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PACS.47.55.Kf Multiphase and partiale-Iaden flows

PACS.83.10.Pp Particle dyuamics
PACS.83.70.Fn Granular solids

Abstract. We discuss theoretically trie filling of
a

(two-dimensional) silo when a mixture

of partiales is poured at the ceuter. Our basic tool is
a

coupled set of equations (for the Iocal

density of rolling species, and for the profile) proposed by Bouchaud et ai. We extend this to.

a pair of species, including various processes: amplification, capture, and exchange of rolling
grains. Using the simplest form of the resulting equations, we

obtain predictious for the steady

state profile and for the concentration distribution. At the bottom side of the slope, we generally

expect to have complete purification. Near this point, the concentrations should show unusual

power Iaws.

Résumé. Nous discutons ici le remplissage d'un "silo" (bidimensionnel) quand un mélange

de grains est versé au centre, à débit constant. Notre point de départ est la description à deux

variables couplées proposée par Bouchaud et ai., où figurent la pente locale et la densité locale

d'espèces roulantes. Nous étendons d'abord cette description à
un

mélange de deux populations,

en incorporant divers mécanismes: amplification, capture, et échange. Ensuite, après
avoir

réduit

la description à une
forme minimale, nous pouvons prédire des profils de pente et de concen-

tration. Au bas de la pente, on attend en général une purification complète: une seule espèce

doit être présente. Près de ce point, on attend des profils exhibant des exposants non triviaux,

dépendants des constantes de couplage.

1. General Aims

1-1- A REMINDER ON SURFACE FLows. Avalanches are fascinating [1,2]. An under-

standing of trie simplest case (avalanche of a sand pile) bas progressed significantly when trie

necessity of using two distinct degrees of freedom became clear: namely a local slope Ù(x, t),
and a local density of rolling species Rif, t). This was first appreciated (in a slightly dilferent

language) by Mehta et ai. [3-6]. A lucid discussion was given by Bouchaud et ai. [7,8]. Some

of their conclusions (in particular conceming trie "spinodal limit" for trie slope) are still open

for discussion [9]. But trie basic equations, in their simplest form, are clearly valid. For trie

one dimensional problem depicted in Figure 1, trie rolling species is ruled by:

~~
=

i(Ù Ùr)R +
~~~ Il)

(*) Author for correspondence
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Fig. l. Steady filling of a two-dimensional silo by
a source.

Only the left half of the silo (0 < ~ < L)

is represented. The nght half has
a symmetric profile.

where Ùr is trie angle of repose: trie first term describes capture if < Ùr, and amplification
if 6 > 6r. Trie constant i bas trie dimensions of a frequency, while R bas trie dimensions of a

length (trie "equivalent solid thickness" of the rolling species). The second terni in equation il
describes convection at a certain rolling velocity ~. Diuiensionally (for 6r

r~
1) we expect

u~
r~

gd and 1 +~ ~
Id, where d is trie diameter of one grain.

Trie profile h(z, t) satisfies trie conservation law:

=
-i(6 6r)R (2)

and is related to the angle 6 by:
)

=
tan

+~
(3)

(In ail our discussion, we ignore the dilference between and tans).

1.2. FILLING oF A ONE COMPONENT SILO. An interesting application of this picture is

described in Figure 1, where a
(two-dimensional) "silo" is filled from a source, providing a

quantity 2Q of matter per unit time at some central point ix
=

L), or equivalently a quantity
Q in trie left half section (0 < z < L). A steady state builds up, and follows trie following
equations (for the left half):

= W =

j
(4)

0
=

~~
= ~

)
+ i(0 0r)R

= ~

)
w là)

The boundary conditions are:

J~ix=o)
=

o (6)

J~(x
=

L)
=

Q/~ (7)

Equation (6) expresses the requirement that all rolhng species be stopped at the bottom end.

Equation (7) states that all the source is sent in the form of rolling particles.
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The solution of equations (4, Si is simply:

R
=

~~ (8)
~

Ù~Ùr
"

~) l~~jl (91

Thus the slope is nearly equal to 0r
m most of the sand pile. But there is an inner region, near

the bottom end, where the profile flattens ont. This inner region has a size of maybe 10 times

trie grain diameter d, and is hardly observable.

1.3. MIXTURES. Trie above results (8, 9) are not very surprising. But a question imme-

diately arises. If a certain polydispersity lin size, or in shape, or in surface properties) exists

in the powder, will this alter seriously the profiles? Segregation in granular mixtures is a ma-

jor phenomenon [10-14] (and is often a great practical nuisance). It has led to a number of

theoretical essays [15-18].
A special attention has been focussed on 3-dimensional systems, such as a rotating cylinder,

where granular mixtures display remarkable striations along the axis [19-23].
Our aim here is to understand first the (seemingly) simpler problem of two dimensional flows.

Our attention was drawn to this case by a remarkable experiment performed in a "granular Hele

Shaw cell" two transparent plastic plates, separated by
+~

3 mm, form the two-dimensional silo,
and a uiixture of "red sugar" and "white sand" (with slightly dilferent grain shapes) is poured

at one point [24]. A steady state profile builds up, but it shows unexpected oscillations! Layers
of white and red powder appear successively. The authors of reference [24] have uiodeled their

systeui through a cellular autouiaton, and provide a plausible explanation for trie oscillations.

However, it is useful to couipleuient trie cellular automaton approach by a direct analysis of

collisions and transport.
Here again, our attitude is to retum to trie siuiplest probleui: filling of a 2d cell by a granular

uiixture as described by equations (1-3): and looking first for steady state solutions, without

any oscillation. This turns ont to be, in itself, a rather rich subject: downhill segregation is

predicted to be iuiportant, and uiay lead to reuiarkable elfects.

In section 2, we construct the phenouienological equations for coupled flows of two granular

species. This introduces a priori a rather large nuuiber of unknown functions, describing the

varions processes (amplification, capture, exchange)
as a function of slope and concentration.

Fortunately, they cari be reduced to a relatively small nuuiber of phenouienological parauieters.

In section 3, we attack thé filling of a silo (in steady state). When thé collision features are

simplified to trie utmost (trie "uiinimal uiodel" ), we arrive at very couipact equations for thé

local slope and trie local concentrations. Finally, we solve these equations and find trie profiles.
Near trie bottom end, they show some interesting singular power laws.

One important feature of our approach is that it is Rot re8tricted ta mixtures of 8pheres: trie

case of two populations of spherical grains, dilfering only by their size has been often discussed,

but is somewhat special, because the angle of repose of each pure component is the same. We

are particularly interested here in trie opposite case, where the angles are dilferent.

2. Coupled Flows

2.1. GENERAL PRINCIPLES. Dur grains belong to two species:

trie "up" species (Î) which is sticky and has a large angle of repose 0io,
the "clown" species (Î) which is less sticky and bas a suialler angle of repose 0

io.
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It will be convenient to assume that the dilference between the two species is not too large:

m particular, we want the angular dilference
~fi =

0io 010 to be small. This will imply that the

profiles always occur in a narrow angular region; then, certain phenomenological coefficients

can be taken as independent of angle in this region.
In trie "solid" phase (just below trie rolling species) there will be volume fractions 4li ix, t)

and 4~1lx, t) of trie two species (4~i + 4~1 e 1) while in trie rolling phase, trie local densities will

be called Ri, Ri.
Trie conservation equation gives:

Rlcoii
=

[Ri + Ri)lcoii
=

-h i10)

where trie dot denotes a time derivative, and É(~oji denotes trie contribution to É due to

collisions with trie solid surface.

We can also write separate conservation equations for each species:

Rn(~oii
=

-4lah (il)

where a denotes Î or Î.
Trie rates will be described by a collision matrix ù:

l~a(colt
" ÀloEfll~p (12)

(where summation is performed over repeated indices). Trie elements fifap depend on the local

slope 0, and on trie concentrations 4ln. It is often convenient to write clown trie total rate É(~ojj
in trie form:

Élcoii
=

MiRi + MiRi l13)

where:
Mi

"
Mii + Mii

(i4j
Mi

"
Mii + Mii

Finally, trie transport equations for trie rolling species will then bave trie form:

ÔZ

where ~i, ~i are trie rolling velocities for trie two species. They can be taken as
iàdependent

of trie slope 0 since
~fi

is small. On trie other nana, they may depend on 4li, Ah.

2.2. STRUCTURE OF THE COLLISION MATRIX. Let us restrict our attention to binarg
collisions between one rolling grain and trie immobile grains on trie solid surface. Possible

events are listed in Figure 2: they correspond to amplification, recoil, exchange, and capture.
ai amplification: the process where the two outgoing particles roll clown, and both of them

are Î la
=

Î in Fig. 2a) will contribute a term of trie form ai (6)4liRi to hi
(~oii. Trie analog

process where trie collision is between a Î and a Î particle gives a contribution xi (6)4liRi to

Ri (~ojj,

b) recoii does not contribute to ha
(~ojj,

ci ezchange contributes a term vi (6)4l iRi to hi (cojj, and a term -yi(6)4l iRi to hi (cojj,
d) capture gives a term -bi(6)Ri

m
hi

(~ojj.
All our functions an(0), b~(0), za(0), yn(0) are positive: a~(0) and zn(0) are expected to

mcrease rapidly with 0, while bn(0) is a decreasing function. Ultimately, we shall write:

Mii
=

[zi(0) + yi(0)]4l1
= m14~1 (16)
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Fig. 2. Various "diagrams" contributing to trie rate processes involviug two rolling species ii) and

ii). The discussion
is

restricted to binary collisions between a rolling grain (here,
a Î grain) and one

immobile grain m the heap (which may be or j): a) amplification: two (Î) grains roll out, b) simple
recoil (no effect on the rates), c) exchange, d) capture.

and we shall omit trie angular dependence in ma, since it is always positive m
trie narrow

angular interval of interest.

Let us now tum to trie parameter Mi
=

Mit + Mji. This is more delicate, because there

are positive and negative contributions. We shall write:

Mi e a14li + m14l1 bi y14l1

=
ii16-611 Ii?)

Here, ii and 61 are still function of trie concentrations 4ln, but they are expected to be positive
and smooth. In particular 61(4l1

=
0)

=
610, trie equilibrium angle for trie pure ii) species. In

one limit, trie significance of 6j becomes particularly siuiple: if we may neglect trie exchange

terni ici in comparison to the auiplification ternis (a + b); then it is plausible to put:

ail°)
=

zi(6)
=

mi(6) (18)

Then, the condition defining 6i, nauiely Mi
=

0, or:

Ùiai(Ùi) + Ùimi(6ij
=

bj6ij

reduces to:

mi(0i)
=

b(0i) (19)
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and is mdependent of 4l: in this case, 0i
=

0io all the time.

Equations (16) and (17) ultimately lead us to a collision matrix of the form:

ii (0 6i m14l1 mi 4li
ù

=
(20)

mi Ah 'fi (Ù Ùi) mi 4li

We call equation (20) the canonicai form of the collision matrix.

For many qualitative investigations, it will be useful to go even further, and to construct

a minimal form of the equations. We obtain this by setting yn(01
=

0, and postulating
equation (18). Then 0i and 01 are independent of concentration. Furthermore, we set:

m~ =mi ml
ii = ii =1 1211

~i = ~~ = ~

and we assume all these parameters to be concentration mdependeut. Most of our discussion

m the present paper is based on this minimal form. But for detailed applications, trie complete
canonical form will be required: this shall be discussed in a second paper.

3. Steady State Filling of a Silo

3.1. STARTING POINT. Here, we start from equations (10-12) using the minimal form for

the collision matrix. Just as in equation (4) we look for a steady state regime
Î

= w =
Q/L.

At the point of injection ix
=

L), we impose a certain ingoing flux Qi, Q
i

for each species.
This, in tum, fixes the amount Rn at this point:

~J~~ ix
=

Lj
=

q~ j~~j

Equation (5) is replaced by:

~)Ra
=

i1J~n
=

-MapRp 1231

We cannot directly integrate Rn from the first equality, because the concentrations 4~n will

depend on the position z. But we can mtegrate the sum, and recover a result similar to

equation (8):

R e Ri + Ri
=

ix (24)

3.2. EQUATIONS FOR THE SLOPE. Equation (13) con be rewritten as:

1° °1)Ri + 1° °1)Ri
"

-)
125)

giving:

~
~~~~ Î ~~~~ ÎÎ

~~~~

In our minimal structure, 01 and 01 are independent of 4~. It is then easy to dilferentiate (26),
using eqliation (23) to eliminate ôRn /ôz. We then get:

~t
=

0~ i~) 0 127)

where 6~(x)
is trie (local) weighted average:

i~
=

ôi~iix) + ô~~ ~i~j i~8j
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3.3. THE CONCENTRATION PROFILE Ah(z). Let us assume that we know trie local slope
0(z). This implies that we know trie running populations Ri ix) and Ri ix) via equation (25).
We can in fact simplify equation (25) because trie right bond strie (+~ w

Ii) is much smaller in

order of magnitude than the left nana side (+~ ~fiR
+~

~fiwz lu). Trie ratio of trie two is
+~

d/~fiz.
Thus whenever:

z » d/~fi (29)

we con replace equation (25) by:

(0 0i )Ri + là 01)Ri
=

0 (30)

Then:
0iRi + 61Rj

=
6R %

~

or equivalently:
Ri 6 6j

ÎÎ 6i~ 6
~~~~

À
~fi

We call the region defined by the inequality (29) the enter region. In the following text, we

focus our attention on this sector. Then we con obtain the concentrations 4la (xl by returning
to equation (23) in the form:

w4ln
=

MnpRp (32)

Combining (32) and (31) we arrive at very simple forms:

~
li~fi Ri Ri

~~
m R R j33)

~
i~fi Ri Ri

m R R

where Rn /R can, if desired, be expressed in ternis of 6 via equation (31).

3.4. THE ROLLING SPECIES Rn (z). The profile is completely described by 3 variables: Rn,
6 and 4ln. Equations (31) and (33) show that when we know only one of these variables, we

can immediately derive the two others. 0(z) coula be found by solving (27). We shall calculate

R~(z), in the outer region defined by the inequality (29).
Equation (23) for a =Î implies:

U

)~
=

W~i (34)

where 4li is given by (33):

4~i =
(1+r (

(35)

with:

r =

~~
(36)

This leads to a diiferential equatiôn for the proportion of ii) in the rolling phase Ri /R:

z£ l~
= r

1~- ~) (37)
z
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The solution is:

"

z~
r

138)
1 +

(-)
z

where zo is determined by the condition from equation (22):

1~~ ~~ QiÎQI

Finally we get:
R(z)

Ri (~)
Q jLj ~

~~Qi
z

j39)
R(~)

Ri l~)
" Q~ Z ~

~
Qi L

with Riz)
=

~~ (Eq. (24)).
~

3.5. DOWNHILL SEGREGATION. The proportion of the sticky particles (Î) decreases in the

rolling phase as trie particles go clown. How is trie mixture at the lower end of the slope, when

d/~fi < z « L?

.
If Qi/Qi(lfiL/d)~ < 1, trie lower end of the slope is nicher m

(i) particles than what we

pour at z =
L, but remains a mixture.

.
If Qi/Qi(lfiL/d)~ » 1, at trie lower end, we bave:

Ri
j Cf 1, 4~ioel

~1
~

Qi (Zjr ~
R QI L

~ (40)

ce o~+q~~l1(£j~
Q~ L

(41)

We then expect complete purification: the bottom part is being nearly a pure species. The

concentrations and the slope have a singuiar power iaw. The exponent r depends on the

structure of the collision matrix! In practice, we expect r +~ ~fi, thus
r would be rather small.

3.6. THE INNER REGION. What happens when z < rififi? It tums out that the calculations

can still be without the approximation (29); and we get simply:

J~
R(~)

Î ~ ~
r

~
~Î ~

~~

~ ~~~

i.e. a shift in the origin. Thus, in the inner region, for z < r(d/~fi), the concentrations and the

slope do not change any more, keepmg the value they had at z m
r(d/#). In practice, rd/~fi is

expected to be not much larger than trie grain size d; this eifect should not be measurable.
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4. Concluding Remarks

il Pouring Sand mixtures should automatically lead to a certain form of filtration: trie more

sticky species appearing near trie top, and trie less sticky species appearing as asymptotically

pure near trie bottom.

2) At first sight, one might bave expected exponential relaxations towards trie bottom state.

Rewriting the transport equation:

~~)~ =
-MapRp (42)

and M
+~ ~~fi + m, we would indeed expect forms such as exp -(~z) with a short characteristic

length:

_1 ~ d
~ '~M'~~fi

But this is not correct, because (in the outer region) the populations Rn, which are realised

locally, manage to satisfy the condition (30), or more generally:

Mi Ri + MIR1 % 0 (43)

We are using an eigenmode of the M matrix which gives very slow rates. Physically, equa-

tion (43) means that at each point, the system is nearly in conditions of 0 growth: the overall

mput Q does not influence the profile. Only the compositions Qn /Q matter.

3) When trie grains (Î) and (Î) are both spherical in shape, and ailler only in their diam-

eter, the equilibrium angles 61, 61 for trie pure species are equal. The main driving force for

segregation is then probably the diiferences in rolling velocities: large spheres roll more easily

over small spheres than the reverse. This elfect has been considered by Meakin [15] and by

Jullien and Meakin [17]. TO incorporate it properly in our presentation, we need to retum to

the "canonical form" of equation (18), allowing ~i # ~i (and also allowing these velocities to

depend on
concentration); finaIly incorporating the exchange ternis. This will be clone in a

forthcoming article (part II of this series).

4) Is trie steady state profile stable? Trie experiments of reference [24) suggest that it is

not: as mentioned in trie introduction in certain conditions, pouring a mixture of "red" and

"white" grains leads to a succession of red and white strata in trie 2d silo (actually in a ver-

tical Hele Shaw cell with thickness
+~

10d). In any case, it will be interesting to look for trie

linearised modes of fluctuations around our steady state solution. Here again, we shall need

trie complete canonical form.

SI Our mortel bas been applied here only to trie "2d silo". It is of course possible to transpose

it to rotating drums and in particular to trie thin rotating arums of granular mixtures studied

in Paris [25] and in Rennes [26]. We bave already constructed trie steady state profiles for Riz
in a rotating arum with continuons avalanche flows [9].

6) Even nominally pure granular materials may segregate m avalanche flows, whenever trie

grains are m tact slightly different in size or shape. This may cause some uncertainty in trie

definition of an angle of repose.
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