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PACS.05.20.-y Statistical mechanics

PACS.75.10.Nr Spin-glass and other random models

PACS.75.50.Lk Spin-glasses and other random magnets

Abstract. The analysis of objects living
on

ultrametric trees, in particular the block-diago-
nalization of 4-replica matrices M"~"~~, is shown to be dramatically simplified through the

introduction of properly chosen operations on
those objects. These are

the Replica Fourier

Transforms on ultrametric trees. Those transformations
are

defined and used in the present
work.

R4sum4. On montre que l'analyse d'objets vivant sur un
arbre ultramdtrique,

en
particulier,

la diagonalisation par blocs d'une matrice M"~'~~ ddpendant de 4-rdpliques, se simplifie de fa&on
dramatique si l'on introduit les opdrations approprides

sur ces
objets. Ce sont les Transformdes

de Fourier de Rdpliques sur un arbre ultramdtrique. Ces transformations sont ddfinies et utilisdes

dans le prdsent travail.

Spin glasses and their typical glassy phases appear to be present in a wide spectrum of

domains [1-3j. The high level of complexity inherent to their structure (field #ap (x) depending

upon two replicas, propagators G°fli~~(x,y) depending upon four of them) has prevented so

far a systematic study of the glassy phase with the standard tools of field theory and in

particular the renormalization group where objects with 6 (or 8) replicas would be needed.

One recent step in the process of founding a
field theory has been the spelling out of a Dyson

like equation [4,5] relating the propagators G and their inverses M (mass operator plus kinetic

terms), a triviality in standard field theories. To be more precise, the obtained relationship
is not directly between G and M, but between what was termed the kernel (F) of G and the

kernel (K) of M. What makes the algebra complicated, is that one cannot directly work with

replicas (whose number n is to be set to 0). Instead, one is led to use, for the observables,

a replica symmetry broken representation (RSB) usually inferred from mean field studies (be
it with R

=
1, one step RSB or R

= cc as in Parisi's [7] ansatz). As a result, the inversion

process of the 4-replica matrix M~~'~~, becomes a highly non trivial exercise with results fairly
involved for R

= cc [4), and even much more so for a generic R [5).

(* Author for correspondence (e-mail: cirano@spht.saclay.cea.fr)

© Les iditions de Physique 1997



106 JOURNAL DE PHYSIQUE I N°1

Here we would like to show that with the appropriate choice of transformations, the previ-
ously obtained results, considerably simplify, and in some sense, become almost transparent.

To that effect
we introduce the notion of (I) Replica Fourier Transform (RFT) and (it RFT

on a
(ultrametric) tree. With those definitions, given in Section 1, we show that the relationship

between (matrix) functions and their kernels is nothing but a Replica Fourier Transformation (a
double transform for the Replicon component and a single one for the longitudinal anomalous

component). This is done in Sections 2 and 3. Further the same RFT, used now on the

eigenvalue equations immediately (block-)diagonalizes them (Sect. 4). Used on the equation
GM

=
1, the RFT yields Dyson's equation relating the corresponding kernels of JI and G

(Sect. 5).
It must be mentioned at the outset that this work was prompted by the yet unpublished

results of Parisi and Sourlas [6] where a Fourier transform on p-adic numbers is introduced (~ ),
which diagonalizes the Replicon sector components. The RFT used here has the flexibility that

also allows for a block diagonalization of the Longitudinal Anomalous sector.

1. Replica Fourier Tkansform

It is assumed, as in Parisi iii, that the 2-replica object (#ap(x)) + q~p = qt only depends upon
the overlap (or codistance o n fl

=
t). Likewise a m-replica object will depend upon m I

independent overlaps. The RFT [9]. which is a discretized version of the algebra introduced

by Mezard and Parisi [10] defines the RFT transform I of A via

R+I
ik

=

~
pt (At At-i Ii

t=k

Here the pt's are the sizes of the Parisi boxes, po + n the replica number, pR+i e I. Note that

o n fl
=

t means that o and fl belong to the same Parisi box of size pt, but to two distinct

boxes of size pt+i, I,e. they belong to the (relative) multiplicity

it
= Pt Pt+1 (2)

iR+1
~ PR+1 (3)

Objects with indices out of the range of definition (here (0, R + I))
are taken as null. Con-

versely one has

Aj
=

~ Ak Ak+1 (4)
~

~

k

and the associated (relative) multiplicity in what will be termed below "resolution" (or pseudo-
momentum) space,

j I I
k " £ j (5)

do
"

(6)

(~)See also B. Grossman, reference [8].
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Characteristically, the convolution

n~j A"78~4
" COP (7j

7"1

becomes, after RFT

ik@k
#

0k (8)

If we take

c~p
=

lap (gj

we have

0k
#

(10)

Ak
#

I/Bk (11)

This convolution property conveniently allows to write for example,

R+1
~tr(A)~

= n
£ ik (ik (12)

to be compared with

R+i~j (A°4)~
" ~

£
bJ (Al] (13)

ap j=0

One is often using a multiplicity p(k), related to the (relative) multiplicity Sk introduced here

by

lL(k)
=

nbk (14)

p(0)
= n =

1 (15)
Po

2. RFT on a Tkee

Despite their usefulness [9], the above introduced objects are not yet tailored to fit the com-

plexity of situations arising in the study of functions of more than two replicas. We need to

extend the RFT definition to the case where the two replicas (I.e. the overlap) summed over,

move on a
(ultrametric) tree in the presence of other passive overlaps. The simplest example

is the 3-replica function (see below Sect. 4)

f~~'"
+ fl (16)

where we have a
(fixed) overlap

r = o n fl, and the lower inde~, t is the cros8-overlap t

max(an~;fInp)
=

t

anti
= r

(17)

As we move ~ i.e. t along the 3-replica tree, we now have the successive multiplicities

pt pt+i t < r

pt 2pt+1 t
= r (18)

2(pt pt+i) t > T
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Indeed, in the case t
= r, there are two boxes of size r +1 excluded for p (the box pr+i of

a, and the one of fl). In the case t > r there are two branches of the tree available for ~

(a n ~ =
t, fl n ~ = r or a n ~ = r, fl n ~ =

t). It is thus appropriate to define effective boxes

in the presence of a passive, direct overlap r, uiz. p)~~ with

~(r)=~
~<~

p)~~ =
2pt r < t (19)

and the associated RFT
on

the S-replica tree

R+i

1[~~ =

£
p)~~

A)~~
A)[~~) (20)

t=k

J

Aj~~ =

£
j

A(~~
A)j~~) (21)

t=o Pi

The RFT involved in this paper will always concern cro88-ouerlap8, I-e- lower indice8. In the

case we are on a 4-replica tree with two passive, direct overlaps, e-g- for r < 8 we Shall use

p)~'~~ (See Sects. 3.2, 4.1) with

p)~'~~ = pt t < r

p)~'~~ =
2pt r < t < 8 (22)

p)~'~~ =
4pt r < 8 < t

and obvious extensions for
r = s or when more passive overlaps are involved.

3. Kernels as RFT on a Tkee

Consider the 4-replica matrix M°~i?~ which we choose to parametrize aS follows:

(I) on the Replicon-like configurations of the 4-replica tree: I-e- a n fl e'/ n b
= r

M°#~~&
~

~~rjr ~~~j
UjU

with the lower indices

max(o n ~, o n b)
= ~,

u,v>r+1

max(fl n'/, fl n b)
= v

(it The other configurations of the 4-replica tree belong exclusively to the So called Longitu-
dinai-Anomalous (LA) component

Ma#;~& ~r;s ~r;s j~~~t " A t

where max(a n 7, a n b, fl n ~, fl n b)
=

t, and where it may happen, accidentally, that

r = 8.

The upper indices take values 0,1,..
,

R (for the special problem considered here, R + 1 e

la n a) is excluded). Lower indices take values 0,1,.
,

R + I. These two sets of variables will

also be referred as direct overlaps and cross-overlaps, respectively.
We now show, that the "kernels" defined in reference [4, 5], in terms of which it was possible

to invert the 4-replica matrix M"~~~~, are nothing but appropriate RFT'S on lower indices

(cross-overlaps).



N°1 REPLICA FOURIER TRANSFORMS 109

3.I. THE REPLICON COMPONENT RM. It was recognized quite early [II,12] that RM[I[
(or the corresponding component of the inverse I-e- of the propagator RG[I[)was obtainid

via some double transform of a more elementary object, the "kernel" K[)[ (or F[,") for the

propagator). The kernel, identified with the Replicon eigenvalue A(r;k, it (see below),
was

indeed explicitly written as [13]

kinetic term + I(r; k, I) e
K[j[

=

R+I R+I

=

L
pa

L
pv

(Mij Miii;v Mill-i + Mifi;v-i)
,

k, i > r + (251

u=k u=1

which we recognize now as a double RFT. Note that

(I) we have written M instead of RM. We shall see below why this does not make any

difference;

(it) we have not used the RFT on the tree (with passive r) since here k, > r +1, rendering
its use trivial (and pedantic).

The direct relationship is then obtained by inverting the double RFT,

RM]'[
=

f f
(K(I[ K[(~,j K["[~~ + K[(~ j~~) (26)

'

k=r+1
~~

l=r+1
~ '

This was, unknowingly, the type of relationship between RG[I[ and F[,"/ that first came out in

the unravelling of the bare propagators (for the Parisi limit, R
=

ccl'As already mentioned,

analogous results have also been recently obtained, through the use of p-adic theory, by Parisi

and Sourlas [6].

3.2. THE LA-COMPONENT AM With the above defined RFT on the tree (22) we can

now write

JII'~
=

£ ~
(K["~ K((~ (27)

k=0 i~k

R+i

Kl'~
=

~j
p)~"~~ [JI)"~ &I))[) (28)

t=k

Corresponding equations may be written relating the propagator Gl'~ to its kernel, obtained

by RFT, F["~ Equation (28) generates the LA kernel K["~, including the limiting value r = s.

Conversely, knowing the kernel everywhere, we can generate the mass operator AJI for all

values of r, s.

In the Replicon configurations of the 4-replica tree we have two lower indices AM]j[ and

therefore

AM[I[
=

~~f~~
~~

(K["~ K[(j) (29)

k=0 l~k~~~~

Note that pf'"'"~
e pf'~"'~"'~~~ in the interval bounded by max(u, v). From (29), it follows

that
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where A&1)"~ is given by (27) taken at r = 8. This relationship explains why on the right hand

side of (25) one may use, indifferently, M or RM: indeed AJI[j[ where u, v > r + I, is shown in

(30) to depend upon a single (~) lower index at a time, it is thus projected out under a double

RFT.

The equations given above for the kernels (25,28) can be taken as defining the kernels once

the primary functions M are known (e.g, by loop expansion). It is sho1&.u below that the same

objects then block-diagonalize the eigenvalue equations (Sect. 4) and the Dyson equation
(Sect. 5).

4. Eigenvalue Equations

We now turn to the eigenvalue equations for the matrix JI~~~?~. The three eigenvector classes,

as introduced by de Almeida and Thouless [14), write f"~, f"~'", f°°'"" for the L, A and R

sectors respectively.

4,I, THE L-SECTOR

j~ JfafInb fib j fop (~~j§ ~
'

~b

here the sum is over all the configurations of the 4-replica tree. Spelling it out we get

R R+i R+1 ~ R+IL (iii L h~ L hvmiii + [ 11 bl~~~fili'~ f~
=

>f~ (32)

s=0 u=r+I u=r+I t=0

where the b([ term is the contribution of the Replicon-like configurations of the 4-replica tree.

In terms of RFT'S, this writes

jbtiAiii,~+i + jAi~i~ /~
=

>~ jr 133)

~-o

Here we have used

b)~.~~ - pl~i~~ pl(li (34)

and p)~"~~ as in (22). We have also used the fact that. for a sum carried over the full definition

interval (0, R + 1) or when in the R-sector over
(r + 1, R + 1), one has

R+I R+I~j btAt
=

£ pt(At At-i
=

Ab (35)

b b

1-e- yielding the RFT at its lower bound b
=

0 or b
= r +1 respectively. Hence in equation

(32) the sum over da, iv is a double RFT. Therefore it projects out AM[j[ and yields the RFT

at its lower bound value
= r + I for Riif[jj. For the single b)~'~~ sum, we recover the single

AFT of M)"~ at its lower bound
=

0.

(~) Note that if one wishes to attach a second lower index to Gl'~ (e.g. for the sake of faithfully
representing

a propagator by one pair of lines) it has to be min(r, s, t).
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4.2. THE A-SECTOR

£ Mo#;~d /~&;p
~

j~ yap;p ~~~j
~

~&

The idea is now the following: just like before
we obtained simple relationships by taking

AFT over lower indices, I.e. cross-overlaps, we now take one more step and do RFT on the

convolution product of cross-overlaps. More precisely. we have the concatenations

~fli(b ibj$ and lpi)

or

fYfl,'ii 'ii,# and Ofl(#

and two other possibilities depending on the configurations of the 5-replica tree. The replica
pairs with alike dots are those whose (cross-)overlap is to be Replica Fourier transformed. We

sum first over the 5-replicas, at an fl
= r, ~ n b

= s, fixed and passive, to extract the k RFT

component (as in going from (7) to (8) and then we sum over s to obtain

~
~~~~~~~+1

~
~~'~~)~

~~ f~ ~Af~' (~~)

a=0

Note that

(I) the summation over the concatened lower indices yields the product Kkfk (as in (8)).

(ii) in the Replicon subspace, there is a second lower index which is freely summed over its

complete range jr +1, R +1) hence yielding the b
= r +1 component of K~i~ (as in (35))

(iii) the s upper index summation, at fixed (RFT) cross-overlap k, comes out as bj~~~~

(iv) the "monochromatic" RFT f[ corresponds to an eigenvector (see (19-21))

0 t<k-I

f/
=

plr)
~~ ~

(38)

l~-~
£[ t>k-I

Pk~

i-i~

that is null for the cross-overlaps smaller than the re80iution k, and independent of the

cros8-overlap when larger than k.

(v) The L case identifies with k
=

0 and

f~
=

(( (39)
Po

(vi) The full multiplicity associated with a given fk is

p(k)
=

n$k
# n l~ (40)

Pk Pk-1
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4,3. THE R-SECTOR

£ M°~i~~ f~~>""
=

AR f°~i~"
a n fl e 7 n b (41)

2
~~

If p n v
# a n fl, then there is a single (independent) cross-overlap, I-e- those eigenvectors

belong to the LA subspace. We thus have necessarily

anti+7nbepnv (42)

and we now have a double set of concatenations, e.g.

'fl; Ii it; iv and lfl; iv

where one set is exhibited and the other is its complement. Altogether four double sets de-

pending on configurations of the 6-replica tree (restricted to its Replicon sector through (41)).
The double RFT associated (block)-diagonalizes the eigenvalue equations (41) (the blocks are

here of dimension I X I, instead of (R + I) X (R + I) in the LA sector):

~~~if~t
"

~Rf~l (43)

K[[[ e kinetic term + I(r; k, I), k, > r + 1 (44)

The associated multiplicities can be written in term of Sk the (relative) multiplicity in pseudo-

momentum or resolution space, 1&.ith the proviso that, at the lower bound b of the interval of

definition, we have

16
#

(45)
Pb

b
=

0 as for (6), for the LA sector, and b
= r + I for the R sector of direct overlap r.

Again,

using pf~ instead of pk would amount to some trivial change in the ik since k, > r +1. One

finds

~~~'~'~~ ~~~~~~~~'~~ ~~~~

where br(k,I)
= pr (a + I)pr+i and a =

0,1,2 is the occupation of boxes pr+i by the

cross-overlaps k,t. For further use, this is conveniently separated as

lL ~ Preg + psing (47)

pr~g(r; k,I)
= )$k$ibr (48)

0 k,I>r+1

iii k
= r + 1, > r + 1

~s;ng(r; k, I)
=

~ (49)

r+I-n£$~ k,I=r+1

a=0

The total degeneracy becomes

L L L ~~~~(~'~'~)
~

~~~) ~~~0 ~~~l

I

~~l
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R R+I R+I£ £ £ ~s,ng(r; k, I)
=

-n(R +1) (50)

r=0 k=r+I I=r+I

and for the LA sector, from the (R + I) X (R + I) blocks

R+i

(R + 1) £ ~(k)
"

+fl(R + 1) lsl)

k=o

yielding back the appropriate count.

5. Block-Diagonalization of the Dyson Equation

Whatever has been found above for the matrix M and the associated kernels K (I([j[ in the

R-sector, K["~ in the LA one)
can be repeated for the inverse matrix G (the propagator matrix)

and the associated kernels F. Expressing their relationship via

~ ~fafl;~b ~~bi~u jKr (~~j
oflj~u

~b

one is now able to block-diagonalize this matrix equation. To do this, one uses

(I) a double RFT in the Replicon sector yielding

~k~l ~k;j (~~)

a result which could also be obtained via p-adic theory according to Parisi and Sourlas [6].

iii) a single RFT in the LA sector, viz

Here
K))~;~

~~
if k < r + I

Ak(r)
=

K)(1,~ if k > r + I

and in (54) we have used (53) to obtain I/Ak(r).

After division by bj~~~~ /4 one gets the Dyson's equation, relating the kernels of inverses

~~~ A~r) ~~~~~

~(s)
~j

k~r)
~~~~ ~~

~~

~~~ ~~~~

R b(k~~)
_t.s (~~)

~~

F~'~
" ~~~'~

(
~~~~4ik(t)~~

t=

if

Tl'~
e

-Ak(r)Fl'~Ak(s) (57)
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Note that if one writes out explicitly tr MG, one has to sum over multiplicities, and an exact

cancellation occurs then between the terms in

/~sing(T,k,I)l~k.l~k;I

coming from the R-sector, and the terms

/~(~~~k;r+li;r+1

originating from the LA-sector.

6. Conclusion

Assuming that via perturbation expansion we have computed M up to some loop order then,

to obtain the corresponding G one would do the following:

(I) compute the kernels associated with AI: K["[ via (?5) and K["~ via (28)

(it) obtain the corresponding kernel associated with G, the inverse of M, viz F[~"[ =
1/K[j[

via (53) and F["~ via a solution of (55). This last step has been shown to be analytically
feasible [4] if, as it turns out to be at the zero loop level, Ii["~

=
Kk(min r, s,)

(iii) knowing F[~j one obtains RG[j[ via (26, transposed for F,G). The knowledge of Fl'~
gives AGj;[, u, i> > r +1, via (29, transposed for F, G) and the other components of AG["~

ma (27, transposed for F, G).

The sum over multiplicities in "resolution" space generated by the inverse RFT directly
constructs ~lr~g(r; k, I). The cancellations described just above, that occur between R contri-

butions with ~s;ng weight and the (Replicon-like) contributions arising as diagonal terms in

the block-diagonalized LA sector are already taken care of since, via the RFT on the tree, we

directly (block) diagonalize the eigenvalue equation and the Dyson equation.
To conclude, let us emphasize that the "conservation law" (~) on pseudo-momentum (k,

or

k and t in the double RTF) which allows for the "mass-operator" diagonalization (just like the

ordinary Fourier Transform under translational invariance) should play a central role in the

derivation of the much wanted "Feynman Rules" for the field theory of the spin glass.
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