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PACS.73.40.Hm Quantum Hall effect (integer aud fractional)
PACS.72.15.Nj Collective modes je-g-, in eue-dimeusional conductors)

PACS.7i.80.Le Polymer; organic compounds (iucluding organic semiconductors)

Abstract, This paper reviews recent developments in trie theory of the quantum Hall ef-

fect (QHE)
m

the magnetic-field-induced spin-density-wave (FISDW) state of the quasi-Due-
dimensional organic conductors (TMTSF)2X. The origin and the basic features of the FISDW

are reviewed. The QHE in the pinned FISDW state is derived in several simple, transparent

ways, including the edge states formulation of the problem. The temperature dependence of the

Hall conductivity is found to be the same as the temperature dependence of the Frôhlich current.

It is showu that, when the FISDW is free ta move, it produces an additional contribution ta the

Hall conductivity that nullifies the total Hall effect. The paper is written on mathematically
simple level, emphasizes physical meamng over

sophisticated mathematical technique, and uses

inductive, rather than deductive, reasoning.

1. Introduction

Organic metals of the (TMTSF)2X fainily, where TMTSF is tetramethyltetraselenafulvalene
and X represents an morganic anion, are highly anisotropic, quasi-one-dimensional (QID)
crystals that consist of parallel conducting chains. The overlap of the electron wave functions

and trie electric conductivity are trie highest in trie direction of trie chains (trie
a

direction) and

are much smaller in trie b direction perpendicular to trie chains. In this paper, we neglect trie

couphng between trie chains in trie third, c direction, which is weaker than in trie b direction.

We study tire properties of a single layer (trie a-b plane) that consist of weakly coupled parallel

chains, modeling (TMTSF)2X as a system of trie uncoupled two-dimensional (2D) layers.

Trie (TMTSF)2X materials exhibit very interesting behavior when a strong magnetic field is

applied perpendicular to trie a-b plane. Àt low temperature below several Kelvin and magnetic
field of trie order of rive Tesla, there is a phase transition from trie metallic state to a state, where

trie spin-density wave appears. This state is called trie magnetic-field-iiiduced spin-density-

wave (FISDW) state (see Ref. iii for a review). As the magnetic field is increased further, a

sequence (cascade) of phase transitions between different FISDWS is observed. Interestingly,
within each FISDW phase, the value of the Hall resistance remams constant, independent of

(*) Author for correspondence je-mail: yakovenk@glue.umd.edu)
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the magnetic field, that is, the quantum Hall effect (QHE) is observed. Once the boundary to

another FISDW phase is crossed, the value of the Hall resistance jumps to a new
4alue, which

remains constant until the next phase boundary is crossed.

It is instructive to compare the QHE in the FISDW state with the conventional QHE oh-

served in 2D semiconductor devices. In both cases, at sufficiently low temperatures, the longi-
tudinal resistivity p~~ is much smaller than the Hall resistivity p~y aud is thermally activated

with an energy gap, which is equal to 6 K in one of the FISDW phases [2j. The theory says
that the Hall conductivity per one layer is quantized: azy =

2Ne~ là. Whereas in the case of

a 2D electron gas in a single semiconducting loyer this formula con be directly verified experi-
mentally, in the (TMTSF)2X materials the situation is more complicated. What is measured

experimentally in (TMTSF)2X is the total, bulk Hall resistance of many parallel layers. To

find the Hall conductivity per one layer, one needs to know the effective number of layers
contributing to the Hall conductivity, which depends on the electric current distribution

m

the sample and, thus, is somewhat uncertain. So, in (TMTSF)2X,
one can only compare the

relative values of the Hall resistances at different plateaus and deduce the integer numbers N

from these ratios. For this reason, it is hard to unainbiguously discrimmate experimentally
between the integer and the fractional QHE in the (TMTSF)2X materials. Nevertheless, the

common belief, strongly influenced by the theory (see the rest of the paper), is that the QHE

m
(TMTSF)2X is the integer one.

Unlike semiconductors, the (TMTSF)2X materials have very high, metallic concentration

of carriers joue conducting hole per unit cell). Thus, in (TMTSF)2X, a naively calculated

filling factor of the Landau levels in a realistic magnetic field is enormous, of the order of

lo2 lo3, depending on the magnitude of the field. At the same titre, the Hall conductivity

is quautized with a small, single-digit number N. The discrepancy between the iiaive filling
factor and the value of the Hall conductivity is resolved by the very important fact that the

QHE in (TMTSF)2X exists solely due to the phase transition into a FISDW state. The FISDW

effectively eliminates most of the carriers, reducing the filling factor to the single-digit number

N, which manifests itself in the value of the Hall conductivity. In this respect, the QHE in

the (TMTSF)2X materials significantly differs from the conventioual QHE in semiconductors,
where the QHE state is not associated with any thermodynamic phase transition and order

parameter. In (TMTSF)2X, the transitions between the QHE plateaus are truc thermodynamic
phase transitions, accompanied by changes m the FISDW order parameter and observed in

the measurements of specific heat [3j, magnetization [4j, NMR [Si, and virtually any other

physical quantity. For a given magnetic field, the effective filling factor N is determmed by
delicate and nontrivial FISDW thermodynamics, which may vary from oue material to another.

Thus, trie ratios of trie Hall resistances m trie consecutive FISDW phases of (TMTSF)2PF6
are typically equal to trie ratios of trie consecutive integer numbers 1:2:3:4:5 [6j, whereas in

(TMTSF)2Cl04 Î7j and (TMTSF)2Re04 Î8j trie ratios do not follow any simple sequence and

may change sign. In this paper, we do not discuss trie FISDW thermodynamics
m

detail. In

Section 2 we only demonstrate that a FISDW is characterized by an mteger number N, and

m Section 3 we show that this number appears m trie expression for trie Hall conductivity.
However, we do not calculate how trie number N depends on trie magnetic field and other

parameters of trie model. These issues are discussed in detail m trie theory of trie FISDW

formation (see Refs. il, 9j for reviews).
Early theoretical approaches [la, iii explained tue QHE in tue FISDW state by counting tue

number of carriers left after trie FISDW gap opens. While this calculation gives correct answer,

it is not completely satisfactory, because trie FISDW gap is much smaller than trie cyclotron
frequency of trie magnetic field, which makes trie FISDW case totally opposite to trie standard

semiconductor situation, from where trie concept of trie calculation is borrowed. Furthermore,



N°12 QUANTUM HALL EFFECT IN QID CONDUCTORS 1919

trie "insulating" FISDW gap and trie "Landau" gaps due to trie magnetic field hybridize very
strongly, which make trie situation even more complicated. In reference [12j, trie QHE was

derived rigorously, albeit somewhat indirectly, using trie Streda formula. In reference [13], trie

QHE was calculated directly, using a manifestly topologically-iiivariant expression for trie Hall

conductivity in terms of trie electrons wave functions that follows from trie Kubo formula. This

approach con be straightforwardly generalized [13,14] to trie case where several FISDW order

parameters coexist [15].
Trie present paper is devoted mostly to recent developments in trie theory of trie QHE in

trie FISDW state. In Section 2, we explain trie basics of trie FISDW. In Section 3, we give yet
another derivation of trie QHE that emphasizes analogy between trie QHE and trie Frôhlich

conduction of a charge /spin-density wave. In Section 4, this analogy is utilized to discuss what

happens to trie QHE when trie FISDW moves. In Section 5, trie effect of a finite temperature

on trie QHE is calculated. In Section 6, we reformulate trie QHE in terms of trie edge states.

In Section 7, conclusions are given. Throughout trie paper, we try to keep discussion on

mathematically simple level, emphasizing physical meamng over sophisticated mathematical

technique and usmg inductive, rather than deductive, reasoning.

2. Formation of the FISDW

For pedagogical purposes, let us start consideration from a simple one-dimensional ID) system,
where electrons are confined to a chain parallel to trie x axis. Suppose trie electron dispersion

la~v. is parabolic, so trie Hamiltoman É
con be written as (~ ):

É
=

h~k) /2m, (1)

where h
=

h/27r is trie Planck constant, m is trie electron mass, and k~ is trie electron wave

vector along trie chain. At zero temperature, trie electrons occupy trie quantum states with

trie wave vectors from -kF to kF and trie energies up to EF, where kF and EF are trie Fermi

wave vector and energy, which are determmed by trie concentration of trie electrons.

Now, suppose that a periodic potential is present in trie system, so that trie Hamiltonian is

equal to:

fi2 ~2
li

= --j + 2/h cos(Q~x), (2)
2m ô~

where Q~ is trie wave vector and zi < EF is trie amplitude of trie periodic potential. As it

is well known from quantum mechanics, trie periodic potential opens an energy gap of trie

magnitude 2/h in trie electron spectrum at trie wave vectors k~
=

~Q~/2 (2). If trie wave

vector of trie periodic potential connects trie two Fermi points of trie electrons:

Q~
=

2k~, (3)

trie gap opens right at trie Fermi level, so trie states below trie gap are completely occupied

and trie states above are completely empty. It is dear that trie total energy of trie electrons

is reduced compared to trie total energy m
trie absence of trie periodic potential. Thus, if

trie electrons interact between themselves, they might decide to produce trie periodic potential
spontaneously, self-consistently in order to reduce trie total energy of trie system. This phe-

nomenon is called trie Peierls instability. Once trie periodic potential appears in trie system,

(~) The actual form of the longitudinal dispersion law (1) is net very essential.

(~)Smaller
gaps, opened at the higber integer multiples of +Qx/2,

are net essential for our

consideration.
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it modulates the charge or spin density of the electrons, producing a charge- or spin-density
wave (CDW/SDW) with trie wave vector Q~ (see Ref. [16j for a review). We do not discuss

here trie details of trie interaction between trie electrons that leads to formation of trie periodic
potential. In this paper, we focus only on trie mean-field periodic potential experienced by

trie electrons once trie CDW/SDW bas been established, presuming that trie self-consistency
conditions are satisfied. For our purposes, trie distinction between trie CDW and SDW is not
important. so we pay no attention to trie spm indices.

Now, to model (TMTSF)2X, let us consider a 2D system that consists of many chains,
parallel to trie

~ axis and equally spaced along trie y-axis with trie distance b (3). Trie chains
are coupled through trie electron tunneling of trie amplitude tb, so trie electron Hamiltonian is:

where ky is the electron wave vector across the chains. Hamiltoman (4) is written m the mixed
representation, where an electron

wave function depends
on the coordinate

x along the chains
and the momentum ky across the chains. As follows from equation (4), the electron energy
now depends on the momentum ky. Strictly speaking, m the presence of many chains, the
CDW/SDW potential may also have

a certain periodicity
across the chains and should be

written as 2/h cos(Q~z + Qynb), where
n is the chain number and Qy is the wave vector of the

CDW/SDW across trie chains. To simplify calculations,
we consider only trie case of Qy

=
o,

which is not trie most realistic case, but trie results are qualitatively valid also in a more realistic
case of Qy # o. To achieve quantitative agreement between trie theory and experiment, it may

be necessary to consider a more complicated transverse dispersion law of trie electrons and to
mdude trie next-nearest-neighbor hoppmg term 2t[ cos(2k~b) in trie Hamiltoman. To simplify

out qualitative discussion,
we neglect this term.

Now, suppose that a magnetic field H is applied along trie z-axis perpendicular to trie ix, y)-
plane. To describe trie magnetic field, we select trie Landau gauge (~).

A~
=

Àz
=

o, A~
=

H~, (5)
and do trie Peierls-Onsager substitution, ky ~ ky eAy/ch,

m Hamiltonian (4). Trie Hamil-
tonian becomes:

~ ~~ Îm12 ~ ~~ ~°~~~~~~ ~ ~~~ ~°~~~~~ ~~~~'
~~~

where

G~
=

ebH/ltc. (7)
Comparing equations (4) and (6 ), we see that, in trie presence of trie magnetic field, the hopping

across the chains becomes
a periodic potential aiong the chains with the wave vector G~ (î).

We will refer to this periodic potential as the "hopping potential" The period of this potential
(the magnetic length),

iH
"

27r/G~, (8)
is determined by the condition that magnetic flux through

a 2D cell formed by the magnetic
length along the chains, iH and the distance between the chains, b, is equal to the flux quantum,
jo:

iHbH
=

do
"

hcle. (9)

(~) Tbe
~ and y axes correspond ta tbe

a and b axes of (TMTSF)2X.
(~) The fact that

we use a specific gauge does net invahdate
Dur results

m any way. Tbis gauge isselected ta simplify calculations. We can perform the calculations
m

tbe most general arbitrary gauge
but tbe formulas would be

more complicated. ~ ~
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Equation (9) is equivalent to equations (7, 8).
Àccording to equation (6 ), in the presence of both the CDW/SDW and the magnetic field, the

electrons experience two periodic potentials with the wave vectors Q~ and G~. The magnitudes
of the two wave vectors are very different. Q~ is big, of the order of 2kF and the corresponding
period, iDw

"
27r/Q~, is short, of the order of the distance between the electrons. On the other

hand, in realistic magnetic fields, trie magnetic length lH is much longer than the inter-electron

distance, thus trie ratio of trie wave vectors, G~ /Q~, is very small, of trie order of lo~2 lo~3,

depending on trie value of trie magnetic field. Thus, trie two periodic potentials can be treated

as incommensurate. In this case, trie energy spectrum is degenerate in ky, because changing

ky means simply shifting trie hopping potential in equation (6) along trie ~ axis, 1N.hich does

not change trie energy.
To get qualitative picture of trie eiiergy spectrum produced by trie two periodic potentials,

let us assume for a moment that tb is very small and can be treated as a perturbation. Taken

alone, trie CDW/SDW potential opens a gap in trie electron spectrum at trie wave vectors k~
=

~Q~/2 connected by trie CDW/SDW wave vector Q~. Trie CDW/SDW potential, combined

perturbationally with trie hopping potential, opeiis gaps at the wave vectors k~
=

~(Q~ ~G~ /2
connected by the wave vectors Q~ ~ G~ obtained by combimng the wave vectors of the two

periodic potentials. In the same manner, the CDW/SDW potential, combined n limes with

the hopping potential, opens gaps at the wave vectors k~
=

~(Q~ ~ nG~)/2 connected by
the combinational wave vectors Q~ ~ nG~. Thus, the electron spectrum contains a sequence

of energy gaps, which are equally spaced in momentum k~ with the distance G~/2 [17j. The

gaps separate energy bauds; each baud has the total width /hk~
=

G~. These bauds can be

interpreted as the Landau levels broadened into the energy bauds (with the dispersion m k~)

by trie periodic arrangement of the chains with the period b. The Landau degeneracy in k~
remains in trie problem (~ The number of states per unit area m each baud is equal to

(27r)2 (27r)2 b hc' ~~~~

which coincides with trie number of states in a Landau level.

In trie (TMTSF)2X materials, trie interchain hopping is non that small and, generally speak-

ing, cannot be treated as a perturbation (~). Nevertheless, trie qualitative picture of trie

electron energy spectrum outlined above remains valid with trie important quantitative differ-

ence that some "secondary" gaps, opened at trie combinational wave vectors Qx + nG~, may

be bigger than trie "primary" gap, opened at Q~. Since trie CDW/SDW poteiitial is produced

self-consistently to maximize trie energy gain, trie electrons would create trie CDW/SDW with

such a wave vector that trie biggest secondary energy gap is located exactly at trie Fermi level.

In this case, trie wave vector of trie biggest gap, Q~ + NG~, characterized by some integer

number N, must coincide with 2kF. trie span of trie Fermi sea: Q~ + NG~
=

2kF. Thus, trie

wave vector of trie CDW/SDW is determined by trie followmg equation:

Q~
=

2kF NG~
=

2kF NebH/ltc. Ill)

This is trie most important equation of this Section. It shows that, in a multichain, 2D system

subject to a magnetic field. trie longitudinal wave vector of trie CDW/SDW is not necessarily

equal to 2kF, as it was in strictly ID system (3), but may take many different values Ill)
labeled by an integer number N [loi. In this paper, we do not calculate which values of N trie

(~)When several FISDW order parameters wJtb different wave vectors (11) coexist, tbe degeneracy

m k~ is lifted.

(~) See Section S for a nonperturbative treatment of tbe problem.
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system selects for a given magnetic field H and given microscopic parameters of trie model (tb,
EF, trie amplitude of interaction between trie electrons g, etc.). These issues are addressed in

reviews il,9j, m well as in original articles, e.g. [10,13,17-19j. We assume that trie value of N

is given to us and study trie properties of trie system m this state, specifically trie Hall elfect.

Trie CDW/SDW
wave vector Ill) changes linearly with trie magnetic field H in order to

keep trie energy gap exactly at trie Fermi level. Because trie magnetic field is intrinsically
involved in trie formation of trie energy gap at trie Fermi level, this kind of density wave m

(TMTSF)2X is called trie magnetic-field-induced spin-density wave
(FISDW) (~). We will use

trie term FISDW in trie rest of trie paper.

3. The Quantum Hall E~ect

Let us discuss trie Hall conductivity of our 2D system m trie FISDW state at zero temperature.
By naive analogy with conventional semiconductors, one might say [10, iii that all electron

states below trie "primary" gap, opened by trie FISDW potential at trie wave vector Q~, do

not contribute to trie Hall conductivity. Thus, trie effective number of carriers per one chain is

trie dilference between trie total number of carriers, proportional to trie size of trie Fermi sea

2kF, and trie number of trie "eliminated" carriers, proportional to Q~°

2kF Q~ 2NeH
~~~ ~

2~b hc '
~~~~

where trie first factor 2 comes from trie spm, and trie second equality follows froin equation il1).
Substituting equation (12) into trie conventional formula for trie Hall conductivity:

a~y =
pe~ec/H, (13)

we see_that trie magnetic field cancels out and trie Hall conductivity is quantized:

a~~ =

2Ne~/h. (14)

This derivation can be summarized as follows. Trie FISDW wave vector Ill) adjusts its value

to trie magnetic field in such a manner that there are always N completely filled Landau

bauds between trie "primary", "iiisulating" FISDW gap and trie Fermi level. Thus, trie Hall

conductivity is quantized with trie effective number of trie Landau bauds N. It is by trie

elimmation of almost all of trie carriers trie FISDW reduces trie effective filling factor from
lo~ lo3 to trie single-digit number N.

Although trie above derivation of a~y gives correct answer (14), it raises many questions and

doubts. Why do we say that trie "primary" gap, which is even not trie biggest oiie, "elimi-

nates" trie carriers from trie Hall effect, whereas trie "secondary" gaps do not? Is formula (13)
applicable in our situation? To our opinion, trie derivation given above is not convincing, and
below we give another, rigorous derivation, which is based on trie ideas of references [20, 21j.

Suppose trie electric field Ey is applied perpendicular to trie chains. Let us use trie followmg
gauge

A~
=

Az
=

o, Ay
=

Hz Eyct, (15)

where t is trie time. In trie presence of trie electric field, trie electron Hamiltoman (6) beconies

É
=

) $
+ 2/h cos(Qx~ + Hi + 2tb cos[kyb G~(~ vE~ t)j, (16)

~

(~) Tbe density wave happens to be tbe spm, flot the charge
one m

(TMTSF)2X, wbich is net essential

for Dur
discussion.
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where, for further purposes. we introduced an arbitrary phase 8 in the FISDW potential, and

uE~ =
cEy /H Ii?1

is the drift velocity in the crossed electric and magnetic fields.

We see that, in the presence of the transverse electric field Ey, the hopping potential in

equation (16) moves along the chains with the velocity uE~ Il?) proportional to Ey. Because

m the FISDW state all electrons are under the energy gap, by analogy with the Frôhlich

conduction produced by motion of a CDW/SDW, the motion of the hopping potential in

equation (16) should induce some electric current along the chains, j~, proportional to the

velocity uE~ This is the Hall current, and, once we know j~, the Hall conductivity can be

calculated as axy =
j~/Ey. The difliculty of our problem is that there are two dilferent

periodic potentials in Hamiltonian (16), due to trie FISDW and due to tire hopping. Normally.

trie FISDW potential is pmned and does not move, whereas trie hopping potential moves due

to trie presence of trie electric field E~ in its argument and cannot be pinned.

In order to calculate a~y, let us consider a more general case where trie FISDW potential

may also move. To fini trie Hall conductivity of trie pinned FISDW. we will set trie FISDW

velocity to zero at trie end of trie calculation. Àccording to equation (16), when trie FISDW

potential moves, trie FISDW phase 8 changes in time t, so that trie velocity of trie motion uDw

is proportional to trie time derivative 8:

uDw =

-é/Q~. l18)

We assume that both E~ and are infinitesimal, thus trie velocities vE~ (lî) and uDw (18)

are very small. so trie motion of trie potentials is adiabatic.

Now, let us calculate trie current along trie chains produced by trie motion of trie poteiitials.
Since there is an energy gap at trie Fermi level, following trie arguments of Laughlin [22j,

we can say that au integer number of electrons Ni is transferred from one end of a chain

to another, when trie FISDW potential is adiabatically shifted along trie chain by its period

iDw
=

27r/Q~. Trie same is true, with an integer N2 instead of Ni, for a displacement of trie

hopping potential by its period iH
=

27r/G~. Because trie two potentials are mcommensurate,

if trie first potential is sliifted by d~i and trie second by d~2, trie total transferred charge dq is

trie sum of trie prorated amounts of Ni and N2:

Now, suppose that both potentials
are shifted

this case, we con also

dq = ep
dx.

(20)

where p =
kF/27r

is
trie

centration of trie lectrons.
Equating

(19) and (20) and substituting

4kF
=

Ni (2kF NG~) + N2G~, (21)

where N is trie integer that characterizes trie FISDW. Since kF/G~ is, in general, an irrational

number, the only possible solution of equation (21) for the integers Ni and N2 is

Ni
=

2, N~
=

iViN
=

2N. (22)
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Dividiug equation (19) by the distance between the chains and by the time increment dt

and using expressions il?) and (18) for the velocities and (22) for the integers, we find the

density of current along the chains:

j~
=

-~8
+ ~(~ E~. (23)

The first term in equation (23) represents the contribution of the FISDW motion, the so-called

Frôhlich conductivity [16j. This term vanishes wheu the FISDW is pmned and does not move

le
=

0). The second term describes the quantum Hall elfect. The expression for a~~ that

follows from equation (23) comcides with equation (14). Àpparently, the QHE in the FISDW

is the integer one, and trie derivation given above seems to exclude a possibility of the fractional

QHE.
Having derived the QHE in the FISDW state, let us compare it with the conventional

integer QHE in semiconductors. In the latter systems, the electron localization due to disorder

is thought to play an important role by providing a reservoir of electron states necessary to

maintain a constant value of the Hall conductivity with the varying magnetic field. On trie

other baud, in trie FISDW state, we deal with trie QHE in a clean, periodic 2D potential. This

problem was considered in reference [23j, either for a tight-binding model, or for two weak

sinusoidal potentials in trie x and y directions. In trie FISDW state, we bave an intermediate

case, where trie chains produce a tight-biuding potential in trie y direction, whereas trie FISDIV

provides a weak sinusoidal potential in trie x direction (8 It is important that trie period of trie

FISDW potential is not fixed rigidly, but varies with trie magnetic field, so that trie electrons

are redistributed between trie Fermi "reservoir" below trie "primary" FISDW gap and trie

"Hall states' above that gap. It is because of this adjustment of trie FISDW periodicity
trie Hall conductivity maintains a constant value with trie varying magnetic field. This is in

contrast to trie models of reference [23j, where trie periodicity of trie potentials is fixed, and

trie Hall conductivity jumps wildly when trie magnetic field varies a little. In trie FISDW

state, impurities are not necessary to produce trie QHE, except to pin trie FISDW, because, as

shown
in trie next Section, if trie FISDW is non pinned and is free to move, trie QHE disappears.

Trie (TMTSF)2X materials seem to be trie only substances where trie QHE in a 2D periodic
potential is realized experimentally.

4. Motion of the FISDW

In Section 3 we bave demonstrated that, when trie FISDW is pmned. trie Hall conductivity is

quantized. This result applies to trie case where trie applied electric field is weak and time-

mdependent. On trie other baud, when trie electric field is strong or time-dependent, trie
FISDW may move. It is interesting to study how this motion would influence trie QHE. Àt

first sight, since trie density-wave can move only along trie chains, this purely ID motion cannot

contribute to trie Hall elfect, which is essentially a 2D elfect. On trie other baud, according
to equation (23), trie Frôhlich conductivity due to trie motion of trie FISDW does contribute

to trie Hall current along trie chains jx and,
m this way, may modify trie Hall elfect. To solve

trie problem, we need to find how trie velocity of trie FISDW, vDw cc
é, depends on Ey. It

is well known tuat tue electric field along tue cuains. E~, may mduce tue motion of a density
wave along trie chains. However, it is not obvions whether trie electric field

across trie chains

E~ may mduce trie FISDW motion aiong trie chains. To study this issue, first we derive trie

(~) The crystal lattice periodicity m trie
z

direction does net play essential raie
m Dur model and may

be neglected.
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equation of motion of an ideal FISDW and then pheuomenologically add pinning and damping
of the FISDW to the equation to make it more realistic. We stay within the linear response

theory, having in mind depinning of the FISDW by an
infinitesimal ac electric field, not by a

strong de field. We study rigid motion of the FISDW, where the phase 8 depends only on the

time t, but not on the cooidinates ~ and y. We restrict consideration to the frequencies much

lower than the FISDW gap and take iiito account only collective motion of the FISDW, not

single-electron excitations across the gap.

To derive the equation of motion of 8(t), we need to know the Lagrangian of the system,

L. Two terms in L can be readily recovered by taking into account that the current density

j~ (23) is the variational derivative of the Lagrangian with respect to the electromagnetic

vector- potential A~

j~
=

côL/ôA~. (24)

Written in the gauge-invariant form, the recovered part of the Lagrangian is equal to

~~ ( 'ÎÎ ~~~~~~~~ Îb~~~' ~~~~

,J,

~

where s~k is the antisymmetric tensor with the indices1, j,k
=

t,z,y; A~ and Fjk are the

vector-potential and the tensor of the electromagnetic field: and E~ m Ft~ is the electric field

along the chains. The first term in equation (25) is the so-called Chern-Simons term responsible
for the QHE [13j. The second term describes the interaction of the density-wave condensate

with the electric field along the chains [16].
Lagrangian (25) should be supplemented with the kinetic energy of the FISDW condensate,

K. Being produced by the instantaneous Coulomb interaction between the electrons, the

FISDW potential itself has no inertia. So, Ii consists of only the kinetic energy of the electrons

confined under the FISDW gap. This energy is proportional to the square of the average

electron velocity, which, in turn, is proportional to trie electric current along trie chains:

K
=

~~~ jj, (26)
4vFe

where VF =
kF/m

is trie Fermi velocity. Substituting equation (23) into equation (26), expand-

ing, and omitting trie unimportant term proportional to E),
we obtain trie second part of trie

Lagrangian:

~~
7rÎvF ~~ ÎF

~~~ ~~~~

The first term m equation (27) is trie same as trie kinetic energy of a purely ID deiisity wave [16]

and is not specific to trie FISDW. Trie most important is trie second term which descriies trie

interaction of trie FISDW motion and trie electric field perpendicular to trie chains. This terni

is allowed by symmetry in trie considered system and bas trie structure of a mixed vector-scalar

product:
vDw[E x Hi. (28)

Here, vDw is trie velocity of trie FISDW, which is proportional to Îl and is directed along trie

chains, that is, along trie x-axis. Trie magnetic field H is directed along trie z-axis; thus, trie

electric field E may enter equation (28) only through trie component E~. Comparing formula

(28) witu tue last term in equation (27), one suould take into account tuât tue magnetic field

enfers tue last term implicitly, through trie integer iv, which depends on H and changes sign

when H changes sign.
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Varying the total Lagrangian L
=

Li + L2, given by equations (25, 27), with respect to 8,

we find trie equation of motion of Bit)

é
=

-~~~~
E~ +

ÎÉ~.
(29)

In equation (29), trie first two terms constitute trie standard 1D equation of motion of trie

density wave [16j. whereas trie last term, proportional to trie time derivative of Ey, comes from

trie last term m equation (27) and describes trie influence of trie electric field across trie chains

on trie motion of trie FISDW along trie chains.

Setting E~
=

o and integrating equation (29) in time, we find that

é
=

eNbEy là, (30)

Substituting equation (30) into equation (23), we see that trie first term in equation (23) (trie
Frôhlich conductivity of trie FISDW) precisely cancels trie second terni (trie quantum Hall

current ), so the total Hall current is equal to zero. This result coula have been derived without

calculations from the fact that the time dependence Bit) is determmed by the principle of

minimal action. The relevant part of the action is given, in this case, by equation (26), which

attains the minimal value at j~
=

0. We can say that, if the FISDW is free to move. it adjusts

its velocity to "compensate" trie externat electric field Ey and to keep zero Hall current.

It is instructive to see how trie nullification of trie Hall conductivity takes place in trie case

where trie electric field is directed along trie chains. Varymg L (Eqs. (25, 2î)) with respect to

A~, ~ve find trie density of current perpendicular to trie chains:

~
~Î~

~~ ÎÎF ~ ~~~~

In trie r-h-s- of equation (31). trie first term describes trie quantum Hall current, whereas trie

second term, proportional to trie acceieration of trie FISDW condensate, comes from trie last

term in equation (27) aud reflects trie contribution of trie FISDW motion along trie chains to

trie electric current across trie chains. According to trie equation of motion (29), trie electric

field along trie chains accelerates trie density wave:

8
=

-2evFEx là, (32)

thus, trie Hall current (31) vanishes.

However, it is clear that, in stationary, de measurements, trie acceleration of trie FISDW,
discussed in trie previous paragraph, cannot last forever. Any friction or dissipation will in-

evitably stabilize trie motion of trie density wave to a steady flow with zero acceleration. In trie

steady state, trie last term m equation (31) vamshes, and trie curreiit j~ recovers its quantum
Hall value. Trie same is true in trie cure where trie electric field is perpendicular to trie chains.

In that case. trie dissipation eventually stops trie motion of trie FISDW along trie chains and

restores j~ (23) to trie quantum Hall value. Trie conclusion is that trie contribution of trie

moving FISDW condensate to trie Hall conductivity is essentially nonstationary and cannot be

observed in de measurements.

On trie other baud. trie effect can be seen m ac measurements. To be reahstic, lot us add

dampmg and pmmng [16j to trie equation of motion of trie FISDW (29):

~
2evF eNb

8 + pH +1~o8
"

~fE~ + ~Ev, (33)
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Fig. 1. Absolute value of the Hall conductivity in tbe FISDW state as a function of tbe frequency

uJ
normalized ta tbe piuning frequency ~o, as given by equation (34) witb uJo7 =

2.

where T is the relaxation time and uJo is the pinning frequency. Solving equation (33) via the

Fourier transformation from the time t to the frequency
w

and substituting the result into

equations (23) and (31), we find the Hall conductivity as a function of the frequency:

Y(ld)
" ~°Î ~ù2

_

~ ~~~~ (34)

The absolute lue of the
Hall (a~y(, omputed from (34)

is plotted

in Figure 1 as a unction
of uJ/~oo for uJoT = 2. The Hall

frequency and bas a
resonance

at the pinning requency. Àt higher frequencies,
where

trie

pinnmg and trie damping can be
neglected,

and trie system effectively behaves

purely inertial ystem ousidered above, trie
Hall

conductivity does decrease toward

Frequency
dependence of trie Hall in

conventional,
emiconductor QHE systems

was
easured sing

trie technique of crossed wave guides [24j, but no measurements bave been

doue
in a

FISDW
system thus far. Such easurements ould be very

interesting,

because

ac
ehavior

of trie
FISDW differentiate

trie
QHE

in (TMTSF)2X from trie onventional

QHE in To give a
crude of trie requency ange,

we quote

trie
value

of trie
FISDW) in (TMTSF)2PF6 [25].

Theoretically, equency dependence of trie Hall onductivity in a
FISDW system was con-

sidered in reference [30j. This theory fails to
produce

trie QHE at zero equency; thus, it

not agree
with

our
results.

Trie
interplay between trie QHE and trie motion

was discussed in reference [31]. Unfortunately, this aper
bas troubles with calculations and

physical interpretation and cannot be
considered

as a onsistent theory. Trie
nfluence

of trie

FISDW otion on trie QHE
was described by trie present

authors in reference [32].

Due
to trie

resence
of trie magnetic field in

trie problem, we
coula

add

a term proportional to E~ to equation (33) and a term proportional to 8

These
terms

violate trie time reversal symmetry of trie equations, which
indicate

trie dissipative
nature of these terms. Thus, these

terms
cannot be

derived
within trie Lagrangian ormalism,

employed in this
Section, and should be obtained rom trie

Boltzmann equation,
where

reversal symmetry is already broken.
Because trie

dissipation
is associated with trie normal

carriers
thermally

excited
across

trie FISDW nergy gap, these terms should be exponentially

small and gligible at low
emperatures.

If taken nto
ccount.

these terms would modify trie

frequency
ependence of
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In this Section, we did not touch trie issue of trie FISDW depinning by a strong de electric

field. In that case, trie motion of trie density wave is controlled by dissipation, which is very

diflicult to study theoretically on microscopic level. Trie influence of a steady motion of
a

regular CDW on trie Hall conductivity was studied theoretically in reference [?6j. Trie results

can be interpreted in trie following way: The steady motion of trie CDW condensate itself

does not contribute to trie Hall effect; however, this motion influences trie thermally excited

normal carriers and, in this way, affects trie Hall voltage. This theory is complimentary to our

theory. which studies only trie condensate contribution at zero temperature. Mathematically.
trie steady motion of trie density wave modifies trie Hall effect via trie dissipative terms dis-

cussed in tire previous paragraph. Since trie bare value of trie Hall conductivity in a regular
CDW/SDW system is determined by trie normal carriers only, trie steady motion of trie den-

sity wm>e produces a considerable, of trie order of umty, effect on trie Hall conductivity, which

was observed experimentally [27j. On the other hand, in the case of the FISDW, where the

big quantum contribution from the electrons below the gap dommates the Hall conductivity,
trie contribution of trie thermally exited normal carriers to trie Hall conductivity should be

negligible at low temperatures. Thus, trie steady motion of trie FISDW should not change con-

siderably trie Hall voltage, as, indeed, it was observed experimentally in (TMTSF)2Cl04 [28].
More recent measurements in (TMTSF)2PF6 [29] show results m some sense opposite to trie

results of reference [28j. Trie origin of trie difference is not clear at trie moment.

5. Finite Temperature

The Hall conductivity at a finite temperature is not quantized because of trie presence of

thermally excited quasiparticles above trie energy gap. It is interesting to find how trie Hall

conductivity evolves with trie temperature. Because trie QHE at zero temperature is generated
by trie collective motion of trie electrons in trie FISDW condensate, trie issue here is trie

temperature dependence of trie condensate current. Obviously. trie condensate current must

gradually decrease with increasing temperature and vamsh at trie transition temperature T~,
where trie FISDIV order parameter disappears. This behavior is qualitatively similar to trie

temperature dependence of trie superconducting condensate density and trie inverse magnetic
field penetration depth in superconductors.

In order to obtain explicit results. we need to make some approximations. Let us linearize

trie parabolic dispersion law m Hamiltoman il near trie Fermi energy:

h~kj /2m EF * ~vF(k~ ~ kF (35)

and focus on trie electrons whose momenta are close +kF and -kF. Let us count their momenta

from +kF and -kF and label their wave functions by trie index ~: qfi+ and @-. In this

representation, a complete electron wave function is a spmor (qfi+, @-), and trie Hamiltoman

is a 2 x 2 matrix, which can be expanded over trie Pauli matrices fi, f2, f3. and trie umty
matrix î (which

~ve will not write explicitly m trie followmg formulas). Taking into account

equation Ill ), we can rewrite Hamiltoman (16) in trie spmor representation as

É
#

-làUFf3
)

+ /àfle~~~~~~~~ ~~ + 2tb COS(k~à G~ IX VEy t)). (36)
Z

The last term m
equation (36) can be elimmated by chiral transformation of trie electron wave
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function (~):

(~~ ~ ~XP

l13 )
Sllllk~~ ~i~ IX ~E~~)Î ~~

,

(~~)
c

where

huJ~
=

hufGx
=

ebHvf/c (38)

is trie characteristic eiiergy of trie magnetic field (trie cyclotron frequency), which is equal to

trie distance m energy between trie Landau gaps discussed in Section 2. In representation (37),
Hamiltonian (36) becomes

É
=

-ihuFf3
~

+ /hf~ exp(if3(NG~~ 8)) exp if3
~~~

sin[k~b G~ ix VE t)j (39)
ôx huJ~ ~

The chiral transformation (37) bas eliniinated trie hopping potential from Hamiltonian (36)
and transformed it into trie periodic function multiplying the FISDW potential in equation
(39). Expaiiding that periodic function into the Fourier series, we get the following expression:

É" ~làUF13) +£àile~~~~~~~~~~~'"~~~~ ~~~jan+Ne~~~"~~~~ ~~~~ "~~~~~, (~°)

n

where the coefficients of the expansion, an, are the Bessel functions (~°):

an =
Jn14tb/h~ù~). 141)

The last term in equation (40) is the sum of many sinusoidal potentials whose wave vectors are

the integer multiples of the magnetic wave vector G~. Each of these periodic potentials mixes

the + and electrons and opens an energy gap at the electron wave vector k~ shifted from

~kF by an integer multiple of G~ Il. These multiple gaps are exactly the same gaps that were

discussed in Section 2.

The term with n =
o in the sum in equation (40) does not depend on x and opens a gap right

at the Fermi level (~~). When the temperature T is much lower than the distance between the

energy gaps hw~:
T < àLdc, 142)

only trie gap at trie Fermi level is important, whereas trie other gaps may be neglected. Con-

dition (42) is always satisfied in trie relevant temperature range o < T < T~ in trie weak

coupling theory of trie FISDW, where T~ < ltw~. Thus, let us omit ail trie terms m trie sum m

equation (40), except trie term with
n =

o:

É
= -ihUFT3£ + /he~Tie~+31~~~Y~+~~"EY~>°1, 143)

where

~eOE "
aN£à. (~~)

(~) Tbis kind of transformation was
first iutroduced in reference [33] that started development of the

FISDW tbeory.
(") General expression (40)

is
valid even wben tbe FISDW bas a nonzero transverse wave vector and

tbe transverse dispersion law of tbe electrons is more
complicated, but expression (41) for tbe expansion

coefficients an would be different in that case.

(~~) Since, by introducing trie + electrons,
we

bave already subtracted tbe wave vectors +kF, tÎ1e actual

wave vector that corresponds ta this term is 2kF.
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This is the so-called single-gap approximation il?). As explained in Section 2, in order to

maximize the energy gap at the Fermi level, the system selects such a value of N that maximizes

the coefficient aN in equation (44). It follows from equation (41) and properties of the Bessel

functions that the maximum of aN is achieved at N m 4tb/ltw~ [18j (~~). It was shown

explicitly in reference [13j that omission of the gaps located deeply below the Fermi energy
does not change the value of the Hall conductivity, at least at zero temperature.

By the above sequence of manipulations, we have combined the two periodic potentials in

equation (16) into the siugle effective potential (43) that opens a gap at the Fermi level. It

follows from equation (43) that the phase çJ of this effective potential changes m time at the

rate proportional to the transverse electric field Ey:

=
-NG~VE~, (45)

which means that the effective potential moves along the chains. Since all electrons are below

the energy gap opened by this potential, the motion of the potential induces the Frôhlich

current along the chains:

~~ ilb~' ~~~~

Substituting equations (45), (7), and II?I into equation (46). we find the QHE in agreement
with equation (14):

Jx
= ~(~~Ey. 1471

To avoid confusion,
we wish to emphasize that, unlike in Section 4, here trie FISDW is assumed

to be immobile, and trie FISDW phase 8 in equation (43) is time-mdependent. Trie effective

potential (43) moves, because it is a combinatiou of trie stationary FISDW potential and trie

moving hopping potential (16).
Equation (46) is a good starting point to discuss trie temperature dependence of trie QHE.

Àccording to trie above consideration, trie Hall conductivity is trie Frôhlich conductivity of trie
effective periodic potential (43). Thus, trie temperature dependence of trie QHE must be trie

same as trie teinperature dependence of trie Frôhlich conductivity. Trie latter issue was studied

in trie theory of trie CDW [34, 35j. Àt a finite temperature T, trie electric current carried by
trie CD~i condensate is reduced with respect to trie zero~temperature value by a factor f(T).
Trie same factor reduces trie condensate Hall effect at a finite temperature:

a~yiTj
=

fiTj 2Ne~/h, 148j

~~~~ /ÎÎ ÎÎÎ ~ÎÎ ~ ~~~ÎÎ~~~~Î
'

~~~~

where E
=

~/(ltvfk~)2 + /h]~ is trie electron dispersion law in trie FISDW phase, kB is trie
Boltzmann constant, and nF (fi

= (e~ +1)~l is trie Fermi distribution function. Trie last term

m equation (49 reflects trie fact that normal quasiparticles, thermally excited above trie energy

gap, equilibrate with trie immobile crystal lattice; thus, only a fraction of all electrons is carried

along trie chains by trie moving periodic potential, which reduces trie Hall /Frôhlich current. A
simple, transparent derivation of equation (49) is given m reference [36j.

(~~) When the transverse wave vector of the FISDW is net zero, the value of N is controlled aise by
t[, the next-nearest-chain hopping integral of electrons [19].
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Fig. 2. The reduction factor f of the Hall conductivity
as a

functiou of the ratio of the energy gap

at the Fermi level /he~ ta the temperature T,
as giveu by equation (Soi.
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Fig. 3. Hall conductivity in the FISDW state as a
function of the temperature T normalized to

the FISDW transition temperature Tc.

The function f (49) depends only on trie ratio of trie energy gap at the Fermi level, /he~ (44),
and trie temperature T and can be written as [30,35]

~ÎÎÎ
%~ ~~ ~~~~ ~ÎÎT ~°~~

Î
~°~~~ ~' ~~~~

The function f is plotted in Figure 2. It is equal to 1 at zero temperature, where equation
(48) gives trie QHE, gradually decreases with increasing T, and vanishes when T » /he~.

Taking into account that trie FISDW order parameter /h itself depends on T and vanishes at

trie FISDW transition temperature T~. it is clear that f(T) and a~~(T) vanish at T
-

T~, where

a~y(T)
cc

f(T) cc
/h(T)

cc T. Assuming that trie temperature dependence /he~(T) is

given by trie BCS theory iii],
we plot trie temperature dependence of trie Hall conductivity,

a~y(T), in Figure 3. Strictly speaking, equation (48) gives only trie Hall effect of trie FISDW

condensate and should be supplemented with trie Hall conductivity of trie thermally excited

normal carriers. Then, at T
~

T~, a~~(T) should not vanish, but approach to trie Hall

conductivity of trie metallic phase. Trie latter is determined by trie distribution of trie electron

scattering time over trie Fermi surface and is small. Trie curve shown in Figure 3 should be

modified accordingly m a small vicinity of T~.

Trie function f(T) (49) is qualitatively similar to trie function f~(T) that describes trie

temperature reduction of trie superconducting condensate density m trie London case. Both
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functions approach at zero temperature. but near T~ trie superconducting function behaves

differently: fs(T)
cc

/h~(T)
cc T~ T. To understand trie origin of trie difference between trie

two functions, one should consider them at a small, but finite frequency
w

and wave vector q.

Equations (49, 50) represent trie limit where q/uJ
=

o. This is trie relevant limit in our case,

because trie electric field is, supposedly, strictly homogeneous in space (q
=

o), but may be

time-dependent (uJ # 0). Trie effective periodic potential (43) is also time-dependent. On trie

other hand, for trie Meissner effect in superconductors, where trie magnetic field is stationary

(uJ =
0), but varies in space (q # 0), trie opposite limit uJ/q

=
0 is relevant. That is why f(T)

and fs(T)
are different.

Trie function f(T) for trie Frôhlich current of a regular CDW/SDW was calculated in ref-

erence [34j m
trie form (49) and in references [30, 35j in trie form (50). Trie Hall conductivity

m trie FISDW state at a finite temperature was discussed in reference [30j, which failed to

produce trie QHE at zero temperature. Temperature depeudence of trie Hall résistance in

(TMTSF)2X was measured in experiments [37j. However, to compare trie experimental results

with our theory, it is necessary to couvert trie Hall resistivity into trie Hall conductivity, which

requires experimental knowledge of all components of trie resistivity tensor.

Because trie FISDW phase B enters linearly into trie phase q7 of trie effective periodic potential

m equation (43), trie results of Section 4 could be immediately generalized to a finite teinper-

ature. ~vhen trie FISDil/ moves and its phase B depends on time, trie r-h-s- of equation (23)
should be multiplied by trie function f(T). Tire frequency-dependent Hall conductivity, given

by equation (34) and shown in Figure 1, should be also multiplied by f(T) (13 ). Such a simple
generalization of trie results of this Section to finite frequencies would be possible, because trie

function f has no frequency dependence for
w < /he~. However, at a finite temperature, trie

dissipative terms, discussed at trie end of Section 4. may become comparable with trie other

terms and significantly change a~~ (Loi beyond multiplication by tire factor f(T).

6, Edge States

Thus far we treated trie QHE as a bulk plienomenon and did not pay attention to trie edges of

trie crystal. On trie other hand, it is known that trie theory of trie QHE con be reformulated in

terms of tue gapless edge states located at tue boundaries of a Hall sample [38j. Trie edge states

m
(TMTSF)2X attracted attention in recent studies of trie chiral states on trie surface of a bulk

QHE sample [39j. Let us show how trie QHE in trie FISDW state can be formulated in terms

of trie edge states. We will consider
a sample that is infinite in trie.r direction along trie chains

and bas a truite macroscopic size 2L~ in trie g direction across trie chains: -Ly < g < L~. Trie

edge states are located near trie boundaries of tire sample at y =
~Ly. Trie total number of

trie chains m trie crystal, Mm~x, is finite: ~imax
=

2Ly16.
To introduce tire edge states in a most natural way, let us reformulate trie FISDW picture

usmg trie Wannier representation of trie electron wave functions [40j. First, let us find trie

electron eigenfunctions m trie metallic state, m trie absence of trie FISDW. Trie Schrôdiuger
equation that corresponds to Hamiltonian (36) with /h

=
0 and E~

=
0,

Î~IàVF
)

+ ~tb C°S(kY~ ~~~)Î~'k~,ky,+ (X) 6~'k~,ky,+(~), (~~)

bas trie followmg solution:

~b~~,~~,+i~ n t)
=

expiii- ~
+ k~~ + kynb ~

]
sinikyb G~~)11 152)

~

(~~) The phenomenological parameters 7
and mû may aise depend on temperature.
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s =
~hvfk~. (53)

In equation (52), the wave vectors k~ and k~ are the quantum numbers that label the energy
eigenfunctions, whereas x and n =

y/b are the running coordinates of the wave functions. Note

that the dispersion law (53) is purely ID: The energy s depends on k~, but does not depend

on k~. As mentioned in Section 2, this is a consequence of the Landau degeneracy m magnetic
field. Because of the degeneracy in k~, any superposition of eigenstates (52) with differeiit k~
also is an energy eigenstate. Let us superimpose functions (52) with trie coefficients of trie

Fourier transform:

.,,
,

,

~~
~

~~~ ~~ ~~
~Î Î~ '~~~,k»,+(~,n, t) e~~k~ Mb

=

~j-~t/h+k ~~~~~ ~~~~~4Jn-M(~2t~/t~~~~ ~~

where Jn(() is trie Bessel function of trie n-th order.

Trie Wannier wave functions (54) form a new complete set of trie energy eigenfunctions.
These functions are delocalized along trie chains, because they are trie plane waves in trie ~

direction. Trie shape of trie wave functions across trie chains is given by trie Bessel function

Jn(2tb/hw~) considered as a function of its index n with trie fixed argument 2tb/hw~, which is

trie ratio of trie hopping integral between trie chains to trie cyclotron frequency of trie magnetic
field. Trie Bessel function Jn(2tb/h~o~) bas a maximum at n m 2tb/hw~ and exponentially
decreases to zero as n increases further. Thus, trie wave functions (54) are localized across trie

chains with trie characteristic width 4tb/hw~, which decreases with increasing magnetic field

H as
1/H. Each wave

function (54) is centered on a certain chain labeled by trie quantum

number M.

Trie wave functions (54) are qualitatively similar to trie Landau wave functions of an isotropic
partiale in magnetic field. Trie both sets of trie wave functions are localized in one direction

and delocalized in another, and trie energy does not depend on trie position where trie localized

wave function is placed. However, because our problem is strongly anisotropic, trie shapes of

trie wave functions are different: trie Bessel function in our case (~~) and trie Gaussian function

m trie Landau case.

Since trie wave functions (k~,M,+ form a complete basis, we can use this Wannier bruis to

describe our system. Let us introduce trie operators à((k~, Ii) and à+(k~, M) that create

and anmhilate an electron on a Wannier chain M in trie state (k~,M,+. Now, let us take

into account trie FISDW potential 2/hcos(Q~x) in equation (6) with trie wave vector iii).
Trie matrix elements of trie FISDW potential between trie states (54) con be easily evaluated.

Keepmg only trie term that opens an energy gap at trie Fermi level, we get trie following

expression for Hamiltonian (6) in trie Wanmer basis:

É
=

/ ~~~ ~j
VF k~ [à( (k~, M)à+ (k~, Mi â~ (k~, fi£)à- (k~, Ai )j

27r
~

+ /he~ [à( (k~, ~I + N)à- (k~, M) + à± (k~, M)à+ (k~, II + N)j, (55)

where /he~
=

/hJN(4tb/hw~) is trie same as in equations (44, 41). There is no single-electron
hopping between trie Wanmer chains m Hamiltonian (55), but trie FISDW potential scatters

trie electrons into trie + electrons and simultaneously displaces them across trie chains by

(~~) If the transverse dispersion law of the electrons is more complicated, the shape of the
wave

function

may differ from the Bessel function, but ail qualitative features of the Wannier functions, such
as

the

locafization across
the chains, remam valid.
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N Wannier chains, where N is the parameter of the FISDW. In the Wannier representation,

it is very transparent why many different FISDWS are possible in our 2D system in magnetic
field. In a purely ID case, a

CDW/SDW may couple the + and electrons only on the same

chain. In our 2D system, the FISDW may couple the + and electrons on different chains;
thus, the FISDW is characterized by the integer distance N between the coupled chains, which

may take many different values.

The FISDW potential in equation (55) hybridizes the electrons on the Wannier chain M

and the + electrons on the Wannier chain M + N and opens a gap at the Fermi level in their

energy spectrum. That procedure works for the chains in the bulk of the crystal. However,
the states at the edges of the crystal are exceptional. The + electron on the first N chaius on

one side of the crystal and the electrons on the last N chains on the other side of the crystal
have no partner chains to couple with, so these electrons remam ungapped. Thus, the one side

of the sample possesses N gapless chiral modes propagating along the edge with the velocity

VF, and the other side has N gapless chiral modes propagating in trie opposite direction with

the velocity -VF

Now, let us discuss the QHE in this system. Suppose a small electric voltage 1[ is applied

across the chains. That means that the chemical potential varies across trie chains. Because all

states in trie bulk of trie crystal are gapped ont, they would not respond to this perturbation.
However, since trie edge modes are not gapped, trie difference of trie chemical potentials between

trie two edges produces an imbalance between trie occupation numbers of trie modes at trie

opposite edges, ôp cc V~, which generates a net current I~ along trie chains:

~~ ~~FNôp
"

evfNj 2Ne~

~~~ÎvF
Ù~Y. j~~j

Equation (56) represents trie QHE, finis time for trie Hall conductance, rather than conductiv-

ity (14), which comcide in 2D.

Trie above derivation might bave produced impression that trie Hall current flows only along
trie edges of trie sample and is zero in trie bulk. That is not necessarily trie case. Let us

show how trie bulk and trie edge pictures of trie QHE connect with each other. Suppose the

applied voltage Vy drops homogeneously across the chains, so that there is a tiny voltage drop
Vy/Mm~x between every pair of neighboring chains. Because of the variation of the chemical

potential across the chains, the electron concentration and, thus, the Fermi momentum kF
must change from chain to chain. That creates a problem when the FISDW pairs the + and

electrons on different chains. where the Fermi momenta may be different. When the FISDW

is pmned and does not move, which we assume to be the case here, the states paired by the

FISDW must have exactly opposite momenta. (If the paired momenta are dilferent in absolute

values. the total momentum of the electrons under the gap is non zero. which means that the

FISDW moves.) So, the momentum distribution of the electrons on each chains must shift in

k~ to make -kF at the chain M equal to +kF at the chain M + N. Since the momentum

distribution on each chain is shifted away from the symmetric position, each chain carnes an

electric current.

Let us illustrate this reasoning quantitatively. The current on a chain M is the differeuce of

the current I( carried by the electrons with the positive momenta and the current I£ of the

electrons with the negative momenta. So, trie total current is

[
=

+ Il Il (57)
+ Il Ii

~ ~Àlmax ~~lmax
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Each line in this equation represents trie current on a given diain. As it was explained above,
because trie chains M and M + N are coupled by trie pinned FISDW, we bave

Ijj
=

1£~~. (58)

Substituting equation (58) into equation (57), we find that trie total current is trie difference

of trie edge currents:

N Mmax

L
"

~j I£ ~j Ijj. (59)

M=1 M=Mr,iax-N+1

At trie same time, trie current on a given chain M is not zero:
I£ Ijj # 0. That means that

trie total current (56), whose value is given by trie difference of trie edge terms (59), is spread

homogeneously over all chains, so that each chain carries a portion of trie total current.

It is easy to see that trie Hall current flows in those regions of trie crystal where trie transverse

voltage drops. Trie total Hall current is always given by equation (56); nevertheless, trie

actual physical distribution of trie Hall voltage and current may be of some interest. In trie

semiconductor QHE devices, trie experiment seems to indicate that all Hall voltage drops

near trie sample boundaries, but no such measurements were performed in trie (TMTSF)2X
materials.

If trie FISDW is allowed to move, it is not required to pair trie exactly opposite electroii

momenta. Then, instead of (58), we can bave I(
=

Ijj, so trie current on each chain and trie

total current (57) are equal to zero. This is in agreement with trie result of Section 4 that. if

trie FISDW is free, there is no Hall elfect.

Strictly speaking, expression (54) for trie Wannier functions is valid only in trie bulk and

should be modified near trie edges. Àlthough we neglected such complications in trie above

discussion, we believe that our qualitative results would remain valid in a more accurate theory.

7. Conclusions

Main results reviewed in this paper con be summarized as follows. When a 2D system that

consists of parallel conducing chains is placed in a strong magnetic field, trie magnetic-field-

induced spin-density wave
(FISDW) may appear in trie system. Trie FISDW couples trie

electron states at dilferent chains, thus it is characterized by an integer number N, trie distance

between trie coupled chains. By hybridizing trie electron states at trie opposite sides of trie

Fermi surface, trie FISDW opens an energy gap at trie Fermi level everywhere in trie bulk of

trie crystal. However. on trie N chains at trie both edges of trie crystal, half of trie electron

states remain ungapped, because they bave no partner chains to couple with. Trie electrons in

these N chiral gapless modes propagate with trie opposite velocities at trie opposite edges.

When an electric field is applied, at zero temperature, trie system exhibits trie quantum Hall

elfect (14) with trie same integer number N that characterizes trie FISDW. As trie temperature

increases, trie Hall conductivity decreases, vanishing at trie FISDW transition temperature T~.

Trie function f(T) that describes trie reduction of trie Hall elfect with trie temperature is trie

same as trie temperature reduction function of trie Frôhlich current of a regular charge/spin-
density wave. If trie Hall elfect is measured at a liigh enough frequency, trie motion of trie

FISDW produces an additional contribution to trie Hall current, such that trie total Hall

conductivity vanishes.
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