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Abstract. — The effect of thermal fluctuations on the properties of fluid vesicles is studied
using Monte Carlo simulations and scaling arguments. It is shown that the commonly used
discretization of the bending energy on triangulated surfaces — which is based on the squared
difference of unit normal vectors of neighboring triangles — is problematic because the relation
between the coupling constant A and the bending rigidity « is shape dependent (in the limit
A — 00). In contrast, discretizations based on the square of local averages of the mean curvature
do not share this problem. Nevertheless, the scaling behavior of spherical vesicles is found to be
unaffected by this deficiency of the former discretization. An explicit calculation of the average
volume (V) in the large-« limit reveals that (V') is not a homogeneous function of the persistence
length £, and the vesicle radius, but that there is a weak breakdown of scaling, with a logarithmic
correction term of the form In(47x/3). Monte Carlo data obtained using both discretizations are
consistent with this prediction and provide clear evidence for a sx-dependence of the persistence
length of the form &, ~ exp[4nk/3], in agreement with field-theoretic renormalization group
results.

1. Introduction

The thermal behavior of fluid membranes — flexible, parametrization invariant surfaces of
constant area — has attracted a great deal of attention recently [1,2]. The structure and
behavior of many complex systems in biology, chemistry, and physics can be described in
terms of the elasticity and fluctuations of their constituent membranes. Two examples are
the cell membranes of mammalian red blood cells and the interfaces between oil and water in
microemulsions. In many of these cases the surface tension is either very small or vanishes
identically, so that the form and fluctuations of these surfaces are controlled by their elas-
tic bending energy. For membranes which do not have a preferred radius of curvature, the
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curvature elastic energy has the form [3,4]
1
BH = /dS [E&fﬁ + RK} : (1)

where « is the bending rigidity, & the saddle-splay modulus (both measured in units of kgT),
and H and K are the trace and the determinant of the curvature tensor (or twice the mean and
the Gaussian curvature), respectively. For a connected surface, the integral of the Gaussian
curvature is related, by the Gauss-Bonnet theorem [dS K = 4n(1 - g), to the genus g, or
number of handles, of the surface. For fixed topology, the second term in equation (1) therefore
gives a constant contribution to the free energy.

The free-energy cost of imposing a deformation of length scale ¢ can be described in terms
of a scale-dependent renormalized bending rigidity x(£). Recent calculations [5-7] have shown
that x(£) is softened by fluctuations, and decreases as

K(0) = ko — zé; In(¢/a) @)

to leading order in 1/k, where ag is a microscopic cutoff length. Most authors agree on
the value 3/(4w) of the prefactor of the logarithm in equation (2); a notable exception is
Helfrich [8], who predicts 1/(4w). The length scale at which «(¢) vanishes is the persistence
length, &, ~ agexp[4mk/3], beyond which the orientations of distant points on a membrane
become uncorrelated. Recent Monte Carlo simulations [9] have provided strong evidence that
(2) is indeed correct. Furthermore, these simulations clearly show that for a fixed topology,
there is no phase transition for finite x so that for large enough membrane size and fixed
%, membranes are always crumpled. The crumpled state of self-avoiding membranes is a
collapsed, ramified structure characterized by branched polymer scaling behavior [10-13]. The
thermodynamic consequences of the softening of the bending rigidity (as well as the thermal
stiffening of the saddle-splay modulus &) is an active area of research [14-16], and many
questions remain open.

A detailed understanding of the scale dependence of the bending rigidities is crucial if one is to
fully appreciate the consequences of phenomenological models of membrane phase behavior. A
quantitative analysis of the model requires, in particular, the correct measure [17], equivalence
classes, and operator discretizations on random surfaces. -Whereas analytical studies of the
model are possible in the large bending rigidity regime, simulation studies of triangulated
random surfaces are the only method currently available for determining the behavior in the
crucial fluctuation dominated regime x,% ~ 1. In this paper, we return to the question of
operator discretizations on random surfaces and the renormalization of the bending rigidity.
In Section 2 we show that the commonly used expression [18]

BHE =X 3 (1—na - np) 3).
(o) '

for the bending energy of a triangulated surface, where n, is the unit normal vector of triangle
o, and the sum runs over all pairs of neighboring triangles, is deficient because the relation
between the rigidity constant A and s in equation (1) depends on the shape of the surface.
In contrast, it is shown that discretizations based on the square of local averages of the mean
curvature do not share this problem. One acceptable choice is a discretization of the Laplacian-
squared representation of the bending energy,

/ dS (AR)? = / ds H? (4)
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where R is the coordinate vector of the surface element in the three-dimensional embedding
space, and A is the covariant Laplacian, described by Itzykson in reference [19]. Other choices,
such as those used in references [20,21], are equally acceptable. In Section 3, we analyze Monte
Carlo data for the average volume (V') of flaccid fluid vesicles using the scaling ansatz

(V) ~ N*?0(VN /&), (5)

where IV is the number of surface monomers and &, is the persistence length. Data previously
presented in reference [9] obtained using the bending energy (3) and measure

HdRi(qi/3)3/2 s (6>

where R; is the coordinate vector of vertex ¢ and ¢; its coordination number, are included in
our analysis. New results obtained using bending energy (3) and the naive measure

[] dr. (7)

are also presented, and it is shown that the scaling behavior, and in particular, the behavior of
the renormalized bending rigidity, is not affected by the choice of measure. A simple argument is
also given which indicates that the differences between these two measures is indeed irrelevant
in the renormalization-group sense. Finally, results obtained using a discretization of the
Laplacian-squared representation (4) of the bending energy and naive measure (7) are analyzed.
It is shown that for an appropriate choice of nonlinear scaling fields, these data also scale, with
a scaling function in good agreement with our previous results.

Next, in Section 4, we calculate the scaling behavior of the average volume of vesicles of fixed
surface area to leading order in 1/k. It is found that there is a weak breakdown of scaling, and
that instead of (V')/Vp, it is the quantity

mw—wyw+%m@mm% (8)

where Vj is the volume of a spherical vesicle with the prescribed surface area, that scales.
Reanalyzing our data using (8), we find that there is an excellent collapse of all of our large-x
data. Furthermore, our resulting scaling function is in good agreement with the analytic result
derived here for the large-x regime. For smaller k, however, the scaling it somewhat worse.
Possible causes for this behavior are discussed. The paper closes in Section 5 with a brief
discussion of the implications of these results and a short discussion of reasonable choices for
discretized bending energies.

2. Bending Energy Discretizations

A general introduction to methods for discretizing operators on triangulated random surfaces
is given in reference [19]. For a scalar field ¢; defined on the nodes of the lattice, the Laplacian
(—A¢); can be written as

(~A8)i = — 3" 25~ 45 , 9)
ORI

where the sum is over the neighbors of site 4. [;; is the distance between the two nodes 7 and
J, 0i; is the length of a bond in the dual lattice [19], and

1
g; = Z %Uijlij (10)
74
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is the area of the virtual dual cell of vertex i. The length o;; in equations (9, 10) is given
by oi; = lijcot(61) + cot(f2)]/2, where #; and 6 are the two angles opposite link ¢j in the
triangles (i5k) and (i5k"), respectively. Note that since cot(6) < 0 if @ is obtuse, o;;/l;; can be
negative if the sides of the two triangles are significantly different. Although there are some
sum rules, such as > . 0; = A, where A is the area of the surface, there is no guarantee, in
general, that the o,;, or even the o, are positive [19].

Using expressions (9) and (10), the bending energy

BHEP = g- / dS (AR)? (11)
can be written as [19,22]
2
BHE = Zo—z (AR)? Z S 7R -Ry)| (12)
L el
with
T =K. (13)

The bending energy can also be expressed in terms of the gradient of the unit normal vector
field n as [23]

5Hn=_’2?/ dsain.ainzg/ ds (H?> -2K). (14)

For surfaces of fixed topology, the contribution from the Gaussian curvature is a constant
which can be ignored. On a discretized surface, it is natural to express (14) in terms of the
unit normals of the elementary triangles. In this case, equation (14) can be written as [19]

n K l;;
BHG =5 > ~E(ge —niw)? | (15)

. g
() Y

where (i5k) and (ijk’) are the two triangles adjacent to the link 45 with compatible orientations,
and the sum runs over all links ¢j. '

As noted in the previous paragraph, there is no guarantee that the oy;, or even the oy,
are positive. In simulations of self-intersecting random surfaces, the shape and size of the
surface triangulations fluctuate wildly, and this can be a significant problem [22,24]. However,
because of the way we ensure self-avoidance (see Sect. 3), the angles § can never exceed 104°
for the longest tether lengths we employ, so that although the o;; are occasionally negative,
(12) still provides an accurate discretization of the bending energy. On the other hand, since
one divides by o;; in (15), BHS is a very unstable discretization, and, if some o;; is small
enough, the contribution from a single link can dominate the bending energy. For this reason,
one often makes the approximation that all surface triangles are equilateral [18 23], so that
oi; = li;/+/3. In this case, equation (15) reduces to

nn A
BH3 =§Z(na-nﬁ)2sxz(1—na.nﬁ), (16)
_ (e.8) (e,8)

with

A =/3k, (17)

where n,, is the unit normal vector of triangle a, and the sum runs over all pairs of neighboring
triangles. This form of the bending energy is often employed in simulations [18]. However,
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there has been some disagreement concerning the relationship between the coupling constant A
in (16) and the bending rigidity x. Whereas it has been argued that relation (17) is obtained for
a spherical vesicle [10}, a straightforward calculation yields A = 2k/+/3 for a cylinder [23,25,26].
This discrepancy, which does not seem to have been appreciated until now, can have important
consequences when simulation results are compared with theory. In particular, the effective
bending rigidity in-equation (16) depends on the membrane shape.

In order to illustrate this effect, we evaluate o and ﬂHI}ap by covering a sphere and a
cylinder with a number Na of equilateral triangles and taking the limit Na — co. In the case
of a sphere, we find

10
ﬁ?‘[{;ap ~ 87T {1 - gﬁtfz + O(l/Ng)} (18)
and 4 A 2
78 T
HP 1+———+01N2}, 19
g~ T2 {1e s ouny) (19)
while for an infinitely long cylinder of unit radius, we have
BHE® ~ 77 {1 - Z\/%TT[A" + 0(1/Ng)} (20)
and Y
an 3T T «
BHE™ ~ 5 {1—4\/§NA +O(1/Nj§)} , (21)

per unit length. Since SH® = BHY* — drk(1 — g), and g = 0 for a sphere and ¢ = 1 for a
cylinder, we see that equations (18, 19) agree in the No — oo limit if A = /37 = v/3k, while
we need A = 27/v/3 = 2x/+/3 if (20) and (21) are to be consistent. Note that for a cylinder,
the leading finite size corrections to SH5™ and SHE® are the same.

Some insight into the origin of this difficulty can be gained by considering a surface consisting
of two flat pieces smoothly connected by a cylindrical segment. Let the radius of curvature of
the cylindrical region be 7, and assume that the angle 8 between the two flat regions is fixed.
The curvature is concentrated in the creased region. The integrated mean curvature for a crease
of length [, is just 01, independent of the radius of curvature 7. It is therefore continuous in
the limit ro — 0; furthermore, it is additive. The resulting curvature remains the same if more
creases are added, as long as the subtended angle § remains fixed. A similar reasoning can be
applied to an arbitrary triangulated surface since the curvature is concentrated in the creases
in the 7o — 0 limit. In contrast, it is easy to see that the bending energy (14) is singular
in this limit. There is no natural generalization of this operator on triangulated surfaces.
More formally, the integrated mean curvature is a Minkowski functional and is additive and
continuous [27,28]. The total bending energy, on the other hand, is not. One way around
this problem is to define the discretized bending energy in terms of the square of a local mean
curvature. Indeed, (12) is of this form since (twice) the mean curvature at node 7 is

1 T34
H:n-AR—%Hiz—jni-zl—](Ri“Rj)’ (22)

T
where n, is the surface normal and o; the area associated with node 4. Since n Il AR for sur-
faces embedded in three dimensions, (22) implies that BHE™ = (r/2) >, 0:HZ2, in agreement
with (12). Other discretizations of the bending energy which involve similar local averages of
the mean curvature have been used in references [20,21].
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Fig. 1. — (EY*®)Lap (O) and (E§")Lap (©) as a function of 7. The averages are taken over configu-

rations generated using BHE™ and measure (7).

Another way of secing that the relation between the rigidity parameters A and 7 appear-
ing in the bending energy discretizations is quite complicated is to compare the various ap-
proximations for the thermal averages (E) = (fdS H?) as a function of the bending rigid-
ity. In Figure 1 we have plotted (BX)ap = (2[00 i (Ri — R;)/l:i;)?/0s)Lap, and
(ES™)Lap = \/§(Z<a’ﬂ>(na — ng)%)1ap + 87 vs. T, where averages are taken over a series of

configurations generated using ﬁHiap and measure (7). It can be seen from equations (18-21)
that these two expressions equal 167 in the spherical limit.

Note that (Ec%ap)Lap is always significantly smaller than (E5*)Lap- In fact, surfaces generated
using (12) are much rougher on short length scales. The reason for this is that local averages of
the curvature are used to determine ﬁHgap; this averages out a certain amount of roughness on
the scale of the nearest-neighbor distance. The difference between these two approximations
for the bending energy increases with decreasing 7. We will return to this problem in the next
section.

3. Monte Carlo Simulations and the Renormalization of the Bending Rigidity

The model we study consists of N hard spheres of diameter o = 1 which are connected by
flexible tethers of length £y < V/3 to form a two-dimensional network of spherical topology. £o
is chosen to ensure self-avoidance. In our simulations, we have used £y = V2.8. In order to
allow for diffusion within the membrane, and thus to describe fluid membranes, tethers can be
cut and reattached between the four beads which form two neighboring triangles [29-32]. A
Monte Carlo step (MCS) then consists of an attempt to update the positions of all N beads
by a random increment in the cube [—s, )3, followed by N attempted tether cuts. We chose
s = 0.15 so that approximately 50% of the attempted coordinate updates were successful.
Averages were typically calculated over runs from 20 to 100 million MCS.

In our previous simulations [9], we employed the bending energy (16) using A = V3K, and
measure (6). A complete discussion of the phase diagram and scaling behavior of this model
as a function of x and the pressure increment Ap has been presented in reference [9]. The
scaling behavior of the average volume (V) of flaccid fluid vesicles as a function of the bare
bending rigidity x was also analyzed in that paper using a simple scaling ansatz. In analogy
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Fig. 2. — The scaled volume {V)/(N ~ Ny)*/? as a function of the scaling variable y = VN/¢ =
VN exp(—47)/3/3) for 0.5 < \ < 8, using No = 0.8. The data were obtained using bending energy
(16) and £o = v/2.8. The plot contains data obtained with measure (6) and N =127 (O), N = 247
(&), N =407 (0), and N = 607 (1), as well as data obtained with measure (7) and N = 127 (®),
N =247 (v), and N = 407 (x).

with the scaling analysis of ring polymers in two dimensions [33-36], it was argued that the
average volume should scale as ;
(V) = Voo N*/?0y(y) (23)

where y is the ratio of the two relevant length scales in the problem, the radius Ryes ~ VN of
the large- vesicle and the persistence length [5-7]

& = aollo) exp (4—;-) . (24)

ao(lo) is a non-universal length scale which depends on the tether length, interaction potential,
etc. If scaling is complete, the scaling function should describe the behavior of branched-
polymer-like vesicles, where (V) ~ N, in the limit y — oo. We therefore expect

Ov(y) ~y* (25)

for large y.

In our simulations, the most significant finite-size effects occur in the determination of the
prefactor N3/2 in equation (23). In order to incorporate the leading finite-size effects, we
introduce a “shift” parameter Ny and replace N by N — Ny when determining the scaled
volume. Similar procedures have been employed, for example, in references [34,36]. In Figure 2,
(V)/(N = No)®/2 is plotted as a function of VN /& for 0.5 < A < 8, where & = expldn)\/3+/3] is
the dimensionless persistence length. The data were obtained using bending energy (16) and
measure (6). We have used Ny = 0.8 when plotting the data. This plot contains the data
already presented in reference [9], together with new data for A > 2.5. As can be seen, the
scaling is excellent. Furthermore, the quality of the data collapse for small )\ indicates that the
linear renormalization group result (2) remains valid in this entire regime (A > 0.5). Higher
order corrections (in 1/x) become important only for A < 0.5 [37]. Data obtained using the



1312 JOURNAL DE PHYSIQUE I N°10

naive measure (7), which are also included in the figure, are in good agreement with the data
obtained using measure (6). We have also checked the quality of the data collapse for other
values of the exponential prefactor in the persistence length. If we use the parameterization
¢ = exp[BrA/v/3], we find that data collapses of similar quality are obtained for 3.4 < 8\ < 4.4.

There is a simple argument which indicates why the scaling behavior of (V') is the same for
the two measures (6) and (7). First, write

[T(ai/37" = expl(3/2) 3 Inai/3)] - (26)

7

Since 3, ¢; = 2Np = 6(IN — 2) for a vesicle, where Ny, is the number of bonds, set ¢; = 6 + €.
It follows that

Zln(qi/ii) = Zln(2+€¢/3) (27)

= Nh(2)+ Y In(l+¢/6)

k3

= Nln(2) +(1/6) Zei ~(1/2) ) (ei/6)* + -

Nin(2) —12/6 — (1/2) > (e:/6)* + -+

?

On the other hand, the surface triangles are all Euclidean; if we denote by 8; the sum of the
internal angles at vertex 4, the Euler characteristic of the triangulated surface can be written

as [19]
=2 (-5) (29)

where the sum runs over the lattice nodes. Since de K — Zi 0. K;, we have o, K; = 2m — 0;.
If we further assume, as in reference [30], that all triangles are equilateral (and have area Aa),
o; = q;Aa/3 and 0; = 2mq;/6, so that AaK; = —me;/3q;. It follows that Y, € ~ fdS K?
so that the term [];(g;/3)*/? in the measure (6) contributes only terms of higher order than
the bending energy to the Hamiltonian. These terms should therefore scale to zero at large
distances and not change the scaling behavior. As argued in reference [30], we do not expect
that the assumption that the surface triangles are equilateral and have a fixed area will change
the scaling behavior, so that this result should also apply to the current model.

The results of a similar analysis of data obtained using the discrete Laplacian bending
energy (12) and measure (7) are shown in Figure 3a. We have used ¢ = exp[fB,7], with
B, = 4w /3, and N = 3; data are presented for 1 < 7 < 5.5. While the large-7 data scale quite
well, it can be seen that there is a rather strong breakdown of scaling for smaller values of 7.
This is surprising, since the data are all in the 7-range where our data obtained using bending
energy (16) scaled. This suggests that, as in the case of polymer rings in two-dimensions [36],
7 is not the appropriate scaling field in the small-7 regime. In general, there is no reason
to expect that the linear relation between the coupling constant of any discretization of the
bending energy and the bending rigidity, which is obtained for large k, extends to the low-
bending-rigidity regime. Both the non-linearities of the bending-energy discretization, as well
as the direct interactions between the vertices — given by the tethers and hard spheres —
contribute to this relation. Indeed, we find an excellent collapse of our data if we utilize the
nonlinear scaling field
0.85 + 72

3+7 (29)

Keg(T) =
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Fig. 3. — (a) The scaled volume (V}/(N — Ny)*>'? as a function of the scaling variable y = /N/¢,
with € = exp(4n7/3)

, for 1 < 7 < 5.5, using Ng = 3. The data were obtained using bending energy
(12), £o = v/2.8, and measure (7). Data for N = 127 (O), N = 247 (A), N =407 (0), and N = 607

(D) are plotted. (b) The same data plotted as a function of y = VN[ explanres (7)/3]. (c) Comparison
of data plotted in Figure 2 (O) with that of Figure 3b (). The solid line is proportional to ¢/VN.
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Fig. 4. — Typical configurations of thermally fluctuating fluid vesicles obtained in simulations using
(a) bending energy (16) for A = 1.1, and (b) Laplacian bending energy (12) for 7 = 1.5. Note
that in (a), equation (17) implies that rem(A) = A/V3 = 0.64, while in (b), equation (29) implies
Ko (T) =2 0.69; the effective bending rigidities are therefore approximately the same in both cases.

instead of T in our analysis. The resulting scaling function is shown in Figure 3b; the results
presented in Figures 2 and 3b are plotted together in Figure 3c for comparison. It can be seen
that the agreement is excellent. The small differences in thie shoulder region, for VN/E =01,
could probably be removed by some fine tuning of the nonlinear scaling field. The solid line in
Figure 3c is the expected large-y scaling behavior Oy(y) ~y~ .

Asymptotically, for large 7, equation (29) reduces to the shift Keg(7) ~ 7 — 3, while for
7 — 0, keg(T) approaches 0.28. As in the case of polymers, it appears that the peeling off of
the small-r data in Figure 3a is due to a saturation of reg(r) for 7 — 0 caused by the finite
thickness and local self-avoidance constraints of our model membrane [38]. The shift contained
in equation (29) for large T is consistent with the increased roughness of the surfaces we observe
in simulations using the discrete Laplacian bending energy, compare Figure 1. It also explains
the differences observed [24] in the position of the peak in the specific heat in simulations
performed using the discrete-Laplacian bending energy and bending energy (16). A comparison
of configurations obtained using the discretizations (12) and (16) with approximately the same
effective bending rigidities kes(7) and ker(A) = A/ /3 is shown in Figure 4.

4. Scaling Behavior of the Average Volume

To go beyond the scaling ansatz (23), we calculate the scaling behavior of the average volume
of a nearly spherical vesicle in this section to leading order in the large bending-rigidity limit.
In particular, we show that (V) is not a homogeneous function of the persistence length and
the vesicle radius, but that there is a weak breakdown of scaling, with a logarithmic correction
term of the form In(4mrk/3).
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We assume that the vesicle has a fixed surface area Ao = 47r2, where 1y is the radius of
a spherical vesicle in the x — oo limit. Expanding about a sphere of radius rq, the radial
position vector of the vesicle at solid angle 0 = (4, ¢) can be written as

(€)= ro[l +u(Q)], (30)

where u(f2) is the dimensionless amplitude of radial displacement. An expansion of u in

spherical harmonics reads
Im

1
u(Q2) = Z Z Um Yim () , (31)
{=0 mz=-—]
where Iy is a large wavenumber cutoff determined by the number of degrees of freedom; since
only motion normal to the vesicle surface is relevant, (I +1)? = N in the present case. Using
equation (31), the excess bending energy AE = (k/2)[[ dS H? — 167], area A, and volume V
of the vesicle can be written (to order u?) as [39,40]

AE = S;ﬂ?lusz I+ 1)1 -1)(1+2), (32)
A=4WT§(1+U0)2+TSZ|Ulm[2 [L+1+1)/2], (33)
>0
and 4
V= —g—rs’(l +u0)® + s Z [wiml? (34)
>0

where wg = ugg/(4m)1/2.
The constant area constraint is incorporated by choosing ug to satisfy A = 4rrk. This gives

1
(14 ug)? :1——4—~Z|uzml2 [T+11+1)/2] . (35)
150
The substitution of this result in equation (34) yields
V= T 2 S Pl - 1+ 1)/2) (36)
I>1

to leading order in w.
Equations (32) and (36) imply that the expectation value of the volume is

B 3 & 2+ 1)1 - I(1+1)/2)
<V>“%{1+%Z§ T+ )= Di+2) } ! (37)

where Vg = 4713 /3. Approximating the sum in (37) by an integral, we have

3 [ 3
Vi/Vom1l— —— —=1-=—1In{ly/2). 38
WTom1=go [ 75 =1- i) (35)
Note that (V) /Vy does not scale in &,/v/N. In order to gain some insight into the behavior for
moderate &, we incorporate the effect of the scale dependence of x in an approximate way by
replacing & in (37) by the scale-dependent renormalized bending rigidity

K (6) = K — % In(¢/ag) . (39)
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In terms of [, equation (39) can be written as

1) = 5 = - In(yoha /1) = o= 1n(IE/volas) (40)

where £ = £,/ag, and yo is a non-universal, model-dependent scale factor [41]. Using equa-
tion (40) in (37), we finally obtain

r- 21+ 1)1 =1+ 1)/2]
(V) =Vol/Vo =35 ; (i€ /yola) 11+ V(I = DI +2)

Approximating the sum in (41) by an integral, we have

Im
V)T -1m 2 [ s = —g ln(e/w)] + 3 min(2¢/whol: (42

This implies that there is a weak logarithmic correction to scaling and that

(V)/Vo — 1= 5 nlln(¢/vo)] + O (@) . (13)

where 4
T
Yy = Yo Im €Xp (——3—/@) . (44)

To first order in 1/k, the scaling function is

Q(y) = Slaln(2/y)] | (45)

Note that the scaling function Q% (y) becomes singular for y /2, i.e. when the persistence
length becomes on the order of the system size. This is an artifact caused by using the linear
renormalization group result (40) in the limit in which the renormalized bending rigidity goes
to zero.

5. Analysis of Monte Carlo Data

Taking equation (43) as a guide, we have reanalyzed our data for the average volume (V).
The results of a scaling analysis of the data obtained using both the bending energy (16) and
measure (6) as well as the discrete Laplacian bending energy (12) and measure (7) (with the
nonlinear scaling field seg(7)) are shown in Figure 5a. We have used the same persistence
lengths ¢ and shift factors No as in Figures 2 and 3b, as well as yo = 1. Vp was determined.
for the four system sizes studied using result (37) in the large bending rigidity regime. Data
obtained for bending rigidities as large as 80 are included in the figure. The solid line is a
plot of the predicted scaling function (45). There are no adjustable parameters. The quality
of the agreement between the data and the scaling function QY (y) lends strong support to
the prediction that (V)/Vo + 5 In[In(§)], with £ = expl4nk /3], scales in VN /&, in the large-x
regime.

In order to better illustrate the quality of the scaling behavior for moderate values of k (with
—10 < In(y) < 2), we have replotted data obtained using bending energy (16) in Figure 5b [42]
and that obtained using bending energy (12) in Figure 5¢. It can be seen that the data collapse
is not perfect for In(y) > —4. There are several possible explanations for this. First, the form
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Fig. 5.— Scaling function Qv (y) for the average volume as a function of the ratio of the vesicle radius
and persistence length. (a) Qu(y) = (V)/Vo — 1 + 5 In[dmkes()/3] vs. y = VN/ expldmres (7) /3]
(¢). Data for 1 < 7 < 40 were obtained using bending energy (12), £y = /2.8, and measure (7).
Qu(y) = (V)/Vo — 1+ L In(4n)/3v3) vs. y = VN explan)/3v/3] (O). Data for 0.65 <A <80
were obtained using bending energy (16), fo = /2.8, and measure (6). The solid line is a plot of
20(y) = $fin(2/y)]. () v (y) = (V)/Vo—1+ L Infin(e)] vs. y = VA&, with ¢ = exp[dr /3], for
data obtained using bending energy (16), £y = v/2.8, and measure (6). Datafor N = 127 (&), N = 247
(A), N =407 (O), and N = 607 (O) are plotted. The solid line is a plot of Q% (y) = 2 In[ln(2/y)]. (c)
Qv(y) =(V)/Vo — 1+ L InIn(¢)] vs. y = VN/E, with & = expl4mken (7)/3], for data obtained using
bending energy (12), £o = /2.8, and measure (7). Data for N = 127 (), N =247 (A), N = 407
(0), and N = 607 (O) are plotted. The solid line is a plot of Q% (y) = LInfln(2/y)]. (d) Comparison
of data for N = 407 (O) and N = 607 (O) from Figure 5b and data for N = 407 (x) and N = 607
(+) from Figure 5c.
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Fig. 5. — (Continued.)

of the correction term, In(47rk/3), is only correct for In(N) < 87k/3, i.e. 0 <y < 1. If this
condition is not fulfilled, scaling cannot be expected. There also appear to be strong finite
size effects. In Figure 5d we have plotted only data obtained for the two largest system sizes
studied. While scaling is still not perfect, it is significantly better than that obtained for the
smaller sized systems. Small changes in the nonlinear scaling fields could also lead to improved
scaling. However, without a better theoretical understanding of the corrections to scaling, it
is difficult to resolve these problems given the rather limited range of system sizes which can
be studied.

6. Summary and Discussion

The bending energy (16) which is frequently used in simulation studies of both elastic (teth-
ered) surfaces and fluid membranes has the shortcoming that the relationship between the
coupling constant A and the corresponding bending rigidity « in the Canham-Helfrich bending
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energy (1) depends on the membrane shape. While this is not critical problem for qualititative
studies, it can lead to difficulties when more quantitative comparisons are made with theory
or experiment. Discretizations of the bending energy J dS H? based on local averages of dis-
cretizations of the mean curvature do not have this shortcoming. One choice, based on the
Laplacian-squared representation of the bending energy (12), has been used in this paper to
analyze the scaling behavior of the average volume V of flaccid fluid vesicles as a function of
the bare bending rigidity and the system size N.

Our Monte Carlo data obtained using bending energy (16) scale just as well as data obtained
for the Laplacian bending rigidity. Even in the low-) regime, where typical configurations are
dominated by branched-polymer-like shapes with long, cylindrical arms, we could analyse our
data with the same A-x relation that is valid for spherical vesicles. On the other hand, since
we have only studied vesicles of spherical topology, any shape dependence of the - relation
could always be absorbed in a non-linear scaling field seg(A). Our result then simply indicates
that rex(A) = A/v/3, with negligibly small non-linear contributions. On the other hand, the
shape-dependence of the A-x relation certainly leads to problems when the membranes are
allowed to change their topology. A transition from many small, spherical vesicles to a few
long, cylindrical vesicles, for example, would obviously be affected by this shape dependence.

An explicit calculation in the large-x limit shows that the average reduced volume (VY Vs is
not a homogeneous function of the persistence length & and the vesicle size R ~ v/N. Rather,
there is a weak breakdown of scaling. The correction term was determined in Section 4, and it
was shown that the data do indeed scale as predicted in the large-x regime, with the persistence
length {, ~ exp[drr/3]. We have therefore been able to resolve the long-disputed question
regarding the universal factor in the exponential x-dependence of the persistence length in
favor of the field-theoretic result [5-7].

The weak breakdown of scaling is not unexpected in view of the fact that the renormalization-
group calculations indicate that the theory is asymptotically free. What is needed now is a full
field-theoretic calculation of both the correction term and the accompanying scaling function,
which takes into account the Fadeev-Popov determinant and the Liouville factor discussed
in reference [17]. It would also be of interest to compare the results of a calculation of the
specific heat with simulation results. This would allow a more precise comparison of theory
and simulation and give further insight into the quality of the operator discretizations.
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