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Abstract. Structure factors for fractal aggregates with a range of fractal dimensions have

been studied. To this end,
a

hierarchical computer algorithrn is presented which is able to build,

in the three-dirnensional space, disordered off-lattice fractal aggregates made of identical tangent

spheres, whose fractal dimension can
be varied frorn 1 up to an upper limit of about 2.55. The

correlation functions and their Fourier transforrns S(q) (structure factors)
are

calculated for

various fractal dimensions. It is shown that the S(q) curve
exhibits a

charactenstic sigmoidal

shape for D > 2 and that it is necessary to include a
cluster size power-law polydispersity to

recover a
power-law behavior of S(q) in a

large range of q
values)

as
observed in experirnents.

1. Introduction

Srnall angle scattering (SAS) techniques (X-rays, neutrons or
light) hàve been widely used

to determine experimentally the fractal dimension of vanous fractal aggregates [1-17j. Such

techniques give informations on the Fourier transform S(q) of the pair correlation function

p(r) between partide centers within an aggregate. As a consequence of the fractaI'power-law

behavior p(r)
mJ

r~(3~~) the scattering function S(q) should behave as
q~~, leading to a very

simple determination of D using a log-log plot of S(q) uers~s q. These methods are com-

plementary of the direct analysis of digitalized micrographs [18-20j which gives informations

on the fractal properties of two-dimensional projections. The SAS techniques have the great

advantage to be not destructive. Moreover it is generally believed that they are not limited to

fractal dimensions smaller than 2, as it is for the micrograph analysis methods (as the fractal

dimension of a duster projection cannot be larger than 2).

However, it is known [21-24j that the Fourier transform of a power law of the type r~13~~)

diverges for D > 2 if there is no upper cut-off to the power law. Therefore the precise shape

of the surface of the aggregate, which can be described by a cut-off function in
p(r), enters in

a
non-trivial fashion the S(q) curve and can affect the expenmental determination of D for

D > 2. Such an
effect has already been evidenced using some ad-hoc cut-off functions [24j.

Here, we would like to study this effect on some more physical examples computer generated
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fractal aggregates with tunable fractal dimensions ranging from D
=

1 up to D
=

2.55. These

aggregates, which contain up to 8192 partides have been generated using a new aggregation
model which is an off-lattice extension of the recently introduced variable-D rnodel [25j. This
model can be viewed as an extension of the existing aggregation models [26j since the penetra-
tion of aggregates when sticking, which determines their fractal dimension, is now controlled.
The advantage of the present off-lattice version compared to the previous on-lattice one is that
it is more realistic and that the input fractal dimension is exactly, and not approximately,

recovered. But, it has the same limitation as fractal dimensions larger than 2.55 cannot be
reached. Therefore the purpose oi this paper is two-iold: first, a new algorithm to build off-
lattice duster-duster aggregates is presented and, second, a first application oi this algorithm

to the study oi the structure iactor oi iractal aggregates is presented. In Section 2 we describe
the model. In Section 3, we give the numencal results for the correlation iunctions and their
Fourier transiorm. And in Section 4 we discuss our results at the light oi experimental data.

2. The OIf-Lattice Variable-D Model

The model uses the previously introduced [25, 27] hierarchical procedure which starts with a
collection oi 2" identical spherical particles oi unit diameter. At iteration 1, a collection oi

Nc
=

2"~~, containing N~
=

2~ partides each, is built. To proceed with the next iteration, the
aggregates are grouped into pairs and the two aggregates of a pair are stuck together according

to a given rule. The procedure ends with a unique aggregate of N
=

2~ partides at iteration n.
The rule for sticking two aggregates Il) and (2) of N particles is chosen in order to satisfy

the relation:

r~
=

k~R( + 1 il)
where r

=
Gi G2 is the distance between the centers of mass GI and G2 of the aggregates when

they are in their sticking position, R[
=

(Rjj Il + R[(2))/2 is their mean radius of gyration
squared, and k is related to the input fractal dimension D by:

k=2 (2)

The corrective term +1 in il ), which becomes negligible for large aggregates, is introduced to
satisfy exactly R[

=
(N~ 1)/12 for D

=
(linear chain of N tangent particles).

These relations implies that the effective fractal dimension D(N), calculated by comparing
the results from one iteration to the next one:

D(N)
" ~)~~ (3)

log(Rjj -) logRjj/~

is automatically equal to the input fractal dimension, for all N. The corrective term -1/4
in (3), which is consistent with the extra term +1 in Il ), is introduced to take care of "trivial"

corrections to scaling, as discussed in [28, 29].
The recipe is the following. Suppose one knows the aggregates Il and (2), their centers of

mass GI and G2, their radii of gyration, and consequently the parameter r given by il ). One
first chooses at random one particle of duster Il and one partide of duster (2). Let us call Ii
and 12 their centers. Then one determines a neighboring site of Ii, say ii (such that IiJi

"
1)

as a candidate to be the position of12 when sticking. The azimuthal direction of the vector
IiJi around the axis Gili is chosen at random uniformly between 0 and 2 gr, but the direct

angle
=

(Gili, IiJi) is chosen such that:

2Ù"iT~ ~~~ (~)
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Fig. 1. Three-dirnensional sketch of the determination of the position of G2 ~s.
Gi (centers of mass

of aggregate (2) and il) respectively) to satisfy the conditions (6a) and (6b),
as

explained in text.

where ( is a randorn variable uniforrnly distributed between 0 and 1. This insures that is

uniformly distributed between 0 and gr when asking for D
=

3, but reduces to
=

0 in the

limit D
=

1. Such anisotropy in the choice of ii is necessary if we want to be able to recover

the linear chain for D
=

1. Obviously the precise form entering formula (4) becomes irrelevant

for very large clusters.

At this stage, a test is performed to verify the following triangular condition on distances:

GiJi + G2I2 > r (5)

If this condition is not satisfied, one chooses again two partides Ii and 12. If the condition is

satisfied, one determines the cirde of axis GI ii (see Fig. 1) such that any point M of this circle

satisfies the two conditions:

GIM
=

r (6a)

JIM
=

G2I2 (6b)

Then one chooses at random, but uniformly on the circle, a point M and we move the duster (2)

in order that G2 coincides with M and12 with ii Note that there remains an
indetermination

for the azimutal angle defining the position of duster (2) around G2I2. This angle is chosen at

random uniformly between 0 and 2gr.

Cluster (2) being positionned, one
performs a test for overlaps between any partide of il)

and any particle of (2). To avoid a double loop which would be time consuming, we have built

a cubic sub-lattice to label the particles of (1) and we have used it to test only the nearest

neighborhood of each partide of aggregate (2). If there is an overlap, one goes back to choose

again two partides Ii and 12 and so on.
If there is no overlap, the ensemble of aggregate il

and aggregate (2) is stored as an aggregate of 2N partides of the next generation.

We bave checked that trie procedure works for any fractal dimension ranging from D
=

1,

where a linear chain of partides is
recovered, up to an upper fractal dimension Dn~ which is
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difficult to estimate with precision as the computing time diverges as D approaches Dn~. This

upper limit is about 2.55, in agreement with the one obtained with the lattice version of the
model [25]. We recall that this limitation is due to frustration effects coming from disorder:

the hierarchical method introduces some surface roughness while to reach a compact duster
(with D

=
d) one needs a smooth surface.

In Figures 2a and 2b, one shows the two-dimensional projections oi typical aggregates of
4096 partides with D

=
1.2, 1.6, 2, 2.1, 2.3 and 2.5.

la)

Fig. 2. Two-dimensional projections of typical three-dimensional aggregates of N
=

4096 partiales
obtained for D =1.2, 1.6, 2.0 (a) and D

=
2.1, 2.3, 2.5 (b).



N°10 STRUCTURE FACTORS FOR FRACTAL AGGREGATES 1369

(b)

Fig. 2. (Gonhnued.)
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3. Numerical Results

For an aggregate of N partides, the correlation function p(r)
can be calculated as the distance

distribution function between partide centers. With a convenient normalization, it is given by:

~~~~ 4ÀÎdr
~~~

where dN is the number of distances lying between
r and r + dr. Here the normalization is

such that:
~

p(r)4grr~dr
=

~
(8)

2

The numerical results for aggregates of N
=

8192 partides, averaged over 5 independent
samples are presented as log-log plot in Figures 3a and 3b for fractal dimensions smaller than
2 and larger than 2, respectively. In each figure the expected slope -(3 D) is indicated. Even
if the fractal regime is less extended for fractal dimension larger than 2, the expected slope is
well recovered.

When considering a small angle scattering expenment on randomly onented aggregates of
N identical spherical partides, the scattering intensity I(q) writes:

I(q)
=

NS(q)P(q) (9)

where P(q) is the form factor of the particles and S(q) is the structure factor,
or scattering

function, which the Fourier transform of p(r):

We would like to emphasize that these formulae are valid even though the aggregates are
intrinsically anisotropic as it is known in such a duster-duster process [31j (the presence of
sin qr/qr inside the integral results from the angular average of the intensity over the random

orientations of the aggregate for a fixed q).
The numerical results for S(q)

are given in Figures 4a and 4b. All the curves tends to 1 with
damped oscillations as q tends to infinity. These oscillations are characteristic of the short

range correlations between partides [32]. But here
we would like to focus on the intermediate

(fractal) regime. In the figures the expected slope -D is indicated. For D < 2 the hnear
fractal regime is quite well recovered. For D > 2, one observes a characteristic sigmoidal shape
corresponding to the crossover between the small-q Guinier regime and the fractal regime, as
already found with ad-hoc cut-off functions [24]. As it can be seen in Figure 5 the sigmoidal
shape exists for all duster

sizes up to the largest available size and therefore can hardly be
attributed to finite size effects. The location of the crossover is shifted towards large q values as

D increases and therefore,
a more and more extended q region exhibits a quite large apparent

slope. As already noticed, this region is charactenstic of the surface of the aggregate and
would merge into the q~~ Porod regime if one would be able to reach D

=
3 (diffusion by an

homogeneous sphere). As a consequence of this crossover, the fractal regime becomes badly
defined.

The existence of a sigmoidal shape of S(q) for D > 2 is, in fact, quite general and this is
illustrated in Figure 6 where we compare an S(q) curve for N

=
8192 aggregates built with

our algorithm with an input fractal dimension of D
=

2.45 with the one of three-dimensional
off-lattice Witten-Sander aggregates [26] containing the same number of partides. The latter
aggregates have been built with the standard partide-duster aggregation process [26, 30j in
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Fig. 3. Nurnencal results for the distance distribution function p(r) averaged over 5 dilferent

sarnples, in
trie case

of aggregates containing N
=

8192 partiales, for D < 2 (a) and D > 2 (b). The

expected slope -(3 D)
is

indicated.
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Fig. 4. Nurnencal results for trie scattering function S(q), calculated for aggregates containing
N

=
8192 partiales, (averaged

over 5 dilferent sarnples), for D < 2 (a) and D > 2 (b). The expected
slope -D is indicated.



N°10 STRUCTURE FACTORS FOR FRACTAL AGGREGATES 1373

~~4

'

, N=256

'~ N=1024
10~

j N=4096
'.i

1',

~~z

1.
£
~

-2.5

10

10°

~~ io'~ i io io° io~

q

Fig. 5. Comparison between the S(q)
curves

obtained with D
=

2.5 and dilferent N values:

N
=

256,1024, 4096.

which single particles are stuck one after one to a single duster after a random walk in space

starting from random points on a large sphere centered on a seed particle. The two curves

are almost superimposed in the large-q as well as intermediate-q (fractal) regimes suggesting

that both dusters have the same fractal dimension of D
=

2.45 (even if the effective slope is

smaller in
that region). This result is consistent with the value D

=
2.50 + 0.05 already known

for 3-d Witten-Sander aggregates [26, 30]. The sigmoidal shape is observed in both cases but

the inflexion in
the crossover region is less pronounced in the Witten-Sander case. This can

be understood by the roughness of the surface which is certainly higher for an aggregate made

with partide-duster aggregation. Therefore. although the sigmoidal shape is always seen, the

precise shape of the curve in the crossover region is not universal.

4. Discussion and Conclusion

To our knowledge, the sigmoidal shape of S(q), for D > 2, has never been observed in experi-

ments il, 3, 6-9,11]. In this section, we would like to stress that this is because the experiments

are always dealing with a collection of polydispersed aggregates, and not with a monodis-

perse collection of randomly oriented aggregates of the same size. It is known that, in the

"flocculation" regime, descnbed by diffusion-hmited duster-duster processes, the duster size

distribution exhibits a well defined maximum and decreases exponentially at large sizes [26, 33j.

Therefore in that case, the fractal slope of the S(q) curve for a collection of aggregates should

be the same as the one for a single (randomly oriented) aggregate of the mean size. In contrast

with this situation, a gelling system, in which a single "infinite" aggregate appears at a given
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8192 aggregates obtained with

our model for
D

=
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one of three-dirnensional off-lattice Witten-Sander aggregates containing the saine

nurnber of partiales.

time, exhibits large size power-law polydispersity with duster-size distribution f(N)
mJ

N~~
with

T > 2 [33]. It is known that, in that case, the slope of the S(q)
curve is no more equal to

D, but to De~
=

D(3 T) < D, which can be interpreted as the effective fractal dimension of
polydisperse dusters, rather than the fractal dimension D of an individual duster.

In our case we can study such an effect by introducing artificially a size polydispersity g(p)
out of our dusters of N

=
2P partides, with p ranging from 1 to 13. To recover f(N)

=
N~~,

one should use g(p)
=

f(N) ()
c~ N f(N)

=

Nl~~ Taking care that for a polydisperse system

one should add the scattering intensities, which are proportional to NSN(q) (see formula (9)),
one can construct the effective scattering function for a power-law polydisperse collection using
the following formula:

~j ~2-r~
~~~~~~ ~j ~2~Î

~

~~~~

where the sum runs over N
=

1, 2, 4,..., 8192 and where SN (q) denotes the scattenng function
for a single aggregate of N partides (for N

=
1, one considers Si (q)

"
1). In Figure 7, we

give the Se~ curves calculated this way, using our dusters with D
=

2.45 and Witten-Sander

aggregates, taking
T =

2.2 in both cases (which is the value of
T

for percolation [33] It is
striking that, in both cases, we recover a nice linear behavior with a slope of1.85 quite close
(but slightly smaller) to the expected value De~

=
(3 T)D

=
1.96.

This discussion is nsing some problems with fractal dimensions larger than 2, previously
reported in the literature from small angle scattenng expenments. Although some authors
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Fig. 7. Comparison between Se~(q) for a
collection of polydisperse aggregates obtained with

our

model for D
=

2.45, with a
collection of three-dimensional off-lattice Witten-Sander aggregates made

of aggregates of 2, 4,.
,

8192 partiales with a
polydispersity exportent of

T =
2.2.

have already noticed that the slope of the scattering curve was leading to an
effective fractal

dimension smaller than the true fractal dimension [7, III, some others were reporting fractal

dimensions larger than 2 as being exactly the slope of their S(q) curves il, 3, 6, 8, 9]). In that

case, the process involved is unlikely of the diffusion-limited duster-duster type as their curves

do not exhibit the sigmoidal shape characteristic of a quite monodisperse duster collection. If

they should have taken into account power-law polydispersity the fractal dimension of their

aggregates might actually be larger (unless there might be other reasons for modifying the

fractal regime).
In conclusion the aim of this paper was two.fold. First we have reported on a new

algorithm

able to build off-lattice fractal aggregates with a
tunable fractal dimension ranging from D

=
1

to D
=

2.55. Second, we have calculated the S(q) curves for these aggregates and we have

shown that, for D > 2, they exhibit a
sigmoidal shape. To account for the hnear fractal

regime observed in the experiments, one are obliged to consider a
power-law size distribution

of dusters and, as a consequence, the slope of the I(q) should be smaller than the actual fractal

dimension of the individual dusters. In the future, we
intend to use our algorithm to study

other physical properties of random fractal aggregates. The calculations of vibration spectrum

is under progress.
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