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Abstract. We present a new approach to the modelling of stress propagation in static gran-
ular media, focussing

on
the conical sandpile constructed from

a
point source. We view the

medium
as consisting of cohesionless hard particles held up by static frictional forces; these

are

subject to microscopic indeterminacy which corresponds macroscopically to the fact that the

equations of stress continuity are incomplete
no strain variable can be defined. We propose

that in general the continuity equations should be closed by means of
a

constitutive relation

(or relations) between different components of the (mesoscopically averaged) stress tensor. The

primary constitutive relation relates radial and vertical shear and normal stresses (in two di-

mensions, this is all
one

needs). We argue that the constitutive relation(s) should be local,
and should encode the construction h~story of the p~te: this history determines the organization

of the grains at a
mesoscopic scale, and thereby the local relationship between stresses. To

the accuracy of published experiments, the pattern of stresses beneath
a

pile shows a scaling
between piles of different heights (RSF scalingj which severely limits the form the constitutive

relation can take; various asymptotic features of the stress patterns can be predicted on the

basis of this scaling alone. To proceed further,
one requires an

explicit choice of constitutive

relation; we review sonie
from the literature and present two new proposals. The first, the FPA

(fixed principal axes) model, assumes that the eigendirections (but not the eigenvalues) of the

stress tensor are
determined forever when

a
material element is first buried. (This

assumes.

among other things, that subsequent loadings
are not so

large as to produce slip deep inside the

pile.) A macroscopic consequence of this mesoscopic assumption is that the principal axes have

fixed orientation in space: the major axis everywhere bisects the vertical and the free surface.

As a result of this, stresses propagate along
a nested set of archlike structures within the pile,

resulting in
a m~T~imum

of the vertical normal stress beneath the apex of the pile, as seen ex-

perimentally ("the dip"). This experiment has not been explained within previous continuum

approaches; the appearance of arches within
our

model corroborates earlier physical arguments
(of S-F- Edwards and others)

as to the origin of the dip, and places them
on a more secure math-

ematical footing. The second model is that of "oriented stress linearity" (OSL) which contains

an
adjustable parameter lone value of which corresponds to FPA). For the general OSL case, the

simple interpretation in terms of nested arches does not apply, though
a dip is again found

over

a
finite parameter range. In three dimensions, the choice for the primary constitutive relation

must be supplemented by
a

secondary one; we
have tried several, and find that the results for
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the stresses in a
three-dimensional (conical) pile do not depend much on which secondary closure

is chosen. Three-dimensional results for the FPA model are in good semiquantitative agreement

with published experimental data
on

conical piles (including the dip); the data does not ex-

clude, but nor does it support, OSL parameters somewhat different from FPA. The modelling

strategy we
adopt, based

on
local, history-dependent constitutive relations among stresses, leads

to nontrivial predictions for piles which are prepared with
a

different construction history from

the normal one. We consider several such histories in which
a

pile is prepared and parts of it

then removed and for tilted. Experiments along these lines could provide
a

searching test of the

theory.

1. Introduction

A sandpile is normally constructed by pouring sand from a stationary point source, as shown

in Figure la. Each element of sand arrives at the apex of the pile, rolls down the slopes,

comes to rest, and is finally buried. The final (static) sandpile then consists of a symmetrical

cone whose surface is at the angle of repose of the material. Some of the simplest questions

one can ask about this system concern the distribution of stresses in the pile. Specifically, it is

possible experimentally to measure the downward force on the supporting surface at different

positions under the pile [1,2]. (Throughout the paper we assume this to be a high friction

surface so that slip does not occur at it. Intuitively one can guess that the maximum force

would be recorded directly beneath the apex of the pile; but in fact, the experiments show

a pronounced dip in the iorce beneath the apex. This counterintuitive result has stimulated

various theoretical [3-7] and computational [8, 9] studies; but so far, there has been no clear

consensus on
the origin of the dip.

In the present work we pursue a continuum mechanics approach based on the equations
of stress continuity in a cohesionless granular medium ii,10-12]. This approach immediately

encounters the problem of indeterminacy: even in the simplest case of a two-dimensional pile
(which we consider in detail), the continuity of stress does not lead to a closed set of equations.
In elastic materials, this deficiency would be rectified by invoking the usual constitutive rela-

tion between stress and strain (Hooke's law). For granular media, however, there is no clear

definition of "strain". Rather, it is widely assumed that the physics of granular media can be

understood purely in terms of rigid particles packed together in frictional contact (so that no

strain variables can be defined). The indeterminacy of the stress equations then has a clear

origin: for two rigid particles in frictional contact with a specified normal force, the coefficient

of static friction defines only the maximum shear force that may be present. Our continuum

mechanics approach, like some previous ones [7] assumes that, despite this local indeterminacy,
there emerges on length scales much larger than the grain size some definite relation between

the average frictional and normal forces. Thus we assume the existence of one or more consti-

tutive relations, not between stress and strain, but among the various components oi the stress

tensor itseli. In two dimensions, one such relation is enough to close the equations; in three

dimensions (sub ject to certain symmetry assumptions) two are needed.

A basic tenet oi our approach is that the constitutive relations are local: we assume that

these relations between stresses do not depend on distant perturbations, although the stresses

themselves certainly do. Clearly, the constitutive relation (or relations we suppress the plural

in what iollows), between stresses in some material element~ must reflect the packing arrange-

ment oi grains in that element. This raises the possibility that the constitutive behaviour could

vary irom place to place in the pile. More generally, we believe that in principle the constitu-

tive relation oi a given material element should encode its entire construction history. We shall
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Fig. I. The symmetrical sandpile. a) Definition of the normal construction history of a
pile. The

grains fall down from the point source on
the pile and roll down the slopes, which

are at the repose

angle #. b) The arching concept. In the Edwards-Oakeshott formulation the weight supported at a

point the base is proportional to the length of the arch impinging
on

that point. Outer (incomplete)
arches are

unstable. c) Coordinates for the 2-d sandpile. The scaling variable S
=

r/(cz) is unity
on

the free surface. The height of this pile is H. The (z,r) coordinates, and also
a

second set (n,Yn)
rotated through angle T are shown. The ellipse denotes the stress tensor whose major axis is inclined

at angle ill to the vertical in the neighbourhood shown. d) Cylindrical polar coordinates for the 3-d

pile,
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Fig. I. (continued).

assume, however, that the important part oi this history comes to an end at the moment where

the element is buried: at later times, although the stresses passing through the element may

vary, the constitutive relation between them cannot. We call this the assumption oi perfect

memory. We show below (Sect. 2.3) that the periect memory and locality assumptions, when

combined with a simple and experimentally motivated scaling assumption (called RSF scaling),
drastically limit the form the constitutive equation can take.

A consequence of perfect memory is that the stresses in an element, once buried, respond
reversibly (though not necessarily linearly) to any subsequent additional loading. Such loadings

can be brought about either by adding more material to the pile,
or by putting a small weight

on its surface, for example. Obviously our perfect memory assumption, and indeed that of

locality, may fail it the load added is so large as to lead to rearrangement of grains within

the element (that is, slip). From our viewpoint, however, it slip does occur, this represents a
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change in construction history which must explicitly be taken into account. It turns out that

ior most oi the models and geometries considered in this paper, perturbative loadings oi the

pile do not, in iact, cause slip except at the suriace oi the pile.
Our assumption oi a local, history-dependent constitutive relation among stresses is not

widely accepted as a modelling strategy ior sandpiles. (Indeed, we have not seen any really
clear exposition oi this strategy in the previous literature. Many would argue the necessity

of explicitly invoking the deformability of particles (allowing a strain variable to enter); others

would argue that infinitesimal distant loads should cause rearrangement of a network of contacts

among hard particles (leading to intrinsically nonlocal stress propagation ). This paper aims to

explore in detail the kinds of prediction that can be made within our overall modelling strategy,
and to introduce some physically plausible candidates for constitutive relations.

1.I. PREVIOUS CONTINUUM APPROACHES. Much existing work on the static continuum

mechanics of cohensionless granular materials has invoked, as an implicit constitutive relation,
the assumption of Incipient Failure Everywhere (IFE). That this is indeed an assumption, is

not always made clear in the engineering literature [10-13j. The IFE model supposes that the

material is everywhere just on the point of slip failure: all frictional forces are "fully mobilized".

Thus an appropriately chosen (local) yield criterion [10,12] of the material provides the missing
constitutive equation.

The physics of this assumption is dubious. When a pile is made from a point source
(Fig. la)

there is a continuous ~eries oi landslides at the suriace; we thereiore accept that an incipient
iailure condition is maintained at the surface. Even in saying this, ~N.e ignore the distinction

between the angle of repose (that of the free surface just after a landslide) and the maximum

angle of stability (that just before). These differ by the Bagnold hysteresis angle, which is

small compared to the repose angle itself [14,15]; we
neglect this hysteresis effect from now on.

However, the validity of the incipient failure condition at the surface, which contains material

elements just at the point of burial, does not mean that the same condition still holds for an

element long afterwards. Such an element lies deep beneath the suriace, and has since burial

been loaded by adding more material to the pile above. In iact, the IFE assumption can clearly
be ruled out on experimental grounds: as we show below, it iails to account ior the dip.

The IFE closure implies that two oi the principal stresses are proportional [10]. In contrast,

proportionality oi the horizontal and vertical normal stresses was proposed as a constitutive

relation recently by Bouchaud, Cates and Claudin iii (we reier to this closure as the BCC

model). In two dimensions it was iound that the stress continuity equation then has a con-

venient analytic property: it becomes a wave equation. However [7], the BCC model predicts

a stress plateau, rather than a dip, at the centre oi a sandpile. Attempts to explain the dip

by introducing various nonlinear terms in the constitutive relation proved unconvincing, at

least ior small nonlinearities, whose perturbative inclusion showed a hump instead oi a dip.

The BCC paper (Sect. 3.2 oi Rei. [7]) in iact included
a

briei discussion oi certain strongly
nonlinear models [16], which were also argued to give a hump. This conclusion turns out to

be incorrect, ior subtle reasons that we discuss below (Sect. 2.9). In one sense, the "oriented

stress linearity" (OSL) model, which we study in detail in this paper, can be viewed as an

extreme limit oi this type oi model. The OSL model, like BCC, has a linear relation between

normal stresses but now in a coordinate system that is tilted (through a constant angle) with

respect to the vertical.

An apparently completely different approach to describing the stress distribution in sandpiles

was proposed by Ed~vards and Oakeshott i-ii- These authors considered a pile consisting oi

a stack oi nested arches, Figure 16. (A recent modification considers a model oi platelike
granules and allows curvature oi the arches [6] ). Each arch supports only its own weight, and
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consequently the vertical stress decreases ior the smaller arches near the centre oi the pile.

This approach provides a very appealing physical picture oi why there is a dip. In the arching
mechanism, the load in an element is transmitted unevenly to those below. The central part

oi the pile is thereby "screened" irom additional loadings which are supported instead by the

outer regions.
However, there are some obvious drawbacks with this approach. Firstly, the dip is greatly

overpredicted: by construction there is no downward iorce whatever at the centre oi the pile,

while experiments show a finite value. Secondly, unless the arches are parallel to the iree

suriace, the outermost "arches" are incomplete. It is mechanically impossible ior one oi these

to transmit its weight purely along its own length: there is an unbalanced couple about the

base of such
an arch which would cause it to fall over. If, instead, the arches are parallel to the

free surface then the model is stable, but it predicts an abrupt discontinuity in the downward

iorce at the edge oi the pile, which is not observed.

These difficulties arise, at least in part, irom an inconsistent attempt to treat the vertical

normal stress "weight" independently oi the other stress components. This is rectified in the

OSL models introduced below. Among these is a special case, the "fixed principal axes" (FPA)
model, which is very close in its physical content to the picture oi nested arches originally
suggested by Edwards and- Oakeshott. As its name suggests, in the FPA model, the principal

axes oi the stress tensor have a constant angle oi inclination to the vertical. These axes turn out

to coincide with the stress-propagation characteristics, which resemble a set oi Edwards arches

(Sect. 2.7). In fact, we believe that our FPA model gives, for the first time, a fully consistent

continuum mechanics implementation of Edwards'arching picture. As shown in Section 3, this

model gives good agreement with experimental data in three-dimensional sandpiles.
The discussion above (like others in the recent physics literature on sandpiles) attributes

the idea of arching to Edwards and Oakeshott [5]. However, the same basic picture has a

longer pedigree in the rock mechanics literature, and can be traced at least as far back as the

pioneering work of Trollope in the 1950's [17]. (The latter is very clearly reviewed in [18].)
Something very like the Edwards-Oakeshott model is called by Trollope the "full arching limit"

and something very like the BCC model turns out to be the "no arching limit" of Trollope's
theory (although his predictions based on the latter do not take proper account oi the Coulomb

yield criterion, as was done by BCC). Trollope also developed a "systematic arching theory"
to provide an interpolation between these two limits. This model, though it does not provide a

systematic theory oi arching, is quite interesting, and we discuss it in more detail in Section 2.10.

It is based on quite different physical principles irom our own work, partly because Trollope
attributed the arching phenomenon to small displacements of the supporting surface under

a

wedge. This idea, based on Trollope's
own experiments (on wedges whose construction history

we have been unable to find out) is clearly at odds with our own explanation, and appears to

be contradicted by the more recent experimental data on sandpiles constructed irom a point

source [1, 2, 19].

1.2. RELATED MODELLING WORK. Other approaches to the problem oi stress propagation
in static sandpiles include particle packing models [3,4], where one considers a

regular packing
oi (usually spherical) grains, with simple transmission laws ior the downward iorce between one

layer oi particles and those below. These models show a flat stress plateau in two dimensions,

a feature shared with BCC [7] which can be viewed as a
(slightly generalized) continuum limit

oi such models. An important and related class of discrete models address the propagation
oi noise effects in sandpiles; in these the transmission oi iorces between particles is stochastic

[20,21]. The relation between these models and our own (noise-iree) continuum approach will

be explored in detail elsewhere [22].
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More elaborate discrete models are increasingly being studied. That examined numerically
by Bagster and Kirk [8] invokes nontrivial iorce propagation rules locally, and ior some param-
eter ranges shows a dip in the stress. However, it is not clear whether the physics included in

this model is that oi real sandpiles; and so iar, the relation to any continuum description is un-

certain. A widespread numerical approach is that oi discrete element modelling [23] however,

as discussed by Buchholtz and Poeschel [24], many such methods cannot so iar even reproduce
the iact that the repose angle oi a pile is independent oi its size. Various improved algorithms
have been suggested [25] we do not know whether the same is true ior these. In a iuture pa-

per [26] we will present results irom a simulation approach involving nominally irictionless, but

nonspherical, slightly deformable particles, following reierence [24]. These offer some promise
oi confirming, or at least testing, the ideas put iorward in the present work.

The model oi Liffman et al. [9] invokes a more specific mechanism, based on size-segregation,
to explain the dip in the stress. When conironted with the experimental data 11, 2] one sees

a serious drawback oi this explanation: the data show a scaling behaviour which the model

cannot support. The observed scaling (called RSF scaling, see Sect. 2.3 below) indicates that

there is no characteristic length-scale intrinsic to the granular medium oi which a pile is made.

In general, segregation effects introduce such a scale by setting up gradients in the material

properties oi the pile [27], and hence violate the observed scaling. It is notable that a finite

deiormability oi the particles would also introduce a characteristic length, and is thereiore also

ruled out by RSF scaling (we discuss this iurther in Sect. 2.3).
The IFE model, defined above, represents one limiting case oi a more general group oi elasto-

plastic continuum theories; some oi these are highly developed and widely used within a finite

element iramework (though usually in the context oi hoppers rather than sandpiles) [28]. The

physical basis oi these models ior dry cohesionless granular media is not always clear (many
are

based on models developed earlier ior wet soil [13] ). In any case, to whatever extent elasticity
is invoked, such models are again in violation of RSF scaling.

The idea that the properties oi a granular medium depend on its construction history is

central to our work. This concept is not new, and plays a strong role in the recent experimental
literature on granular media in hoppers (ior example the exit flow irom a hopper depends

on how it was filled) [29]. Indeed, this is part oi the reason why standardized shear and

triaxial tests are used to measure the internal iriction coefficient oi a granular medium; the

repose angle, which in the simplest theories is completely equivalent [10]~ in reality depends
appreciably on construction history, as do other mechanical properties [29] (this is discussed

iurther in Sect. 4). Moreover, it has long been argued that the manner in which the construction

history enters is via the local packing geometry oi the grains. This iorms part oi the idea oi

"granular iabric", in which one constructs a local tensor that parameterizes the distribution oi

particle-particle contacts [30]. The concept oi the iabric tensor has usually been developed in

an elasticity context, rather than one in which constitutive relations directly among stresses

are assumed. Nonetheless, the orientational memory effects embodied in the new models

described below can certainly be viewed in terms oi a local tensorial property oi the medium

(see Sect. 2.7). However, no specific interpretation oi this quantity (in terms oi the contact

distribution) appears to be required.

1.3. THE PRESENT WORK. In Section 2 we give a coarse-grained continuum description
of the two-dimensional symmetrical sandpile. Instead of assuming in advance a particular

constitutive relation, we first approach the problem systematically by exploiting the implica-

tions oi symmetry, and oi the boundary condition oi incipient iailure at the iree suriace (IFS ).
We discuss, with reierence to the construction history oi the pile, the scaling ansatz oi a ra-

dial stress field (RSF). This ansatz transiorms the partial differential equations into ordinary
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differential equations, which can be solved easily ior all the closures considered later. Us-

ing this, and the idea of perfect memory mentioned above, the range oi possible constitutive

relations is greatly reduced.

Aiter this, we will solve our equations ior four specific closures in two dimensions; these

are incipient iailure everywhere (IFE), Bouchaud-Cates-Claudin (BCC), fixed principal axes

(FPA), and finally the iamily oi oriented stress-linearity (OSL) closures, which includes BCC

and FPA as special cases. All oi these comply with our modelling strategy of seeking local

constitutive relations among stress components. For the OSL model, stresses propagate along
straight characteristics which can be interpreted by analogy with wave propagation along "light-
rays". We thereby arrive at a very simple geometrical picture oi stress propagation, irom which

the iorms oi the stress profiles can be swiitly deduced. For the OSL model, the effect oi a small

perturbation (adding a little extra weight somewhere) is studied, and an appropriate Green

iunction described. This helps sharpen the idea oi stress being carried along arches.

In Section 3 we extend our calculations to the three-dimensional conical sandpile. Because

oi the larger number oi stress components (some oi which can be eliminated by symmetry)

a second constitutive equation is now required. We study several possible choices ior this

secondary closure, and find that all oi these lead to qualitatively similar stress profiles. A

comparison with the experimental results oi Smid and Novosad [2] is then made. This shows,
firstly, that the RSF scaling assumption is well-verified, and, secondly, that the data is fit

rather well by the FPA model, without adjustable parameters. Viewed alternatively as a

comparison with the OSL model, which does have an adjustable parameter (the tilt angle),
the evidence suggests that parameter values close to the FPA case must be chosen. The data

thereby presents strong evidence ior the arching picture as an explanation oi the dip.
Until the end of Section 3, we will have considered only the case where the iree suriace of

the pile is at the angle of repose. However, it is possible experimentally to achieve piles which

are flatter than this. We discuss this and a number of related problems in Section 4, where, for

simplicity, we restrict attention to the FPA model in two dimensions. We show that it matters

how a sandpile is made: ior example. ii a flattened pile is created by slicing wedges off the

top oi a steeper one, the stresses should differ irom those iound by choosing a material with a

lower repose angle to begin with. It is in geometries such as this. that the dependence oi the

constitutive equation on the construction history oi the pile can be probed.
Section 5 contains a briei summary oi our approach and a concl.uding discussion. Our

calculations ior the stress propagation in two-dimensional sandpiles, using the OSL and FPA

models, are new; as are qur three-dimensional results ior these models, and ior BCC, although

some oi the FPA results were outlined elsewhere [31]. For the IFE model, which is more

classical, the corresponding results may exist in the literature (though
we have not iound

them); in any case we include them ior comparison.

2. The Two-Dimensional Symmetrical Sandpile

2.I. INDETERMINACY OF STRESS CONTINUITY EQUATION. As mentioned previously, the

continuum approach to calculating the stress distribution in a static sandpile immediately
encounters an indeterminacy. Indeed, the stress continuity equation in two dimensions reads

(component,vise)

~r°rr + ~zarz
"

0 (1)

~rarz + ~zazz
" §

which, clearly, provides only two relations between the three independent elements oi the stress

tensor azz, art and arz = azr.
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To ease the later generalization to three dimensions (Sect. 3) we here use cylindrical polar
coordinates, with

z measured downward irom the apex oi the pile and
r a radial coordinate

irom the symmetry axis see Figure 1c. (In two dimensions, r =
)z), with z a Cartesian

coirdinate.) We have assumed that the granular medium has constant density, p, thereby
excluding segregation effects (see Sect. 1.2 above), and have chosen units where p =

1. The

acceleration due to gravity is denoted g; because it enters linearly, this could also be set to

unity, but we retain it ior clarity. The stress tensor a~j is defined to be symmetric in I, j, as

usual in the physics literature.

In our cylindrical polar coordinate system the stress tensor is a iunction oi
z and r, where

r > 0 by definition. However, in terms of Cartesians (z, z), one would have both positive and

negative z; in this case, the normal stresses would be even iunctions oi
x and the shear stress

an odd iunction [7]. (The latter holds because the unit vector along
r reverses sign at the

symmetry axis. Confusion can be reduced by restricting attention to the left half of the pile
(positive z) for which the two coordinate systems coincide. In any case, on the symmetry axis

itself (r
=

0), the shear stress must vanish by symmetry, and the z and r directions are both

principal axes there.

As well as the three stress components art, azz and azr, it will be useful to consider the

following three quantities: the average stress P
=

(art + azz)/2, the "radius of Mohr's circle"

R defined via R~
=

(azz art)~/4+azr~ [32], and the (positive) angle of inclination lY between

the z-axis to the major principal axis of the stress tensor (see Fig. 1c). In terms of these,

art =
P Rfos(2§/j (2j

azz =
P+Rcos(2fll)

azr =
Rsin(2fll)

Following the usage of the engineering literature [10] we define a material point to be in an

active state if the normal stress azz in the direction of the external compressive force (here
gravity) is larger that the stress art perpendicular to it. On the symmetry axis (r

=
0), the

z-axis is the major principle axis and if
=

0 in the case of an active state, whereas for a passive

state the major axis is r, and if
=

+~/2.
The simplest model of a granular medium is known as the ideal cohesionless Coulomb ma-

terial. The Coulomb model plays the same role in the study of granular materials as the

Newtonian fluid does in viscous flow, and we will use it here. Plastic iailure occurs in a given
material element it there exist a plane defined by a unit normal n

(or angle oi inclination

r =

sin~~ (n %)) through this element, on ~vhich the shear iorces arm exceeds a given iraction

oi the normal iorce am across the plane [33]. Conversely the element is stable it, ior all such

planes,

janmj < tan(d)am (3)

For a material with cohesion, a constant c is added to the right hand side; we treat only the

cohesionless case. The Coulomb yield criterion can then alternatively be expressed as

~
" P sin(d)

~ ~ ~~~

(Put differently, "the yield locus must not cut Mohr's circle" [32].) The coefficient tan(<) in

equation (3 is the coefficient oi static iriction oi the material; elementary arguments show that

# is then the angle oi repose [10j (defined. as usual, as the inclination oi the iree suriace to the

horizontal; see Fig. lc).



48 JOURNAL DE PHYSIQUE I N°1

2.2. IFS BOUNDARY CONDITIONS. We now use the yield criterion to speciiy the stresses

on the suriace oi the pile. In doing this, we neglect the small Bagnold hysteresis angle (as
mentioned in Sect. I-I and demand that the suriace oi a pile, constructed irom a point source

and at its angle oi repose, is in a state of incipient slip. (Sandpiles constructed differently, ior

which this is not the case, are considered in Sect. 4).
First we note that (in two dimensions) all stress components have to vanish on the surface:

~rr(S
"

lj
"

~zz(S
"

I)
"

~zr(S
"

lj
"

0 (5j

Here we have introduced, ior reasons that will be clarified later, a scaling variable S
=

r/(cz)
with c =

cot(<). (Hence the equation oi the iree suriace is r = cz, or S
=

1.) The vanishing oi

the stresses is a direct consequence oi the yield criterion, as we now show by considering the

stress components in a rotated coordinate system (n, m) (see Fig. lc). For a system inclined

at angle r to the vertical, one has

am =
cos~(T)art + sin~(T)azz 2 sin(T) cos(T)azr (6)

amm =
sin~(T)a~r + cos~(T)azz + 2 sin(T) cos(T)azr

arm =
sin(T) cos(r)(azz art) + (cos~(T) sin~(T))azr

Now choosing
T =

~/2 #, so that n is normal to the suriace, we require that the normal

stress am at the iree suriace has to vanish (this
assumes that no external iorces act there).

The yield criterion equation (4) then requires

amm~ cos~(#) + 4anm~ < 0 (7)

Accordingly, the remaining two stress components amm and arm must also vanish, and the

stress tensor is zero in the (n, m), and hence in the (r, z), coordinate system.
The criterion that the suriace oi the pile is a slip plane, not only implies that the stresses

on the suriace vanish, but also fixes their ratios in its immediate neighbourhood. Demanding
equality in equation (3)

as the suriace is approached, we obtain the condition

~~~~~_~ jjjj(j
=

tan(') ~~~

(the sign can be confirmed irom Eq. (6)). Applying also equation (7) (with equality) in this

limit gives a second condition:

lims-1~"j~)~ "
l + 2tan~(#j

e I/~o (9j

where the final notation will prove convenient later. By rotating using equation (6) these can

be written in the (r,
z )-system as

(The results in (m, n) and in (r, z) coordinates look rather similar because, as it turns out, the

two irames are related by a reflection through the major principal axis [34].)
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The requirements expressed by equations (5, 10), represent a set oi "boundary conditions"

which we denote IFS (incipient iailure at the suriace). Along with the stress continuity equa-
tion, these iorm the boundary value problem ior determining the stress profile oi a sandpile.
At first sight there may appear to be more boundary conditions than required; however (as
emphasised beiore) to close the problem in two dimensions, we will need a constitutive rela-

tion between stress components, which is yet to be chosen. One can thereiore view any extra

"boundary conditions" as constraints limiting this choice. We next develop some general scal-

ing arguments which, combined with some other physically motivated simplifications, iurther

restrict the choice oi constitutive equation.

2.3. SCALING ANALYSIS. The basis oi our scaling approach is to assume that the macro-

scopic material properties oi a granular medium (under gravity) are independent oi length
scale. Obviously, any such medium has a characteristic length associated with the grain size,
but in a continuum description this should not be important. The scaling hypothesis sup-

poses that not only this length, but also any other characteristic length-scale that the medium

possesses, is either extremely small, or else extremely large, compared to the scales probed in

a macroscopic sandpile experiment. As mentioned previously, and shown below, our scaling
assumption is well-verified in the experiments oi reierence [2]. However, those experiments are

on piles oi a limited s,ize range (20 to 60 cm high). It is possible that ior smaller or larger piles

our scaling assumptions would break down, due to a characteristic length arising irom size

segregation [9], ior example. A corollary oi our scaling assumption is that no relevant intrinsic

scale exists for stresses: otherwise, this scale could be compared with the gravitational stress to

give a length. Thus we exclude, ior example, deiormable particles whose elastic modulus sets

a stress scale, and thereby a "deiormation length" (which ior rigid particles is infinite). These

simpifications, though guided by experiment, are not physically obvious a priori; the problem
deserves more careiul experimental study to determine the limits to the scaling regime ior real

granular materials.

Assuming that the medium indeed has no intrinsic characteristic length, the stress distri-

butions in all piles iormed the same way (oi the same material) should be similar. Hence we

search for a scaling solution oi equation (II oi the form:

a~j =
gzs~j(S) (11)

with the scaling variable S
=

r/cz
was introduced previously. In anticipation of this ansatz,

our earlier discussion of the boundary conditions was couched in terms of S. These boundary
conditions impose s~j (II

=
0, and also fix ratios of derivatives of sip (see Eqs. (5, 10) above).

The functions s~j have to be continuous everywhere; however, we are dealing with hyperbolic
equations, and the stresses need not be differentiable [35].

The scaling ansatz, equation (11). reduces the partial differential equations for stress conti-

nuity, equations (I), to the following ordinary differential equations:

srr'/c + szr
Sszr'

"
0 (12)

szr'/c + szz
Sszz'

=

The primes denote derivatives with respect to the scaling variable S; recall that c =
cot(<).

Solutions of equation (12) are usually called "radial stress fields" [36] and we refer to (11) as

RSF scaling. From the scaling behaviour of sip follows a corresponding scaling of the mean

stress, P(r, z)
=

gzfi(S), the radius of Mohr's circle, R(r, z)
=

gzR(S), and the angle of the

major principle axis lY(r, z)
=

lY(S).
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We now ask, what are reasonable closure relations consistent with the radial stress field form

of equation (I I )? On physical grounds we first impose the requirement of locality: the unknown

stress component in a material element depends on the known ones in that element, and not

elsewhere. (As mentioned previously, this would fail if distant loads were able to rearrange
the grains themselves in a given neighbourhood.) The most general form consistent with our

scaling ansatz is then

arrlazz
=

C(azr lazz, S) (13)

where the absence of an intrinsic stress scale, noted above, means that only dimensionless

ratios of stresses can enter.

To restrict C further, we now invoke the assumption of perfect memory mentioned in the

introduction: that the constitutive relation in a material element is determined at the time oi

its burial and is not subsequently altered. Now, it is clear that each material element is buried

while just at the suriace oi the pile (S
=

I), aiter which it experiences continually decreasing
values oi S as the pile gets larger. Hence any explicit dependence oi C on S would violate the

periect memory assumption. Accordingly, we must have

arrlazz
=

C(Uj (14)

where we have defined the reduced shear stress

U(S)
"

azrlazz
"

8zr/8=z (1$)

An exception to the above argument should be made for material elements on the central

axis, which are buried, and remain iorever, with a value S
=

0. In two dimensions the centreline

divides grains which have rolled to the leit irom those which have rolled to the right, and which

thereiore have had qualitatively different histories [37]. Accordingly, there is no requirement
that C behave smoothly at the origin; and although the constitutive models studied below all

appear analytic when expressed in polar (z, r) coordinates. ior some oi them C does become

singular on the symmetry axis, when a Cartesian (z, x) coordinate system is employed. (The
models with this property are the OSL models, including FPA, but with the exception oi BCC,j

We can now reiormulate the radial stress field equations (12) as

~)
=

(~ ~~
(16)

bd hi

dszr hi Ii
W " ii hi

Here we have introduced the notations

~ ~~~~~~~~~~~ ~~~~

j ~
ldc(U)

~c
dU

I
=

szr(S)
I

=
-S

=
1/c

/
"

Szz(S)
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where only the first two iunctions explicitly involve the closure relation. Similarly we can also

reiormulate the Coulomb yield criterion, equation (4) as:

~i c~uj j2 + 4u2
~i~ji / T(U)~

= (i + c(ujj2 sin2(<j

equations (16) give a systematic procedure for solving (at least numerically) the boundary
problem ior any specified constitutive relation C; equation (18) then allows one to check its

stability. The latter step is necessary to ensure that the yield criterion (marginally satisfied

at the surface) is not violated deep inside the pile; any closure ior which such violations arise

must be rejected.

2.4. ASYMPTOTIC BEHAVIOURS. Without specifying C further, we can now use the scaled

continuity equations, equation (12), to examine the possible asymptotic behaviours close to

the iree suriace, and close to the symmetry axis oi the pile.
As mentioned previously, all the stresses vanish at the iree surface (S

-
I). Asymptotically

we expect them to vanish as power laws srr = al (1 S)~, szz =
bi(1 S)~,

sz~ =
di(1 S)~

(al .bi,di.a,fl,b > 0). The IFS condition, equation (10), requires that srr and szz have to

vanish with the same power, a =
fl, since their ratio approaches a constant. More generally one

finds by substituting the power law forms into equation (12) that the stresses on the surface

have to vanish linearly: a =
fl

=
b

=
I. This applies ior any choice oi the closure C. (For the

models solved below, this linear behaviour is visible in Fig. 2a.) Only one oi the coefficients

al, bi, di then remains iree; using (12) we find di
" al /c and -di/c + bi

"
I. Using again the

IFS boundary condition, equation (10), ~N.e obtain finally [38]

al "
I/(I + tan~(#jj (19j

bi
=

(1+ 2tan~(#jj/(I + tan~i#jj

di
"

tan(#j/(I + tan~(#jj

This completes the specification oi the asymptotic behaviour near the iree suriace. The average
reduced stress on the suriace is fi

=
I S and the reduced Mohr's radius R

=
sin(#)(I S).

Since, irom equation (2), cot(21Y)
=

j(bi ai)/2di)
n>e can solve ior the direction oi the major

principal axis at the iree suriace

~y(ij
= ~ e (~ 2~j/4 (20j

This asymptote ior lY(S
-

I bisects the angle between the vertical and the iree suriace itseli.

A similar analysis can be made oi the stresses close to the symmetry axis oi the pile (S
-

0).
Again without knowing details oi C, we can establish ior S

-
0 a solution involving a linearly

vanishing shear stress szr =
do S, a vertical normal stress oi the iorm szz =

bo + bcwps, and a

flat horizontal normal stress srr =
qbo. Here q e C(0) is the ratio oi horizontal and vertical

stresses in the middle of the pile. One can also show that bo =
I do/c. with bo, do Positive.

The existence oi a cusp, b~~sp # 0, is associated with a breakdown in the smoothness oi the

closure relation C on the symmetry axis; as discussed above, this is physically permissible, and

is a distinguishing ieature oi the new models introduced in this paper.

The results oi this and the preceding section were obtained by combining RSF scaling with

the periect memory assumption~ without iurther restriction on C. In the next iew sections

we finally consider various model constitutive relations with which to close the equations and

thereby calculate explicit stress profiles ior the sandpile.
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Fig. 2. Results for
a two-dimensional symmetrical sandpile with

a surface obeying IFS; #
=

30°.

a) Reduced shear stress sz~ and reduced vertical normal stress szz as a
function of scaling variable

S
=

r/(cz). Results for the IFE model (found numerically), the BCC model, and the FPA model are

compared. Those for the third stress component s~~ are not shown but can be deduced from those

given via the appropriate constitutive equation in each case.
b) The same comparison, showing instead

the yield function T(S). For IFE this is unity everywhere by definition; for FPA and BCC in two

dimensions it is unity throughout the "outer" regime of the pile (the
same does not apply in 3-d). In

the FPA model the stress at the centreline is isotropic and T
=

0 there, cl The same comparison,
showing now the orientation angle lY of the major principal axis. At the free surface, where T

=
1, lY

bisects the free surface and the vertical: lY
= ~b

(which is 30° in this case). The
same relation holds

everywhere in FPA; in BCC it holds only in the outer regime. In the IFE model, it holds at the surface

only. The "shooting" to the surface value in the numerical solution of IFE is not perfect because of

the numerical instability generated by the singularity on
the surface.
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2.5. THE IFE MODEL. The traditional [10-12] assumption of Incipient Failure Everywhere
(IFE)

means that the granular material is everywhere marginally unstable; the frictional forces

are fully mobilized and T
=

I. (Accordingly the two principal stresses are everywhere in fixed

ratio.) Indeed, we can solve equation (18) with equality to find:

c(uj
=

~~(~
~~

((sin2(<j +1) + 2 sin(<) ~/i - (cot(<)uj2) (21j

where U(S)
=

szr/szz is the reduced shear stress introduced previously. Here the negative sign

must be chosen: this corresponds to requiring downward (rather than upward!) incipient slip
of the grains at the free surface. The resulting IFE constitutive equation then fixes the two

functions h(S),I(S) defined earlier, as follows:

h
=

~~l~« Ii + Sin~(<) 2 Sin(<) vi (c°t(<)U)~l (22)

2U
~ ~

c
sin(<) ~/I (cot(#)U)~

thereby closing the the radial stress field equations (16). We have not obtained an analytical

solution for this model, but a numerical solution was readily found by a standard Runge-Kutta
procedure (by shooting irom the middle oi the pile to the boundary conditions on the surface).

The reduced stresses szz, srr and szr are shown ior the case #
=

30° in Figure 2a. (Also shown

are results irom the other models discussed below. The IFE model give a smooth "hump" in

BZZ'
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2.6. THE BCC MODEL. In place oi the IFE assumption that the principal stresses are

proportional, the BCC model iii hssumes instead the proportionality oi vertical and horizontal

normal stress components:
~~~

e C(U)
= J~

(23)
azz

This assumption, which is perhaps the simplest possible, is related (but not identical) to one

made in the classical work oi Janssen [lo,12, 39]. Invoking also the IFS boundary conditions,

complete results were obtained analytically ior the two-dimensional sandpile [7]. These results

ior the stresses, the yield iunction T and the orientation angle lY oi the major principal axis

are shown (alongside those oi IFE and FPA) in Figures 2a-c.

The IFS condition (Eqs. (5, 8, 9)) in iact requires q = no (where
J~o

is defined in Eq. 9). The

stresses are piecewise linear with a cusp at S
=

So
"

co/c, where co "
lo and, as shown by

BCC, co /c is strictly less than unity. The inequalities co/c < S < I define an "outer region" oi

the pile in which the stresses obey szz =
(I S) /(I (co/c)~ and szr =

(I S)co~c/(c~ co~ ).
These match at S

=
So onto an "inner region" (0 < S < co/c), in which there is a plateau

ior the vertical normal stress, szz =
I/(I + co /c), while the shear stress vanishes linearly on

the central axis, szr =
Sco/(I + co/c). As shown in equation (20) above, the inclination angle

of the major axis obeys at the suriace lY(I)
= ~fi. For the BCC closure in two dimensions,

this value is maintained throughout the outer region, while in the inner region lY(S) obeys
tan(21Y)

=
2coS/(co~ I). Hence lY(S) vanishes smoothly at S

=
0.

2.7. THE FIXED PRINCIPAL Axis (FPA) MODEL. Neither the IFE nor the BCC closure

gives a"dip" in two dimensions (nor in three as shown below). We thereiore propose a new

hypothesis [31] which appears to capture, within a iully consistent continuum theory, the

physics oi arching (as expounded by Edwards and coworkers [5,6]). Specifically~ we postulate
that the major principal axis oi the stress tensor has a fixed angle of inclination to the downward

vertical: lY(S) is constant. We first describe the results and aiterwards discuss in more detail

the physical content oi this model.

The FPA hypothesis provides a local constitutive equation by assuming that the principal
stress axes in a material element have constant orientation fixed at the time oi its burial.

However, with the exception oi those lying right on the symmetry axis, all such elements were

first buried at the suriace oi the pile (S
=

I). Since the IFS boundary condition already fixes

lY(I)
= ~fi e (~ 2#)/4,

our FPA model requires

lY
= ~fi

(24)

everywhere. Using the results oi Section 2.I, one finds immediately that this is equivalent to

the iollowing constitutive relation:

~
e C(U)

=
1- 2tan(#) U (25)

Note that it r is replaced by x (Cartesian coordinates) this becomes

1
£ C(Uj

=
2 signjzj tan(#j U (26j

The sign(x) iactor is a reminder that, in the FPA model (unlike BCC) our
C(U) is nonanalytic

at the symmetry axis oi the pile. A compact way to write equation (26) is [31] C(U)
=

1- 2 tan(<) jLfj, though (see Section 4 below), this version is not equivalent ior all construction

histories.
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Since the repose angle # (and thereby ~fi) is a material parameter fixed by experiment, the
FPA model gives a complete closure oi the d

=
2 sandpile problem. The resulting equations

are linear. Their structure is clearest when written in terms oi the unscaled stress components

a~; substituting equation (25) and equation (15) into equation (1) (taking azz and arz as the

independent variables) gives:

firarz + fizazz
" 9 (27)

3r(azz 2 tan #arz) + 3zarz
"

0 (28)

which can be rewritten

(3z c13r)(3z c23r)a~j
=

0 (29)

with

ci+c2
=

-2tan(#) (30)

cic2 "
-1 (31)

where we take cl (c2) to denote the positive (negative) root. A little manipulation then

shows that cl "
tan(~fi) and c2 "

-cot(~fi). A similar equation ior the stresses, but with

cl " -c~ =
/fi, was obtained ior the BCC model iii, in which case equation (29) becomes the

wave equation in two dimensions. We shall call (29) a "wave equation" even when cl + c2 # 0;
under these conditions, it becomes an ordinary wave equation (with equal velocities) it tilted

coordinate axes are chosen [40].
A complete solution is readily iound and is given explicitly (in the context of the more

general OSL model) in the next Section. As with BCC, one finds for szz(S)
a piecewise linear

function, with inner and outer regions. The material in the outer region again saturates the

yield criterion (18) whereas the inner part does not; these regions are separated by a cusp at

S
=

So
" cl /c. For the FPA model, there is always a dip in szz at the centre of the pile. The

dip takes the form of a cusp at S
=

0 and is connected with the nonanalyticity of C(U), which

reflects the sudden change in the direction of the major principal axis on passing through the

central axis of the pile. The maximum vertical stress (at S
=

Soj is a factor (1+ 2 tan~(#))
times larger than the value at S

=
0 (the latter is always finite ). These results are compat.ed

with the BCC and IFE models in Figures 2a-c.

At first sight the requirement of fixed orientation of the stress tensor (lY = ~b) is at odds with

the fact that, on the centre line of the pile, there are no shear stresses and so the horizontal

and vertical directions must be principal axes (lY =
0). This paradox can be resolved by noting

that on the centre line the stress in the FPA model is actually isotropic, thus satisfying both

criteria at once.

The correspondence between the FPA model and the Edwards arching picture becomes

clearer on considering the characteristics of the wave equation, (29), which are straight lines

of slope cl and c2 (as discussed further in Sect. 2.9 below), Figure 3. Since for the FPA model

ci =
tan(~) and c2 =

cot(~fi), the characteristics are at rightangles to one another; moreover,

they coincide with the principal axes of the stress tensor. It is this special property of the

FPA model that we believe embodies Edwards' physical picture of arches [5,6]. The stress

arising from the weight oi an element of sand propagates along two straight characteristics,

one at
1/> to the vertical (which

we identiiy as the "arch direction", coincident with the major
principal axis) and the other at rightangles. As shown in Section 2.9 below, the majority oi

the stress is carried by the outward characteristic (slope cl ). The material can thereiore be

viewed as a set oi nested arches (Fig, lb) down which most oi the stress propagates. (This ties

in with Edwards' idea oi "lines oi iorce" [6].) However, a minority oi the stress is transmitted
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Fig. 3. Sketch of the geometry of the FPA model. The stress ellipsoid has fixed inclination angle

lY
=

~; its ellipticity varies from zero at the centre of the pile to a maximum in the outer region. The

outward and inward stress propagation characteristics are indicated by short-dashed and long-dashed
lines; these are at rightangles and coincident with the principal

axes
of the stress ellipsoid.

instead irom one arch to its inner neighbour; this transier imparts mechanical stability to the

outer, incomplete, arches. Since the principal axes and the characteristics coincide, there are

no shear iorces acting at the interface between successive arches, which are therefore effectively
in frictionless contact with one another. This seems to be as close as one can get, within a

consistent continuum theory, to the intuitive picture of arches as independent load-bearing
structures.

We emphasize that for a sandpile constructed from a point source, the FPA model can be

viewed in two ways; either as a macroscopic hypothesis concerning the transmission of stresses

at the scale of a pile (principal
axes fixed in space), or as a microscopic hypothesis concerning

the way the growth history of the pile is locally encoded. Our own modelling approach, based

on local constitutive relations among stresses, corresponds to the latter view. Indeed, after

making the assumption of periect memory, we
have to choose one scale-iree property (the

constitutive equation) to be "remembered" by any element irom the moment oi its burial:

and the choice made by FPA corresponds to remembering the orientation oi the stress tensor

(principal
axes fixed in time). Note that, once the basic FPA assumption is made, there is

no free parameter left in the theory (at least, not in two dimensions), since # is fixed by
experiment.

It seem plausible that the construction oi the pile (by
a series oi avalanches at the suriace)

imparts to the local packing oi grains a permanent sense oi direction. Ii so, the FPA constitutive

relation is perhaps the simplest model ior how this "orientiational memory" within an element

could determine the constitutive relation among stresses arising there subsequently. A possible
(though not a necessary) interpretation oi this directional memory is in terms oi a iabric tensor

l~j [30]. For example, one could postulate that l~j was constant throughout the medium (when
expressed in cylindrical polar coordinates) and moreover had a principal axis lY bisecting the

free suriace and the vertical. Ii this were true, the FPA constitutive relation would reduce to

the commutation requirement a~jljk
"

l~jajk.
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Apart from its appealing simplicity, however, we have no detailed mechanistic justification
for the FPA model in terms of the fabric tensor or any similar quantity: why should the

orientation of the principal axes be remembered, rather than something else? (For example,
in the IFE model each element "remembers" instead that it was at the critical threshold for

slip when buried, and remains so forever after. We therefore propose the FPA model as a

phenomenological hypothesis to be tested against experiment. It is interesting, in that context,

to consider alternative closures; we do this next, by embedding the FPA model within a broader

scheme.

2.8. THE ORIENTED STRESS LINEARITY (OSL) MODEL. A sandpile is formed by layerwise
deposition of particles that have rolled down its free surface. Thus the grains of sand may end

up arranged in a packing that locally distinguishes the directions toward and away from the

central axis. An arching effect can arise if th18 an180tropy tends to direct stresses outward from

the centre, thus "screening" the central part of the pile from the added load of new layers. This

offers a possible way to explain the dip; and indeed the FPA model can be viewed in exactly
these terms. However, it is not unique in this respect.

A more general approach can be generated by an adaptation of the BCC model, in which

it was assumed that art = J~azz. BCC thus singles out for special treatment the vertical

and horizontal normal stresses. We now define the oriented stress linearity (OSL) model

by assuming a similar linear relationship between normal stresses, not in a (z,r) coordinate

system, but in a tilted one (n~ m). The latter system is now characterized by an arbitrary (but
constant) tilt angle T to the vertical, and is related to (z,r) via the transformation equation
(6). (In general this n, m system does not coincide with the one used earlier to discuss the IFS

boundary condition. In the tilted coordinates, we now require (following BCC) that the two

normal stresses, am and amm are proportional:

or l~amm ~32)

(see Fig. 1c). Despite its formal similarity, the OSL closure differs critically from BCC in

that it violates the assumption, tacitly made by BCC, that the properties of the medium vary

smoothly as one passes through the centre line oi the pile; it thereby allows a cusp (dip or

hump) to arise in szz.

Leaving the angle
T

and the constant K iree ior the moment, we use the rotation equation (6)

to obtain, in (z, r) coordinates, the OSL constitutive relation

I
=

C(U)
= J~

+ ~JU (33)

(where, as always, U
= arz lazz). As with FPA, in Cartesians (z, z) this becomes

~~~
=

C(U)
= J~

+ ~t sign(z) U (34)
azz

whereby the singularity on the centreline becomes apparent.

The constants
J~

and ~J obey:

~ =

~ ~~~ ~~~ (35)
1

ta~~(T)

2(K + 1) tan(T)
~

1 Ktan2(T)

Clearly the BCC model corresponds to
J~ = J~o(#) (defined in Eq. (9)) and ~t =

0, whereas

the FPA model, equation (25), is obtained by setting
J~ =

1, ~t =
-2 tan(<). Both are thereby
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Fig. 4. The (~,~)-plane for OSL model parameters. For
a

normal pile these must lie
on

the IFS

line, shown
as a

full line for d
=

30° and dashed for ~
=

10°. The BCC model (open symbols) and FPA

model (filled symbols) are marked
on

the IFS line in each case. Note that,
on

this plot, BCC models

(for different d) all lie on
the vertical ~ =

0 axis, separating models showing
a dip (~ < 0) from those

with a hump. Likewise FPA models (for different ~) all lie
on

the horizontal ~ =
1 axis, separating

models active near the centre of
a pile (below the axis) from those which are passive there (~ > l).

Dash-dotted lines denote the zone within which the solutions obey the Coulomb yield requirement;
the left boundary (marked Rp) denotes passive failure at the centre of the pile and the right (RA)
active failure there.

special cases of OSL [41]. Note that pairs of OSL coordinate systems inclined through angles

T
and

T + ~/2 (or
T

~/2)
are identical, subject to interchanging the m

and
n axes: they give

the same values oi
J~

and
~J

in (33) and hence the same stress profiles in the pile.
The coefficients

J~
and

~J
(or equivalently K and T) in the OSL model are not independent:

an equation between them can be iound irom the IFS boundary condition as iormulated in

equations (10). For a given repose angle #, this condition restricts the OSL parameters to the

"IFS line~':

~ =
no(i Jttan(4)) (36)

Hence the OSL model has one remaining iree parameter (unlike BCC or FPA, which have

none). The IFS lines in the (~t, q)-plane are shown ior two values oi the iriction angle # in

Figure 4.

The OSL constitutive relation equation (33) can be substituted into the stress continuity
equations (1) to give

firarz + fizazz
" g (37)

fir(~Jazz + ~larz) + fizarz
"

0
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irom which we can obtain a wave equation oi the iorm (29), as discussed already in the context

oi the FPA model. In this more general case, however, cl and c2 are the positive and negative
roots respectively oi

ci,2 " ((iL + fi) (38)

The propagation velocities become equal in magnitude it coordinate axes are rotated by the

tilt angle
T.

The resulting stress propagation equations can be solved without difficulty. As with the FPA

model, there are inner and outer regions which meet at S
=

So
= cl /c; in the outer region we

obtain

s~~ =
s~(c ~)(i s) (3g)

8~~ "
S~QC(1 S)

Szr "
8~1J(1- S)

where we have introduced the constant

~~ ~ c~ /1c ~
~ (ccl + ~)(c cl

In the inner region (0 < S < cl /c) we find

szz =
s~(c ci)/ci (cl i1S) (41)

8rr "
8~~Cl(C Cl)/Cl

8zr " 8~i~(C Cl)/Cl s

As stated already ior FPA and BCC, we thus obtain stress profiles that are piecewise linear

functions of S. We see irom (41) that a dip in szz is present so long as ~t < 0. This applies for

OSL models on the part of the IFS line which lies in the left hand half plane. Figure 4; such

models are separated by the BCC model (~t =
0) from OSL models with a hump (~J > 0).

As described earlier in connection with equation (18)~ a iurther check on the consistency of

the model should now in general be made: we require that the yield threshold is not exceeded

within the pile. The above equations show that the threshold is exactly saturated~ not only

at the suriace (IFS) but throughout the outer region. However, there is also the possibility oi

yield in the inner region; when this happens, it first occurs at the very centre oi the pile [42].
In this neighbourhood~ where shear stresses are negligible, the Coulomb criterion equation (18)
simplifies to

~m>n < ~ < ~max (42)

1 sin #
_1

~~'~
1 + sin # ~~~~

Where J~m;n is known as "Rankine's coefficient oi active earth pressure" [10]. Thus, ior a given

repose angle #, acceptable OSL parameters lie on the the segment oi the IFS line bounded by
equation (42) (dash-dotted lines in Fig. 4). Outside this range, there is either too deep a dip or

too high a hump, leading respectively to passive or active iailure oi the material at the centre

oi the pile.
The FPA model lies in the (J~,~t) plane at the point where the IFS line crosses J~ =

1.

It divides those OSL models which, on the central axis oi the pile, have active behaviour

(lY(0)
=

o), from those which are passive there (lY(0)
=

+~/2). For the OSL models generally,
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the orientation of the principal axes varies smoothly as one passes from left to right through the

centre of the pile (though the constitutive equation is nonanalytic there). The sole exception

to this is FPA, which has instead a discontinuity in lY at S
=

0, for the reasons discussed in

the previous section. This highlights the iact that FPA is the only model in the OSL iamily ior

which the geometrical picture oi "nested arches" (Fig. lb and Sect. 2.6 above)
can definitely

be said to apply.

2.9. LINEAR MODELS AND "LIGHT-RAYS". We have seen that in the OSL model~ the

stresses propagate with a wave equation in which cl and c2 are the positive and negative roots

oi equation (38 ). The characteristics oi this hyperbolic equation are thus straight lines oi slopes

cl and c2. This means that, it a perturbation is made at some point in the pile (ior example,
increasing the weight oi a certain element oi sand), the resulting iniormation travels along two

"light rays" (together called a "light cone" in Rei. [7]). Since the stress propagation equations

are linear, the entire stress distribution can be constructed by summing the contributions irom

all elements oi sand propagated along suitable rays; this offers an instructive geometric insight
into the problem.

First we consider the Green iunction which describes the stress perturbation arising irom a

point source oi weight. Such a source term violates the leit-right ("cylindrical" symmetry oi

our two-dimensional system; to deal with it we must introduce Cartesians (z, z) as opposed
to the polar coordinates (z,r) used so iar. In such coordinates, equation (29) is virtually
unchanged:

(3z + c13zj(3z + c23~ja~j
=

0 (431

where the + signs apply ior z > 0 and ior x < 0. Our source term then consists oi adding
/hg(z, xl

=
b(z zo)b(z zo) to the right hand side oi the second member oi the stress

continuity equation (1), in which z now replaces
r. This yields an inhomogeneous iorm oi (43)

with derivatives oi the delta-iunction on the right hand side. The algebraic iorm oi the Green

iunction is complicated (we do not write it out explicitly here) but its geometric interpretation
is relatively simple, as shown in Figure 5a.

Oi the stress azz contributed by a small element oi sand, a iraction Al propagates along the

outward light ray and A2 along the inner ray. (Note that Al +A2
"

1: the vertical normal stress

is a
conserved quantity in z.) A ray oi amplitude A~, with velocity c~, also carries shear and

horizontal normal stresses a~z = c~azz and a~~ =
c)azz. (Here I

=
1, 2; these relations may be

confirmed by direct application oi the wave
equations). Because shear stress is also conserved

in z
(ior

a point source oi weight, the z-integral oi a~z is zero), one has Al /A2
=

jc2/cij.
Since the wave velocities cl and c2 become reversed as one crosses the centreline, in all cases

(except ior the BCC model where cl " -c2 ), this line iorms a boundary between two different

wave media and any ray impinging on it undergoes both reflection and reiraction. For simplicity

we now move the origin oi our z, z coordinates to the point where the ray meets the centreline,
in which case an incident ray emanating irom our point source corresponds to a disturbance

azz =
A2b(z c2z), whereas the reflected ray obeys azz =

RA2b(z cl z), and the transmitted

ray azz =
TA2b(z + cl z) (this incorporates the sign change oi cl on crossing the centreline).

The iactors R and T can be deduced as iollows. First, one imposes the conservation law ior

azz defined above; the total weight supported by the reflected and transmitted rays is the

same as that in the incident ray. This yields immediately R + T
=

I. Secondly, by considering
the iorce on a small element, one finds that not only the shear stress but also the horizontal

normal stress a~~ must be continuous across the centreline. (Note that the same does not

apply, in general, to the vertical normal stress.) Imposing this ior the normal stresses, we

equate azz(z
=

o+
=

A2c]b(z c2z) + A2Rc(b(z
cl z) with a~~ (z

=
0~

=
A2Tc(b(z + ciz).
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Fig. 5. Construction of the solution of the OSL model using characteristics. a) The response

to a
point source is constructed as three rays consisting of delta functions of the amplitude shown.

Reflection and refraction of the rays at the centreline occurs when the two wave speeds, cl and c2, are

not equal in magnitude, b) The solution for
a symmetric pile is constructed by summing over all sources

whose rays end in a short segment /hx at the base of the pile. This defines four strips of material,

as shown, of lengths Li-4 and widths wi-4. Multiplying the area of each strip by the appropriate
amplitude factor, and adding, gives the piecewise linear solution for the vertical normal stress. Similar

solutions for the other stresses are
likewise obtained (using the ratios of stress components within each

ray as given in the text).
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Using also the iact that b(~ cz)
= )c) ~~b(x/c z), we find a second relation, )cl /c2) + R

=
T.

Thus we obtain the results

T
=

(lC2/Cil +1) /2 (44)

R
=

(1- lC2/Cil) /2

which completes our analysis oi the reflection /reiraction processes. Note that ior OSL models

with dip (~t < 0) the reflected ray iactor R has to be negative.

The above argument shows that the stress response at height
z to a point source above this

level in the pile consists oi either two delta iunctions (amplitudes Al and ,42) or three delta-

iunctions (amplitudes Al, A2R and ,42T) according to whether or not the inward-going ray

irom the source has met the centre-line. Using this iniormation we can construct a geometrical
solution oi the wave equations ior each stress component; ior the vertical normal stress azz (x)

at a point x on the base (say), this is done as iollows (Fig. 5b). From each oi two points
separated by a small distance /hz centred on z, construct the backward light rays (allowing
ior any reflection at z =

0). This defines two strips oi material, one oi length Li and the other

oi length L2, with a third and iourth each oi length L3 it there is a
reflected/reiracted ray.

The corresponding widths wi, w2 (and w3 "
w4) are as shown in the figure. The total vertical

normal iorce between our two points now obeys

azz(z)/hz
= g (Al (wiLi + Rw3L3) + A2(w2L2 + TW3L3) (45)

In other words, one adds the stress contributions oi all the material elements which have a

light ray ending in the given interval /hx on the base. The above construction provides a

iormula ior azz which is, oi course, identical to equations (39. 41) derived earlier. Since the

other stress components also obey a wave equation, each oi these can be constructed similarly,

as a weighted sum oi the three L's. The iact that each stress component is a piecewise linear

function oi z then follows from the elementary geometry oi triangles.
The Green function construction shown in Figure 5 gives some direct insight into the role of

the arching concept in describing stress propagation in granular media. The relation between

the characteristic slopes ci,2 and the arching effect is iar irom intuitive, however. Specifically

~ve can ask how, starting irom the BCC model (cl +c2
"

0) one should adjust the tilt parameter

(T) oi the OSL model so as to obtain an arching effect, and thereby a dip in the stress. In a

slightly different language [16], this was addressed briefly in reierence [7], where it was suggested
that to get an arching behaviour the light rays emanating irom an element would have to be

tilted outwards (T > 0, or cl + c2 > 0), thus transporting the load away irom the centre. This

suggestion, though at first sight reasonable enough, is actually wrong. In the FPA model,

and all other OSL models giving a dip, the light rays are actually tilted inward relative to the

BCC model: their average slope, (ci + c2)/2 is negative (T < 0). This would, at first sight~

appear to carry the weight of the grains toward the centre of the pile. The paradox is resolved

by realizing that, on tilting the rays inwards, the amplitudes Al, A2 defined above, adjust so

that Al becomes larger than A2 This means that a higher fraction of the weight of a grain is

carried along the outward ray, and away irom the centre oi the pile: this redistribution is more

than enough to compensate ior the average inward tilt oi the two rays.

2.10. TROLLOPE'S MODEL. As mentioned in the Introduction, Trollope [17,18] proposed a

model which yields, in effect, Edwards' arches and BCC as its t,vo limiting cases. The relation

bet~N.een this model and our own work is most clearly seen in terms oi the above analysis using

rays; ~N.e thereiore discuss it now.
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In his model, Trollope, without invoking any differential iormulation oi the problem, directly
assumed that the stress could be constructed in a manner similar to that above, but using three

rays; two with equal and opposite velocities cl " -c2 (just
as in the BCC model ), and a third,

horizontal ray (c3
"

-oJ). The parameter cl was taken as fixed globally by the type of packing;
however, a second parameter k was introduced. This k represents an imposed amplitude ratio

A2/Ai
"

k for the outward and inward components of the BCC-like propagation; as k is

varied, the amplitude A3 of the third ray also changes (in a manner that can be deduced from

stress continuity). It is interesting that Trollope already realized the importance of singular
behaviour on the centreline; for k # I, his model has this property.

In the limit k
=

I (no arching, symmetric propagation), A3 vanishes and one recovers a

BCC-like picture (though unlike BCC, Trollope did not connect cl to the repose angle). In

the limit k
=

0 one again has two rays, one of which is now horizontal. This limit does not

correspond to any OSL model however: within the OSL model an infinite c2 (representing the

horizontal ray) automatically has zero amplitude: A2
"

0. Trollope's horizontal ray enables

stress continuity to be satisfied while giving a maximal dip (zero normal stress azz at z =
0),

reminiscent of the Edwards approach. (The Coulomb yield criterion is violated, however.

By use of the third ray, Trollope managed to interpolate these limits in what he called the

"systematic arching theory". However, the introduction oi this extra ray seems extremely
ad-hoc, which is perhaps why the model is not more widely used today. Mathematically its

presence means that rays can no longer be identified as characteristics oi a partial differential

equation in two dimensions; thereiore Trollope's construction cannot correspond to any local

constitutive equation among stresses. (All such closures must lead to hyperbolic equations ior

which
a iormal solution using characteristics is available, even if the diaracteristics are curved

as happens, for example, in the IFE model [10].) We conclude that Trollope's systematic
arching theory must be rejected as unphysical a view tacitly shared by most of the recent

sandpile literature. However, many of the physical ideas behind the model, including the

emphasis on discontinuities in propagation across the centreline, remain highly pertinent to

the present work.

3. The Conical Sandpile

We now extend our continuum modelling approach to the three-dimensional conical sandpile.

3.I. ONE ADDITIONAL MISSING CONSTITUTIVE EQUATION. The conical pile is as shown

in Figure ld; in addition to the cylindrical coordinates (c, r) introduced before, an azimuthal

coordinate x is requir~d. Since we have axial symmetry around the z-axis, the principal axes

of the stress tensor must include the azimuthal (x~) direction. (The orientation of this tensor

can thus be fully specified,
as before, by the inclination angle lY to the vertical of the major

principal axis in the r, z plane. Recalling that the stress tensor is symmetric, we therefore

have ar~ = axr = a=~ = axz =
0. Hence the three-dimensional conical pile has only one

additional independent stress component ~y, compared to the two-dimensional case [7]. The

stress continuity equation for a conical sandpile is

firarr + 3=a~~
=

~~~ ~rr

r

(46)

~r~rz + fiz~zz
= g

~~~

dx~~j
"

0
~

The first two equations differ irom those iound earlier in two dimensions by additional "source

terms", (a~y art /r) and -azr
/r respectively, on the right hand side.



64 JOURNAL DE PHYSIQUE I N°1

Because oi the high symmetry oi the conical pile, closure oi these equations requires only that

we
find two constitutive equations which together should determine any two oi the independent

stress components in terms oi the rema)ning two. Choosing the latter as beiore (arz and azz)

we reier to the resulting equation ior art as the primary, and that ior axx as the secondary

constitutive equation. Note that symmetry requires also

azr(r
"

0)
"

0 (47)

art(r
=

0)
=

ayx(T
"

°)

As our yield criterion ior plastic iailure oi the granular material we retain the Coulomb

criterion [43] ior cohesionless granular materials (which becomes a relation between principal

stresses in the r, z
plane). However, the Coulomb yield criterion is essentially two-dimensional

in character and gives no explicit iniormation on the circumierential stress axx. In common

with previous authors [44] we argue nonetheless that this should vanish on the free surface, as

all the other stress components do:

axx(S
"

1)
"

0. (48)

Note that it we were to use instead the Conical Yield criterion [10,13, 43] or a similar (iully
three-dimensional) condition at the suriace, equation (48) would not be an extra assumption.

The iorm oi the new source terms in equation (46) is oi interest. Ii these remain relatively
small everywhere, one can expect to find (independent oi the iorm oi chosen ior the secondary
closure relation) qualitatively similar results to those obtained earlier in the two~dimensional

case. This scenario is indeed iulfilled ior the various different secondary closures tried below.

In any case, given that all stresses vanish at the suriace (as just described), these source terms

become strictly negligible near the iree suriace oi the pile, which may thereiore be viewed

locally as having a planar two-dimensional geometry. Accordingly, the IFS boundary condition

is completely unaffected; the stresses on the suriace oi a pile obeying IFS are still given by
equations (8, 9, 10). It iollows that (subject to the usual scaling assumptions, see below)
equations (19) and (20) still govern the asymptotic behaviour near the iree suriace. Thus the

relation between the repose angle # and parameters in the primary constitutive equation (such

as the tilt angle lY in the FPA model, or the
J~

and ~t parameters in OSL) remain as they were

in two dimensions.

3.2. SCALING ANALYSIS. As ior the two-dimensional case, by invoking the absence oi an

intrinsic length scale we may demand that solutions oi oi the stress continuity equation take

the RSF scaling iorm, equation (11 ). Substituting this into equation (46) gives a set oi ordinary
differential equations:

8rr'/C + 8rr + 8zr BXX
8Szr'

"
0 (49)

8zr'/C + Szr + 8zz 88zz'
"

1

The asymptotic analysis in Section 2.4 for the stresses near the suriace carries over to the case

of three dimensions, as mentioned already above. The source terms in equation (46) can in

principle affect the the asymptotic behaviour given in Section 2.4 near the centre oi the pile
(i.e., small S) but qualitative changes arise only it either azr IT or (art ayx) IT become large
in this limit. This does not occur for any of the models studied below.

Following the arguments made earlier in two dimensions, based on our assumptions of RSF

scaling and "perfect memory", we now propose local iorms ior both the primary and secondary
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constitutive relations, which must be as iollows:

srr/szz
=

C(U) (50)

s~~/s~~
=

D(u)

where we have set U
=

szr/szz
as usual.

The iorm oi equation (16) ior the RSF scaling solution remains basically unchanged, except
that in equation (17) the terms I

= szr + srr sxx and /
= szz + srz I are somewhat

modified. The resulting stress profiles can readily be calculated numerically irom equations
(16, 17) ior any choice oi the closure relations. However, no analytic solution appears to be

obtainable even for those models which, in two dimensions, reduce to wavelike propagation.
The problem can, of course, still be viewed as quasi two-dimesional (one spacelike, one timelike

variable), but if so the extra "source terms" make the solution complicated. Alternatively these

models can be formulated in terms of wave propagation in two spacelike dimensions (the r, x
plane) with z as a timelike variable. However, the Green function for such waves is itself

surprisingly complicated (there is no sharp "light-cone" [7]) and not directly amenable to the

simple geometrical interpretations offered earlier.

3.3. CHOICE OF CONSTITUTIVE EQUATIONS. For the primary constitutive equation, we

can choose among those discussed earlier, namely IFE and OSL, with the latter including both

BCC and FPA as special cases. We continue to require that the IFS boundary condition is

obeyed at the surface (which again fixes the OSL parameters ~t and
J~

to lie on the IFS line)
and that the Coulomb yield criterion is not violated in the interior of the pile.

For the secondary constitutive equation, we have investigated three ways oi selecting the

iunction D(U). The first is to insist that D(U) coincides with C(U)
so that a~x = art

everywhere in the pile:
Di(U)

e C(U) (51)

This has the merit of simplicity. (Note that by symmetry this relation must hold anyway at

the central axis oi the pile, but not necessarily elsewhere. A second choice is suggested by
the observation that the xx direction is a minor principle axis ior a conical sandpile with axial

symmetry. Generalizing slightly an assumption oiten made the context oi conical hoppers
[10,13], one could then choose as the secondary closure a~x =

P R (the Haar von Karman

hypothesis [13]). This implies

D~(uj
=

(i + c(ujj/2 ~/(1 c(ujj2/4 + u2 (52j

Although the motivation ior this choice in the sandpile context is not very clear, we have tried

it out ior comparison. Our third choice oi secondary closure, unlike the first two, does not

explicitly depend involve the primary closure C(U); it is the linear relation

D~(U)
= J~

+ jiU (53)

which should be compared with the OSL primary closure, equation (33). In iact, ior the OSL

model the constant term
J~

has to be identical to that chosen in the primary closure, to meet

the second requirement oi equation (47). The coefficient ji is in principle iree. In practice,

however, we have iound that the requirement that the Coulomb criterion T < I holds in the

interior oi the pile means that values oi ji close to ~t are required; hence ior OSL models the

closure D3(U) is never very different irom Di(U).
We have investigated these three closure relations Di, D2,D3 ior all the different primary

closures C already discussed in Section 2, ior various values oi the repose angle # (mainly in a
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Fig. 6. Results in three dimensions for the FPA model for ~
=

33° with secondary closures Di

and D2 defined in the text. Also shown
are

the data of reference [2] for quartz sand (closed symbols)

and NPK-I fertilizer (open symbols), both of which have repose angles of 33 +1°. Though departures

are apparent near
the maximum of the vertical stress, the dip is reproduced satisfactorily; there are

no
adjustable parameters in the FPA model. The difference between the two secondary closures is

similar to that between the two materials, though
we

attach
no

special significance to this. Note the

data collapse from piles of different heights; this confirms that RSF scaling is obeyed to experimental

accuracy.

range around #
=

30° ). For all the parameters we tried, the extra "source terms" led mainly to

smoothing oi the two-dimensional curves without qualitatively altering the presence or absence

oi the dip. Since these source terms do not have a dramatic effect, it iollows that the choice

made ior D, at least among those investigated here, itseli does not qualitatively change the

stress profiles.

3.4. RESULTS. Rather than provide a
catalogue oi curves ior various combinations of pri-

mary and secondary closure, we will focus attention on the FPA model. In Figure 6 we compare

the stress curves for the three-dimensional FPA ~vith closures Di and D2. As mentioned pre-

viously, the choice oi secondary closure proves quantitatively but not qualitatively important.
Also shown are the experimental results oi reierence [?] ior piles oi height 20-60 cm. The

stresses are normalized by the total weight oi the pile; notice the good scaling collapse oi

curves irom piles oi varying heights. This confirms that the RSF scaling hypothesis made in

this paper is obeyed to experimental accuracy, at least ior the materials and pile sizes studied

in reierence [2]. The agreement between experiment and FPA theory is generally satisiactory,
although there is a

significant error near the maximum oi the vertical normal stress. Obviously
it would be helpiul to have more data ior small values oi S, but there are sufficient data points

at the origin to clearly establish the presence and magnitude oi the dip. The experimental
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Fig. 7. Comparison of different primary closures with the
same

secondary closure relation Di, for

~
=

33°. The IFE and BCC models, which do not give
a

dip,
are

clearly ruled out by the data of

Figure 6. However, it is harder to distinguish OSL models with the adjustable ~ parameter in the

range 0.8 < ~ < 1.2 from the FPA model which has ~ =
1. A parameter values different from 1 cannot

be ruled out, but nor does one seem to be supported by the data of Figure 6.

data shown are ior two different media both with repose angles close to
~§ =

33°. The result-

ing curves differ by an amount similar to the difference between the two choices oi secondary
closure, with Di giving slightly better results ior "quartz sand" and D~ ior "NPK-1 iertilizer".

(We do not attach any significance to this. As mentioned previously, the FPA model has no

adjustable parameters once D is chosen and # is fixed by experiment.

In Figure 7 we show the same predictions for the FPA model with closure Di alongside those

ior several other models with the same secondary closure. These models are BCC and IFE

(neither showing
a

dip) and two parameter choices ior the OSL model (q
=

0.8 and
J~ =

1.2)
which bracket the FPA case (q

=
I). This comparison shows a clear preierence oi FPA over

those other models that have no adjustable parameter. It is conceivable that the data could

be fit better by choosing an OSL model n>ith q slightly different irom unity. However, ~ve do

not believe the improvement is enough to justiiy the adoption oi an extra fitting parameter,
although iurther careiul experiments might reveal this to be necessary. .

Finally in Figure 8 we plot the yield parameter T(S) ior the BCC, FPA and IFE models.

By definition, T(S)
=

I everywhere in the IFE model: it also obeys T(I)
=

I in all models

obeying the IFS boundary condition. In two dimensions it is also unity throughout the outer

regime oi the pile ior all OSL models. In three dimensions this is not the case, and in iact ior

OSL models the material is clearly belon> the yield criterion throughout the bulk oi the pile.
This underlies the important distinction between the classical IFE assumption (iully mobilized

iriction, T
=

1) and the new models adopted in this paper.
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Fig. 8. The yield function T
as a

function of scaling variable S for the FPA, IFE and BCC models.

Note that for FPA and BCC, T
now saturates the Coulomb condition, T

=
I, only at the free surface

and not through a
finite part of the pile. The apparent cusps on the FPA and BCC curves are numerical

artefacts arising from the shooting procedure used to solve the equations.

4. Role of Construction History

So iar we have only considered the stress profiles oi idealized sandpiles constructed by pouring
sand irom a stationary pipe, ior which the boundary condition oi incipient iailure at the suriace

(IFS) was assumed. The slope
a to the horizontal oi the iree suriace is by definition given

by the repose angle:
a =

#. According to our approach, however, the constitutive equation
encodes the construction history, and piles built differently can behave differently. In discussing

this issue, we restrict attention to the FPA constitutive model in two dimensions.

We consider first the iollowing hypothetical experiment: a material with #
=

#o is iormed

into a pile by the usual method. The pile is then reduced to a flatter (symmetrical)
one oi angle

a by simply taking away the upper section, grain by grain, without disturbing any material

below (Fig. 9a). According to our model, the constitutive equation remains that oi a pile
with the larger repose angle, though the stresses are oi course altered. The resulting stress

pattern is shown in Figure 9b in comparison to that oi a pile oi repose angle #i
" a which

has the same. final geometry. The first oi the two piles has the larger dip. We can now ask the

iollowing: it a pile oi
a < # is tilted irom the base through an angle t (Fig. 9c) how large may

t become beiore an avalanche occurs? A classical answer, based on the view that the repose
angle # is a material'property independent of construction history, is that one would be able

to tilt until tmax + a is again equal to ~§.
(This ignores, as we have done throughout this paper,

the small hysteresis effects associated with the Bagnold angle [14]). However, in our approach
this should not quite be true, since the inclination angle oi the principal axes in a pile at this

condition is different (by an angle t) irom that oi a pile created by the normal method at its
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Fig. 9. A pile whose shape is changed after being constructed normally. a) Geometry of the altered

pile; dashed lines show the major principal axis orientation, which is unaffected by the removal of

grains above. b) Resulting stress distribution compared with
a

pile whose repose angle is the
same

as
the final

one
of the altered pile. (Initial slope ~

=
30°, final slope 20° ). c) The application of

a

tilt t; d) the final "repose" angle
a + tmax of the tilted pile, plotted against ~. This is determined by

finding the maximum a, given t, for which the pile remains within the Coulomb yield threshold. For

reasonable #, and small t, the final repose angle is almost the same as
that of

a normal pile.
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Fig. 9. (continued)

repose angle. It turns out, however (Fig. 9d) that unless the pile is substantially flattened

(fi a cf 10° or
more), the difference bet,veen tmax + o and ~ is very slight, at least for repose

angles in the usual range (# < 45°).

This calculation can, with caution, be proposed as a model for what happens ~v.hen a sandpile,

built normally, is suddenly tilted through a finite angle t. Of course, in this case an avalanche

does occur: however. if this happens by removal of a wedge without significant reorganization of

the remaining part of the pile, leaving the new
surface in a state of incipient failure, the above
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calculation can be applied (except that, for simplicity, we have contrived a version in which

the pile remains symmetrical). In principal, there should then be a change in the resulting

repose angle iii is large enough. However, the assumption that an avalanche occurs with no

rearrangement of the remaining grains, is, for large t, highly dubious.

Another critical test of our ideas is the following: a triangular pile is constructed as usual

and then a large part of it removed (grain by grain) leaving a pile whose left hand slope is at

the angle of repose fi, and whose right hand slope is at angle fl (say) to the horizontal. The

geometry is chosen so that all of the material in the new pile was originally in the left half of

the parent pile (Fig. 10a). To describe this situation, we have to use the FPA constitutive

equation in the form (26), in a coordinate system where x =
0 denotes the centreline of the

original pile. With the modified construction history just described, the singularity on the line

x =
0 lies outside the newly created pile, and the characteristics of stress propagation should

be identical on both sides of its apex. Throughout the pile, a majority of the stress is carried

down the leftmost (rather than outermost) characteristic. An interesting question now is, what

is the maximum angle fl that we can choose for the right hand slope? This can be found from

the usual stability criterion T < 1; the marginal case has equality at the free surface on the

right and, for the FPA model, this gives (after some algebra) the condition

tan(~l fl) > tan~(~b) (54)

The maximum fl for which the new pile is stable is shown as a function of fi in Figure 10b;
for fi

=
30°, one has flmax

=
19.1°. This is a very interesting result, since it predicts that the

repose angle of the right hand part of a pile built this way is quite different from the usual

value, which prevails on the left.

This prediction must, of course, be interpreted with caution since its extension to a fully
three-dimensional geometry is not obvious. Perhaps the simplest three-dimensional analogue

is to build a pile and then open a hole directly below the vertex, allowing sand to flow out

leaving a "volcano crater" [45] according to this prediction, the angle of repose on the inner

side of the crater may differ substantially from that on the outer slope. This possibility deserves

careful experimental study; a significant difference is not ruled out [46j. The situation is again
complicated by the fact that the experiment will set up a flow which may rearrange the grains
that remain in the pile. Indeed, the removal by avalanche of the right hand part of the pile

may set up a large region in which the grains have slipped down to the right, for which the

constitutive equation may revert to that of the right hand part of a normal pile. (This could be

true even if the actual particle displacements are extremely small. If so, the measured repose

angle could again approach fi, rather than fl,nax which applies only when the removal of sand

does not perturb the remainder. We show in Figure 10c the stress distribution in a pile made

in this careful fashion (with # =
30° and fl

=
15° ). As one might expect, there is now no dip

but a (lopsided) maximum in the vertical normal stress. The maximum lies to the left of the

new apex (at the point where an outgoing ray froiu this apex strikes the base).
Note that quite different predictions for this geometry could have been obtained by writing

the FPA closure in a somewhat different form, which is, for a symmetrical pile only equivalent

to equation (26) [31], as discussed in Section 2.7:

s~~/szz
=

1 2tan#jUj (55)

Here the explicit dependence on construction history via the sign(x) factor has been replaced

by an x-independent but highly nonlinear constitutive relation among the stresses (in the spirit

of some of the models discussed in Ref. [7]). Using this form~ one could find a solution~ with

fl
=

#. for our asymmetrically constructed pile that would precisely coincide with the usual
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Fig. 10. Construction of an asymmetric pile from
one

half of
a

normal pile. a) Geometry of the

altered pile; dashed lines show the major principal axis orientation, which is unaffected by the removal

of grains above. The newly created pile has axes uniform throughout, rather than discontinuous at

the centre line. This alters the stress propagation behaviour. b) The maximum fl that can be chosen

in the geometry of a),
as a

function of ~, to avoid violation of Coulomb's yield condition in the newly
formed pile. According to the FPA model, flmax is quite different from the ordinary repose angle ~.

c) Resulting stress distribution and yield function under the
new

pile (the scaling variables are the

same as for the unmodified pile). The apex of the new pile is marked with
an arrow. There is now a

lopsided hump, rather than
a

dip, in the vertical normal stress.
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Fig. IO. (continued).

symmetrical case.
(This possibility arises because the sign of U, though not of x, can change

on
the centreline of the new

pile.) Since we only have data for symmetric piles, we cannot

on the existing facts rule out this rather different version of the FPA model, although it does

not correspond to our assumpt>ion that the principal axes of a material element are fixed at

the time of burial. Accordingly experiments on asymmetric piles would be a strong test of the

theory.

A somewhat different experiment would be to start with a symmetrical pile and then remove

parts of it (grain by grain) so that the remainder forms an asymmetrical pile whose apex has

not moved from the line z =
0. Shown in Figure 11 is the stress distribution in such a pile

with left and right slopes al "
4

#
30° and 02 =

12°. An interesting feature is visible

under the apex, where the vertical normal stress azz (and therefore also the yield function

T) is discontinuous. This behaviour is in fact a generic feature of sandpiles that include the

line x =
0 but are asymmetric about it. It stems from the fact that this normal stress is

not continuous in the geometry of incident, reflected and transmitted rays considered earlier

(Sect. 2.9). An exception to this rule is if an asymmetrical pile is made by pouring sand onto a

sloping base plate. In this case, we expect the apex of the pile to move slightly relative to the

source so that more material rolls down the "long" side of the pile and the repose angle in the

two directions remain equal to fi. The constitutive equation must then (given RSF scaling) be

the same as for a pile formed normally, and the stress exerted on the supporting plate is the

same as that on an inclined plane inscribed through a normal pile. (In two dimensions. this

can be found easily from our earlier results. Though asymmetric, this stress distribution will

not show any discontinuity beneath the apex.

As a last example of a sandpile constructed normally and then manipulated, in Figure 12 we

show the stress distribution in a pile whose top section has simply been cut off. Though grain-
by-grain removal of sections of a pile may impose experimental difficulties, this is perhaps the
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Fig. 11. Construction of
an

asymmetric pile from both halves of a normal pile, leaving the apex

in the same position. a) Geometry of the altered pile; dashed lines show the major principal axis

orientation, which is unaffected by the removal of grain~ above. b) Resulting stress distribution and

yield function under the
new pile (the scaling ,<ariables are the same as

for the unmodified pile). The

apex of the new pile is marked by singularitie~ in the vertical normal stress and in the yield function,
for the reasons discussed in the text. For the parameters shown~ the dip is present in one half of the

pile but not the other.

simplest geometry for which it could be achieved. As shown, the dip is gradually diminished

and replaced by a plateau as larger and larger upper sections are taken away.

Finally, we note that a sandpile could be made by first distributing sand uniformly (not
from a point source) in a retaining bin, from which tile side walls are then removed. As with
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Fig. 12. Vertical normal stress beneath
a symmetric pile made normally, of height H, from which

an upper pile of height zc has been removed. The dip is progressively eliminated
as material is taken

away from the upper part of the pile.

some of the examples studied above, the predictions depend crucially on whether significant
slip occurs within the part of the pile that finally remains. The initial loading of the bin is

likely to produce principal axes with vertical and horizontal orientations (Q
=

0), so that if no

slip occurs, we might expect the BCC model to apply (no dip). However, if slip does occur so

the remaining pile has been sheared downwards, the FPA picture should be more appropriate.

The various types of experiment discussed above, in which the construction history of the

pile is deliberately manipulated, provide a strong test of our basic modelling hypothesis that

the constitutive equation encodes the construction history. For some of these geometries, the

theoretical predictions challenge the "classical" assumption, maintained in the recent physics
literature on sandpiles, that for cohesionless granular media (of

a single grain size [10] the

repose angle is the saute for all types of pile of a given material. (As mentioned in Sect. 1.2, this

assumption has long been avoided in the engineering literature on hoppers [29, 46j.) Of course,

the repose angle remains a genuine material parameter in that the angle of a '~normal" pile
(built fi.om a point source) will differ for different cohesionless materials; and for our purposes

this can be taken as the unique definition of d. It does not necessarily follow, however, that the

repose angle taken up by a pile of the saute material with a
different construction history, will

al~vays be exactly the same. In any case, our
modelling approach leads to a clear expectation

that the stresses in such piles can be different (even when the repose angles are not significantly
different). This is a readily testable prediction which we believe deserves urgent experimental

attention.
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5. Conclusion

This paper is a long one. It therefore seems useful to provide a brief summary of our modelling

strategy, in the form of a list of contentions for which more detailed arguments can be found

in the text above. We stress~ however, that several points on the list have no first-principles
justification: they are hypotheses whose value can at present only be judged by comparison

with experiment. We also stress that several of these ideas have a long history (which is not

the same as saying that they are widely agreed upon).

5.I. A MANIFESTO FOR SANDPILE MODELLING. Our modelling strategy is based on the

following claims:

ii There is a construction history, 7i. This determines the arrangement of grains. We define

the "normal" history to be the construction from a point source of a pile at its repose angle.

(2) There is a stress tensor a,~ which is well-defined as a local (mesoscopic) average over

many grains.

(3) For hard particles (of infinite elastic niodulus), no strain variables exist; static frictional

forces are indeterminate. Stress continuity requires one supplementary equation for closure in

two dimensions, and two for
a conical pile in three dimensions.

(4) Scaling behaviour (RSF scaling) is observed, to experimental accuracy. Hence there is

no characteristic length scale in a sandpile under gravity. Particle deformability would provide
such a length; so would size segregation.

(5) The limit of uniform nondeformable, cohesionless, particles presumably therefore exists,

and should describe those experiments for which RSF scaling is observed.

(6) We should therefore seek as closure a scale-free, local constitutive relation among stresses.

Formally: there is a function C such that

Cja~ jr, z),7i)
=

0 j56j

The constitutive relation depends on the local packing and therefore
on the construction his-

tory: C encodes 7i.

(7) C for a material element is "frozen in" at the time of burial (perfect memory assumption).
Combined with RSF scaling, this means that for a sandpile constructed from a point source, C

is independent of position when expressed in cylindrical polar coordinates, though it niay be

singular on the central axis.

(8) The boundary conditions for a pile constructed normally are IFS: incipient failure at the

free surface. This means that at the surface, the major principal stress axis bisects the free

surface and the downward vertical. (Here and elsewhere, hysteresis effects associated with the

Bagnold angle are ignored.)
(9) The search for a constitutive relation C(a~, 7i) may legitimately entail (a) niaking simpli-

fied hypotheses to compare with experinient; (b) microphysical modelling from first principles.
We pursue the former in this paper, the latter elsewhere [26].

(10) A classical choice of C is incipient failure everywhere (IFE); this is hard to defend

physically. It does not predict a dip in the stress beneath the apex of
a pile.

ill) A physically more plausible (but by no means unique) choice for C is provided by the

FPA hypothesis. According to this, each element of material is impressed at burial with a sense

of direction, which fixes forever the orientation of the stress tensor ellipsoid that the element

can support. The model predicts a dip in two dimensions.
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(12) In three dimensions, a secondary closure relation is needed. Among the more obvious

choices, it makes relatively little difference which is chosen. Even the simplest choice (a~~
=

art), combined with FPA, gives a reasonably good fit to the data of reference [2j, without

adjustable parameters.

(13) A generalized model (OSL), of which FPA is a special case, can be introduced. This

has an adjustable parameter, the introduction of which is not demanded by the present data.

(14) The above modelling approach, though initially set up for static sandpiles constructed

from a point source, can also be used for more complex construction histories (at least in some

cases). For piles constructed normally and then modified by careful removal of grains, this

approach predicts a nontrivial dependence of the repose angle fi, and of the stress distribution,

on the way a pile is made.

5.2. DiscussioN. Of the models considered in this paper, it is clear that the FPA model has

some especially attractive features. This model leads directly to an arch-like stress-propagaiion,
with the major part of any load being carried down the arch direction. The latter coincides with

the major principal axis of the stress tensori this everywhere bisects the free surface and the

downward vertical. The predictions of the FPA constitutive relation thereby describe siniilar

physics to the arching model of Edwards [5] (and indeed the earlier "full arching theory" of

Trollope [18] ). Like such models, the FPA hypothesis can be viewed as a direct macroscopic

ansatz of how stresses propagate: one assumes that the principal axes are fixed in space.

Viewed this way, we believe that the FPA model provides the first description of the arching
picture within a fully consistent continuum mechanics framework. Its experimental success

strongly suggests that the presence of a macroscopic arching structure in sandpiles is the

correct explanation for the observed minimum in the vertical normal stress below the apex of

the pile.
However, unlike previous arching models, the FPA hypothesis can also be interpreted as

providing a local, history-dependent constitutive relation among stresses. In this context, it is

among the simplest such equations that can plausibly be devised: we assume that the principal

axes of a material element are fixed at the time of its burial. Viewed as such, the FPA hypothesis
contains no assumption of any macroscopic arching structure; rather, it provides a plausible
microscopic explanation for how such structures arise. Its experimental success offers strong

support for a modelling strategy cast in terms of such constitutive relations. For parameter

values other than FPA, which is a special case, the more general OSL model predicts, within the

same modelling framework, a more complex pattern of stress propagation. (The principal axes

and the propagation characteristics no longer coincide.) The extra fitting parameter provided

by OSL is probably not justified by the existing data. One feature of OSL models which stands

out strongly (at least in two diniensions) is the presence of reflection and refraction of stress-

paths at the central axis of the pile (see Sect. 2.9). Careful experiments on the effect of small

perturbing loads could reveal whether or not this really occurs, providing a strong test of this

class of model.

In view of its attractive physical features, and of its experimental success, we currently favour

the FPA hypothesis as the simplest starting point for more refined theories of sandpiles. It

also forms a promising basis for future study of stress propagation in static granular media

of geometries quite different from the normal conical pile. The richness of this area is amply
illustrated by the handful of examples studied above in Section 4. Consideration of these

and other geometries could allow stringent experimental tests of both the FPA model, and

the overall modelling strategy we have proposed. Within this framework, there is, no doubt,

scope for much more sophisticated models of how the construction history of a pile determines

the local constitutive behaviour, but further efforts in this direction may require much more
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experimental inpttt. The validity of the framework itself deserves close experimental scrutiny.
particularly concerning the degree to which RSF scaling is obeyed. Our assumption of scale-

free (RSF) behaviour offers
an immense simplification, hut closer experimental investigation

may reveal that this is not quantitative except under souie limiting conditions. Despite these

uncertainties, we feel that the modelling framework presented above has significant potential
to provide improved physical theories of stress propagation granular media.

In future work [22] we will explore the close connection between our OSL model and a recent

discrete stochastic models for stress propagation in sandpiles [21] (see also [20]), of which

OSL can be viewed as the (mean-field) continuum limit. An important concept arising from

the stochastic models and from experiment [20] (see also [47j) is that of stress paths; these

are pathways through the medium along which most of the load is locally transmitted. The

noise-free models considered in this paper can be viewed as making hypothetical statements

about the average orientation and load-bearing properties of these paths (see the discussion

of characteristics in Sect. 2.9). Such statements are testable, if not directly, then at least

in simulation studies. Ongoing work [26j suggests a promising correspondence between the

average alignment of these paths and the orientation angle Q arising in the OSL model.
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