the embedding of a new pattern in detail:

The newly added pattern is embedded by one single AdaTron step with an enhanced implemen-
tation strength ii E°) ii + g)~~, where the enhancement factor -g is given by equation (12).

At the same time, the already embedded patterns get specific corrections bx~
=

Oil /@) of

their implementation strengths. In the Appendix we show that for N ~ cxJ there are no further

corrections for g necessary, which would go beyond the one-step procedure. At the same time,

we have gained in this way knowledge of the actual distribution of the embedding strengths.
Another important point of our cavity method is the demand that the constraints, which the

solutions impose on
the couplings, are actually realizable, which means that no more degrees

of freedom are fixed than are available with the given couplings. For the fully connected

AND-machine an additional postulate is that the correlation of the subnets is self-consistently
reproduced by the embedding strengths. Thus we can interpret our result as an estimate

adapted to our training algorithm.
Although replica calculations in RS approximation do not at all take care of such details, we

have found that they yield good estimates for the storage capacity of the simple perceptron
above ac, and probably also for the AND machine. In this respect, the virtue of our approach

is based on two facts:

At first, it yields an independent estimate, which seems to be a lower bound for ac and an

upper bound for the error fraction f(a, t~).
Second, our cavity theory visualizes the "internal stresses" inherent in the RS approach and

shows, which quantities and order parameters depend most sensitively on the assumptions
made.

Finally1N.e repeat that our Kuhn-Tucker cavity approach, starting from field-distributions,
which Majer and Engel, see [I lj, obtained in I-step RSB for the perceptron above ac(t~), shows

that the I-step RSB results are not yet exact, but must already be very near to the truth. This

conclusion is supported by a recent 2-step RSB calculation, [15j.
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Appendix

In this Appendix we show that for N ~ cxJ our I-step approximation for the reaction strength

g is exact.
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In the derivation of our result for g in equation (12), we had simply used bx~
=

-B°~x° for

the correction to the implementation strengths of those patterns (~, which had already been

embedded into the couplings before the addition of the test pattern (°. I-e- we had neglected the

(secondary) mutual reaction ofpatterns with ~t and v > 1 in contrast to the (primary) response

of the patterns (~
on the test pattern. To be more thorough, let us thus try a correction term

y~ taking the secondary and further reaction terms into account through bx~
=

-B~°x° + y~

Inserting this into the equation bE~
.=

B~°x°+bx~ +£[~~~~~~ B~"bx"
)

0
,

we get iteratively

p P P

~~~
~

~0 8~0 + ~j B~" B"° ~ ~ B~"B"~B~° + (50)

vj#~)=l V(#~)"l P(#")"I

Here, the 2nd and 3rd term on the r-h-s- correspond to subsequent parallel AdaTron iterations.

Indices corresponding to patterns, which are automatically implemented without explicit em-

bedding, are left out in the sums (which corresponds to a ~ ae~ below). For the response g

we then have

g =

~(B°~)2 +
~ B°vBv~Bl~° ~ B°PBPVBVI~BI~° + (51)

~ "#~ P#"#~

We assume that there is no selection effect among the correlation matrix elements, I.e. that if

a pattern is embedded explicitly this does not change the distribution of the B~"

In equation (51) the first term on the r-h-s- gives

_j~(j~0~j2 j~j~ j0j~fj0
_~ (~~j

fil2 1' J j ~~'

~ ~ i,j

as used in equation (13). The dominant contribution comes from N terms such that I
=

j.
For the next term we have N contributing terms

=
j

=
k plus remaining terms represented

by £' below:

~ ~~~~~~~~ ~ ~ ~ f~~$f~f~f~f~ (5~)

v#~ v#~ i,J,k

~~~~~)3
~~~

~
3 ~ ~ f~fff)f~f~f~

v#~ i,j,k

" ~X]~ +
°(l/4) (54)

From the last explicit summation in (51) there are just two non-zero terms, one for I
=

j
=

k
=

I, the other one for ~t = p, I
=

and j
=

k, giving

~j jJ0pj~pvj~v~j~~0
~

l j~ j~j0j~j~jVjjjPjPj0 (~~)
~/4 ii j j kl I

P#v#~ P#v#~i,J,k,1

~~~~~4 ~~~ ~~~~~3
~~~~~~i~~

t
-a(~ a(~. (56)

Thus the term o(~ in (54) is cancelled.

In the following we will see that the same happens for all powers of ae~ that appear at some

point in the series.
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First we observe, that the power of ae~ in a term is given by the number of different pattern
indices ~t, v,. we sum over. As in the example above, equations (55, 56), we can eliminate

pattern indices by summing over equal pairs. Because of the construction of the parallel
AdaTron algorithm no next neighbours in a sum (e.g. ~t, v

above) can be eliminated. Next

we observe, that when we eliminate a pair of pattern indices (e.g. ~t = p above), all neuron

indices I, j,. in between have to be put equal (e.g. j
=

k for the 2nd term mentioned in

connection with Eq. (55) ). Thus trying to "join" a pattern index within a pair with a pattern

index outside gives no contribution. In other words, once we have ~t = u~ in the chain ~tvpau~~6
putting p =

6 does not make any sense (see the case x. y. x. y. below).
The problem of enumerating the number of different ways of contributions that can appear

can be solved with
a little help from combinatorics [25]. First we reformulate our problem: We

have a sequence of n symbols a, b, c,.
,

for instance [abcdba], which fulfill:

.
the first occurrence of every symbol must be in alphabetic order,

.
the same symbol cannot occur twice consecutively,

.
there is no subsequence x y x y unless x = y.

Here the symbols correspond to our pattern indices ~t, v, p,

There is exactly one way for all symbols to be different, and there are (n -1)(n 2)/2

ways for exactly one pair. There are exactly two ways for 2 identities (counting the number

of "=" signs needed to fix the pattern indices) in a chain of 5 symbols, namely [abaca] and

[abcba]. There are 5 possible arrangements in a chain of 7 letters which permit 3 eliminations

of patterns indices: [abacada], [abcbada], [abacdca], [abcdcba] and [abcbdba]. In both cases no

additional identity is possible, and we see that the number n
of pattern indices has to be larger

than 2k +1, with k being the number of identities.

The number (n, k) of cases, where one has n letters and k identities, can be calculated by

using a genera~ing filnc~ion. For small values of
n and k the numbers are shown in Table I.

Let us define a function y(w, x) of two real variables w and x given by the power series

cell"~l)/2j

y(w,x)
=

~j ~j (n,k)w~x"

n=1 k=0

= x + x~ + (1 + w)x~ + (1 + 3w)x~ + (57)

We can obtain the defining equation for y by recursion: If we remove the first letter in the

sequence, the possibilities are that

.
there is nothing left,

.
the letter does not appear again, and there are no restrictions imposed on the rest of the

sequence,

.
the letter appears in the rest of the sequence, and because of the last condition above we

now have two sequences left (e.g. [bcb] and [ado] in the example [abcbada]).

These contributions give the terms x, xy and wxy~ respectively. Thus we have for the defining

equation

y =
x(1 + y + wy~ ). (58)
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Table I. The nilmbers (n,k) of possible arrangemenb of n tellers wi~h k iden~i~ies as de-

scribed in the text. At the same time, these nilmbers are the coejficien~s of a$i~ in ~he n~h

~erm on ~he r-h-s- of eqila~ion (51). In ~he main text it is shown, that ~he akernate slim along

the diagonals connected as a gilide to the eye disappears: £~(-1)~(n + I,1)
=

0. E-g-

3 + 2
=

0, 6 + 10 5
=

0 etc..

n
0 2 3 4 5 6

i 1~j~~~~

~~~~~~~~0~14
10 36

252~420~126

11 45 420
1050~630~42

12 1 55 660 2310
2310~462

13 1 66 990 4620 6930
2772~132

Using the Biirmann-Lagrange series [26] for inversion on this equation tells us that

ll~~l)/21 ~n-1

~

~~'~~ ~~
n! 0t"~~ ~~ ~ ~ ~~~

~~ ~~"° ~~~~

This can be written in a more convenient way:

n
In, k)

=
the coefficient of w~t"~~ in (1 + t + wt~ " (60)

Thus we have

(<1 + t) + Wt~)"
=

( Ill ( 6'~1 )
W~t~~~ (61)

and putting 2k +1
= n 1 to get the coefficient of w~tn~~

we arrive at

(n, k)
= ~() ~( )) (62)

11 +

If we put w =
I, we sum the rows in Table I, which gives the defining equation y =

x(I +y +y~)
for the Motzkin numbers 1 1 2 4 9 21 51 127 The last numbers in lines

n =
1. 3, 5,. are

the Catalan series.

We remember that In, k) is the coefficient of ~]i~ in the n-th iteration of the AdaTron

algorithm. We want to prove that in the thermodynamic limit the first term is already sufficient;
thus we have to show that £[jj(-i)k(n + k, k)

=
0 for

n > 2. Substituting w/x for w in
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the defining equation moves the column for each k in the table up k steps from the beginning.
After rearranging we have y =

x(i + y)/(i ivy). To produce an alternating sum we now use

w =
-I and arrive at y = x + 0 + 0 +

.,

just as we wanted.

However, after n such iterations of our simple parallel AdaTron algorithm there is still a "tail"

with powers of ae~ ranging from [(n -1) /2] to n, which have not yet been eliminated. For ae~ z
1/3 this tail (and the results of the simple AdaTron algorithm) will oscillate with increasing
amplitude. But if we now introduce as usual an overrelaxation parameter ~t small enough, these

oscillations are damped out and the modified AdaTron algorithm bx~
= max (-x~, ~t(i E~))

converges for all oe~ < 1 [12]. At the same time we will see that our cavity response theory is

correct already after the first step:
Since we are not concerned with computational efficiency, we can choose an infinitesimally

small ~t,
N~~/~ « ~t < i, ajier the first AdaTron step, to examine convergence of the above-

mentioned tail, The number of AdaTron steps of course has to be increased in correspondence

to the reduction of ~t, so that the product ~tl remains finite. For the first few steps of this

modified AdaTron algorithm with overrelaxation ~t after the first step, the response at pattern

0 then reads:

§2 " ~Oe~
+'fO(~

93 " ~£Ye~ + 16'f(1~'f) +'f)°~~ ~'f~(£Y~~ + °~~)

94 " ~£Ye~ + 16'f(1~'f)~ +'f(l ~'f) +'f)°~~ (~'f~~l ~'f) +'f~)(°~~ + °~~) +'f~(~°~~ + °~~)

1-2 1-2

91 " ~°e~ +'f ~j(1 'f)~ °l~ 'f~ ~j I(1 ~'f)~~~ (°l~ + °l~) +

1=0 1=1

~t~

f
~~~ ~~

(1 ~t)~~~ (3a(~ + a(~)

i=2

~

Summing the geometrical series and using (1- ~t)~ t
e~~~ for ~t ~ 0~ and ~ cxJ, we get

91 ~ ~Oe~ + (i e~~~)Ol~ (l ~~~~(l +'fi))(°l~ + °l~)

+(1 e~~~(1 + ~tl + (~tl)~ /2))(3a(~ + a(~)

" ~&e~ + i~(~l)~ (l ~~~~
f

~~j/
~~(~~~(~l> k)°li~

n=2 m=I k=0

°~~ ~ ~
~~

~

°~~ j~ ~~~ n(n
~~(n ~

k
~~j~~~~~-

~

1) !kl
~~~~

Numerically the sum in (63) decays to 0. Convergence is faster as ae~ decreases, just as

expected. For the critical value ae~ =
1, where g ~ -1 and

a ~ oc, we can examine the

convergence analytically:
Collecting the series in (63) and expanding e~~~ gives for ae~ =

~~~ (~ ~~~
((~~~~)')~~~~fi~~2)'

= ~tl ifi (3/2, 4, -4~tl) (64)

=

~~~~ /~ e~~~~'/(I t)~/~ dt. (65)
~ o
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ifi in equation (64) is the confluent hypergeometric function, in equation (65) we introduce

its integral representation. We are interested in the behaviour for ~tl ~ cxJ
(while

~t « 1),
therefore we can replace the (I t)3/~ term in the integral by I and perform the integration
analytically. Thus the additional disturbance decays like

~)fc~ ~ ~
jfi

~ ~ ~~~~

We now have shown, that even for the critical value oe~ =
I the additional terms decay ~ 0

like ill@; for oe~ < I, which are the values we are interested in, numerical examination

universally shows even
faster decay. Therefore, for N ~ cxJ, our I-step-reaction approach for

g, which is completely in the spirit of Onsager's cavity approach, is correct. This is of course

also true for the multilayer perceptrons studied.

A further study [27] shows that the patterns which are explicitly embedded by the AdaTron

algorithm, have a slight negative correlation. However this small selection effect O(1IN)
contributes even less than the correction effects treated above. The same is true for the

selection effect introduced by the combinatorial explosion, which allows to look for
an optimal

groundstate. At the level of the correlation matrix elements B, this again results in an effect

O(1IN) and can be neglected.
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