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Abstract. We consider
a

RG approach for the plasma of magnetic monopoles of the Ioffe-

Larkin approach to the t-J model. We first derive the interaction parameters of the 2+1 plasma
of magnetic monopoles. The total charge along the time axis is constrained to be

zero
for each

lattice plaquette. Under the one-plaquette approximation, the problem is equivalent to a one

dimensional neutral plasma interacting
ma a

potential V it
+4

t~, with
a =

1/3. The plasma is in

a
dipolar phase if

o > 1 and
a

possibility of transition towards
a

Debye screening phase arises if

o < 1, so that there exists a critical Fermi wave vector k/ such
as

the plasma is Debye screening
if kf < k/ and confined if kf > k/. The 2+1 dimensional problem is treated numerically. We

show that k/ decreases and goes to zero as the number of colors increases. This suggests that the

assumption of spin-charge decoupling within the slave-boson scheme is self-consistent at large
enough values of N and small enough doping. Elsewhere,

a
confining force between spinons and

antiholons appears, suggesting a transition to a Fermi liquid state.

1. Introduction

The physics of strongly interacting electron systems has received considerable attention over the

recent years, and it still bears many challenges, especially on the theoretical side. Among the

various methods and ideas which have been explored in this context, gauge theories seemed

to offer a rather attractive approach [1-7]. Their essence is to focus on the presence of a

non double occupancy constraint, which leads to a local U(1) symmetry if a slave boson

representation is used [1-3]. Although it is possible to derive these gauge theories from an

iaxpansion around a large N mean field theory of the t-J model [4,5], they could also be regarded

as promising candidates for an effective low-energy theory in order to describe for instance the

anomalous normal state properties of high-Tc superconductors. They seem to predict a phase
iiiagram for the single band t-J model which qualitatively ressembles the experimental ones for

copper-oxide superconductors [6]. Furthermore, they reconcile the existence of a large Fermi

surface corresponding to Luttinger's theorem, as shown by photoemission experiments, and the

anomalous transport properties, which are mostly governed by holes [6, ii. Thermodynamic

properties have also been investigated, and a good agreement with high temperature expansions

for the t-J model has been reached [8]. However, this work has also pointed out that fluctuations

of the gauge field are large, in the sense that the variance of the local statistical flux around
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a given plaquette is not small in units of 21r, even down to low temperatures. This feature

suggests that the presence of the lattice may not be inessential, since it induces a periodic
action as a function of the time and space dependent flux per plaquette. As demonstrated by
Poliakov, this periodic nature of the gauge field has dramatic consequences on 2+1 dimensional

electrodynamics since it allows for non trivial space time configurations of the gauge field

(monopoles), which induce charge confinement [9]. It should be emphasized that in the context

of the t-J model, the gauge field Lagrangian density is not the usual -(F~~F~" term, but it is

generated upon integrating out fermionic and bosonic fluctuations [3]. A perturbative estimate

of a single monopole action has also been derived in [3], and was found to diverge. However,

it is clear that some globally neutral configurations Ii. e. with the same number of instantons

and anti-instantons) have a finite action, and the main question is whether the corresponding
two-component plasma exhibits Debye-screening or not. This viewpoint has been developed

by Nagaosa [lo] where he assumed a dissipative-type action for the gauge field, which may be

relevant for the t-J model at small temperatures, since it requires a finite dc conductivity for

the fermions. His main conclusion is that no major instanton effect is present in the t-J model

range of parameter since the dissipative nature of the gauge field dynamics strongly inhibits

quantum tunneling. In the present paper, we address this question from a slightly different

perspective, with emphasis on the possible zero temperature transitions. By contrast to the

results of reference [lo], we find that assuming a Ioffe-Larkin form for the monopole plasma
action leads to a phase transition between a Debye screening phase (which corresponds to a

confining force between spinons and antiholons), and a dipole phase (leading to unconfined

spinons and antiholons). The control parameters are the band filling of the underlying t-J

model, and the number N of fermion colors (the physical case being N
=

2). In rather good
agreement with physical intuition, the dipole phase of the plasma is found at large N and

small doping. In this regime, spin-charge separation may then be a self-consistent hypothesis.
We note however that this leads either to a renormalized Fermi liquid or an anomalous liquid
depending on whether Bose condensation of holons occurs or not. In the other phase, the

gauge field cannot be treated perturbatively, and the corresponding mesons (bound states of

spinons and antiholons)
are physical electrons. By contrast, a transition to the dipole phase is

obtained in reference [lo] in the presence of an infinitesimal dissipation. The main difficulty of

the problem is the determination of the phase diagram of the monopole plasma which exhibits

long range interactions (in space and imaginary time). Furthermore, unlike the case of the

standard compact 2+1 electrodynamics, a strong anisotropy exists between space and time

directions, reflecting the lack of Lorentz invariance in the model. This reduced symmetry
increases the difficulty of real space RG analysis since the functional form of the monopole
interaction potential is not stable under a RG transformation. Our approach has attempted to

take advantage of the fact that the interaction is much stronger along the time direction, with

a
T~/3 dependence. The corresponding one-dimensional problem exhibits a phase transition

between a Debye-screening phase and a dipole phase. We argue and give some numerical

indication that the unbinding of the monopole-antimonopole pairs along the time direction

triggers a 2+1 dimensional unbinding, leading to a globally Debye-screening phase. The paper
is organized as follows: Section 2 defines the statistical problem of the monopole plasma. The

next section focuses on the o+I dimensional problem along a time direction, giving strong
arguments in favor of a phase transition. The extension to the 2+1 dimensional situation is

then discussed, leading to a phase diagram as a function of N and fermion filling, which is the

main result of the paper. The conclusion is dedicated to a comparison with previous work and

stresses open questions.
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2. Statistical Mechanics of the Monopole Plasma

As already stressed in the introduction, we shall assume a Lagrangian of the form

~ ~
~ ~"~~~ T

~"~~~ ~ ~~~ ~~~
~~~~~~

~~
~

~~ ~~~~ ~~~~~ ~ ~ ~ ~~~

i ~=l ~~~~~

~~
la ~+ h ~j 1 + b~b-tb e '~

i

j+ 'C' ~~
J

~J~~~~~
~ ~ 2

~~~~~ J

The fields cm (T) and bi(T) are respectively fermionic and bosonic, and they are defined on a

two-dimensional square lattice with continuous imaginary time. The hopping constants tf and

16 can be derived from a large N saddle point approximation of the one band t-J modei is, 8].
We shall from now on focus on the effective dynamics of the U(I) gauge field (a~, Ii ), assuming
that fermions and bosons have been traced out. As shown in the references [3, 6], the gauge
field action to Gaussian order is dominated by the fermion contribution at low doping, and

with the assumptions that the holons have not condensed. Keeping only the transverse part
which is responsible of the non-Fermi liquid behavior gives [3]

S~~(a, I)
=

T ~j (ei(k, ~a)~a~ + ~1(k, ~a)k~) bi,j
~~~

ai(k, ~a)aj I-k, -~a) (2)

wn=2«nT

~~
~ ~

In this equation,

~~ 2(~a) ~~~

for
)~a) < 2tfkfk, k < kf and ~1(k,~a)

=
tf/121r. The gauge field variables ar,r+n, where n is a

lattice vector and
r a lattice site are denoted in the continuum limit by an(r + n/2), in order

to define the two component field ai(p). The time component of a is identified with I. Most

of the time, we shall use the axial gauge ao =
o. Latin indices such as I and j denote spatial

components, whereas Greek indices correspond to arbitrary components. The quantities ei

and
~1 are derived with the approximation of a circular Fermi surface, and by taking the long

wavelength, small frequency limit of the fermion current-current correlation function. The

main drawback of this action is that the fundamental periodicity of the original action ii),
namely its invariance under a~ - a~ + 21r is lost. This periodicity allows for non-trivial space-

time configurations of the field corresponding to tunneling events where the flux threading a

given plaquette may change by integer multiples of 21r. Ioffe and Larkin suggest to express (2)

in terms of gauge invariant field strength F~~
=

3~a~ 3~a~, with ~ =
o,1, 2, and to replace

the flux par plaquette Fi~ by its value moduio 21r. This algorithm sounds quite natural on

physical grounds. However, (2) has been derived perturbatively for 'flat' configurations which

satisfy Faraday's law: 3~b~
=

0, where

b~ = je~~pf~p. (4)

After the field strength b~ is taken moduio 21r, it satisfies

3~b~
=

£ 27rn~b(r rz)b(T Tz), (5)

z
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where n~ are the integer charges located at rz,Tz. An ambiguity arises in extending the result

(2) to non trivial configurations. We may add to equation (2) any quadratic form

T ~j / ~~~
C(k, ~a) (~a~b(k, ~a)b(-k, -~a) k~e ilk, ~a)ei(-k, -~a)) (6)

~~

I27r)~

without changing the result on "flat~' configurations, but the action for non trivial configu-
rations will depend on the kernel C(k,~a). In (6), ei and b denote the transverse part of

the electric field, and the magnetic field respectively. We also note that the perturbative
evaluation of the fermion loop generates only the function ei(k,~a)uJ~ + ~t(k,~a)k~. Physical
intuition suggests that ~1(k, ~a) is identical to the static diamagnetic susceptibility in the ~a -

o

limit. This determines the two functions ei(k, ~a) and ~1(k, ~a) as given above, and with such a

determination, (2) becomes

S~~(a,I)
=

T~j / ~ ~ ~ei(k,~a)ei(k,~a)ei(-k, -~a) + ~~1(k,~a)b(k ~a)b(-k, -~a). ii)
2~)2

2 2 '

Equation ii) is then extended to non-trivial configurations thus lifting the ambiguity in the

choice of the kernel C(k,~a). But if the procedure seems perfectly sound at low frequencies,
the separation between the electric and magnetic parts is less obvious to access at higher
frequencies. In the bulk of this paper, we assume that this procedure is valid. The action for

a many monopole configuration with a topological charge q(r, T)
=

+2~ is then given by

~~~~~~~
~° /

(~/2 ~~~'~°~ ei(/~)jj~~~~/~i)k2 ~~ ~'
~°~~ ~~~

where q(k,~a) is the Fourier transform of the charge density, namely

#
q(k, Ld) "

dT ~j
e

~~~ ~~~~~q(r, T), (9)

~

where r is a lattice site. More specifically, this gives

~~~~~~~ ~~~ ~° / ~~~2 j~()~~~ j jj
~~~~

~" 1° 1° + j

In this formula, the global factor N has been added. It is simply the number of fermion colors

in the large N approaches. Rescaling energies and frequencies by setting tf
=

+I, the model
depends only on two dimensionless parameters, N and kf. Assuming a circular Fermi surface,
the maximal value of kf corresponds to 1/2 electron per site for a given color, which gives

~~ < j~~)1/2
the

monopole
plasma

action. Developing an analogy with sephson nction
arrays~

and

mphasizing the dissipative nature of the gauge field, Nagaosa has also considered

action [lo]:

Sd;ss
=

j /[
dT j~ dT' L

j~
~~~~ ii CDs jai jr, n, T) alit, ~,

T')ii iii)

~~
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for the dissipative part of the gauge field dynamics. As shown in reference ii ii, it is possible to

map it into a statistical model in some regimes, but mostly a bidimensional model is obtained.

'The key variables are the winding number m(r, J1) along the time direction:

al (r, n, fl) al (r, n, o)
=

2~m(r, n) + u(r, n), (12)

with u(r, n) El -1r,1r] and m(r, n) and integer. It seems that both approaches respect the 21r

periodicity and the quadratic expansion of the gauge field around
a =

o. In the absence of a

1°ully first principle derivation, we shall adopt equation (8) as a working hypothesis, and hope
i~o clarify this issue in a future work.

Going back to equation (lo), it is important to stress that for any k value, the
~a

integral
<iiverges if lim w-oq(k,~a) is non vanishing. Therefore, we shall impose a constraint on the

;illowed topological charge configurations, namely that q(k,
~a =

o)
=

o for any k. In real space,
it means that

P
dTq(r, T)

#
0 (13)

l'or any plaquette located at r.
The partition function of the plasma is then

z
=

f jj /~ ~~ ~j x(ri,..
,

rn) exp

-
~j q~qjv(ri rj, Ti Tj (14)

n=o
(~~~~

=1~

° ~
r,

~
i,J

)in this equation, r~,Ti denote the space-time coordinates of the monopoles with topological
charge qi. We set q~ =

21r if1 < I < n and qi =
-21r if J1+1 < 1 < 2n. x2»(ri, ..,r2»)

expresses the constraint and x =
I if for any r we have

2n

qi~r
r

"
0. (IS)~

' '

i=I

The interaction potential v(r,T) is obtained by Fourier transform of equation (lo)

~~~'~~
"

S~( /
R

i~oi

i~oi
+ ~ik131' ~~~~

with ~ =
l /6kf (we set tf

=
I). An important ingredient in (14) is the imaginary time scale To

which is obtained by calculating the ratio of the two Gaussian determinants in the presence and

in the absence of an instanton. We have carried out this calculation for the broken parabola
model of Ioffe and Larkin, which leads to

o ~~ ~~~ ~~~2 i(k,~a~~(
+ ~tk2

~~~

~~~~

wn

The interested reader will find a derivation of this result in the appendix. We note that the

integral is divergent at large frequencies. This may be another signal that we have not yet
l'ound a satisfactory derivation of this monopole plasma action. Since this To depends on the

l'ull non linear action of the gauge field, which is still unknown, we shall assume it equal to unity
in the following discussion (since we have used tf

= as energy unit). The following sections

are now dedicated to an analysis of the classical statistical system given by equation (14).
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3. Monopoles in Dimension 0+1

We deduce from the interaction (16) that the interaction between two monopoles is

Nt / d~a / d2k
CDs jk r) CDs jk

r + ~aT)
~~~~~~~'~~

" S G W
lLdl llLdl + ~lkl~)

We have shifted the interaction by an infinite constant so that the pair interaction between

two monopoles is finite. The energy of a configuration of monopoles satisfying the neutral-

ity condition fq(r,T)dT
=

o is finite and does not depend on the regularization of the pair
potential.

From now on, we are interested in the quantum problem at zero temperature, so the system

is infinite along the imaginary time direction. We shall now use fl
=

Nt/12~ to denote the

inverse fictitious temperature of the monopole plasma, which should not introduce confusion.

The two parameters associated to (18) are ~ =
1/6kF and the prefactor fl. The interaction

(18) decreases as the distance )r) between two plaquettes increases. In order to have an idea

of the interaction ranges, we calculate the interaction V(r, T) as a function of T
for different

values of the interplaquette distance. We first rearrange the expression (18) using the change
of variables u = ~aT and q =

(~T)~/~ k. We obtain

lvirT)
-

SF
li~lll/~ i19)

with

F(x)
=
/~~ d

j j~" d~t ii
CDs ~)

°
~~ ~ ~~

-m

2~ )~)()~) + q31'
(2°)

We plotted in Figure 1 the interaction for different values of the interplaquette distance )r).
In a first approximation, we take into account only the one-plaquette interaction along the

time direction. In Section 4, we renormalize the bidimensional problem with a cut-off for the

distance between two plaquettes.
The interactions of the one-plaquette problem are simply V(T)

=
-T~/3F(o) /~~/3 We look

for the phase diagram of the potential V(T)
~w

-T° in one dimension as a function of the

exponent a. Fortunately, some exact results concerning the phase diagram of one-dimensional

systems with long-range interactions are available [12]. The main result shows rigorously the

existence of a finite temperature phase transition for the ID ferromagnetic Ising model if the

coupling J(n n')
cc 1fin n')~, with < ~ < 2 [13]. To some extent, these results can be

transposed to generalized Coulomb gas models, by considering a representation of the Ising
model in terms of kink and antikink configurations. The potential energy for a single kink-

antikink pair is then proportional to in n')2~~,
n and n' being the locations of the kink

and antikink. The Ising and corresponding Coulomb gas problems are however not equivalent
since the Ising model generates only rather special configurations where kinks and antikinks

alternate. We expect intuitively the unrestricted Coulomb gas to be less ordered than the

corresponding Ising model. By ordered state, we mean the dipolar phase. As a result, an

unrestricted generalized Coulomb gas with V(r)
cc r° is expected to have a high temperature

Debye-screening phase if o < I. The fact that a =
I (the lD genuine Coulomb potential) is

the borderline is confirmed by several exact investigations [14,15] showing that this system is

always in the dipolar phase at any temperature. Our problem is a special case, with a =
1/3.

We shall now attempt to estimate the transition temperature to the Debye phase. It is then

tempting to use a real space RG analysis along the lines of references [16-18]. For instance,
the Coulomb potential in any dimension d in

=
2 d) has been analyzed in reference [18].
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Fig. 1. Interaction potential V()r),T) of equation (18) for kf
=

4 and for different values of the

interplaquette spacing
as a

function of the time coordinate. The notation (0,0) corresponds to )r) =
0,

(1,0) stands for )r) =1, (1,1) stands for )r)
=

land (2,0) stands for )r)
=

2.

For d > 2, the system is always in a Debye screening phase, whereas for d < 2, there exists a

finite temperature transition. We note that this simple RG analysis still predicts a non trivial

fixed point for d
=

i and a =
1, in discrepancy with the exact results of references [14] and [15].

But as d is decreased from 2 to 1, the unstable fixed point is found for higher values of the

plasma fugacity, so that the dilute approximation leading to the RG equations is no longer
valid. Hopefully, a =

1/3 is not too large, so the usual RG procedure is consistent.

In order to analyse the one plaquette problem, we wish to treat the more general problem
of the generalized Coulomb potential V~ in one dimension. We show that if

a < 1, the plasma

has a Debye phase. We call Z~ the partition function of the plasma with a minimal separation

T
between the charges, which position iS allowed to vary from x =

0 to x =
L. For a neutral

system of 2n particles, this defines an integration domain denoted D2»(L,dT). We wish to

perform one renormalization step, that is to express Z~ as a function of Z~+6~. To do so, we

write Z~ under the form

zr
-

(~ S
~

Ill ~P.idT)~ ~~~~~~,~+~~~ an dr2(m-P>WB in r2(m-P)

P L

x
fl dp12 cosh (flqTE(pi) ). (21)

1=1

We have introduced a fugacity denoted by
z =

KT. In this equation, we have taken into account

p dipoles with their center of gravity located at pi Ii
=

I,.. ,p) and with a size between T
and
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T + dT. WB is the Boltzmann weight of the 2(m p) remaining isolated charges located at

ri, ,r2(m-p). E(p) is the electric field at p, created by the 2(m p) isolated charges. More

specifically,

WB (Tl T2n)
" eXp

-P
~j qiqjv~,r (Ti Tj

,

(22)

it

with

V~,,(r)
= (~~

~ l)
,

(23)
O T

and

~
o-I

E(p)
=

~j q~T7pV~,~(p ri)
=

~j ~~ ~
~ (24)

T T
i 1

The p dipoles are assumed to be independent. The integration over the dipole coordinates pi
must take into account the position of the other charges located at ri;. ,r~j~_~~. We expand

the cosh in (21) up to second order in the electric field, and we write

/2
cosh flqTE(p))dp

=
2L + q7(ri,

,
r2» ), (25)

~

where we have used the notation n = m p and where the integration domain takes into

account the presence of a hard core condition. We first need to determine the function q?. To

do so, we write

/~
~ ~~~~ ~~~~~~~~~~~

~
~(X~+1 Xi 3T)

i=1

26)

x /~'~~
~~~~

dp

2
+ fl~T~q~ ~j ~j qjqkv~(P XJ)i~~(P ~k~

~,+2r/2

~~ ~l

If we take only the two-body interactions, and the thermodynamic limit, the expression of ~J
takes the form

q7(ri,
,

r2n)
"

-3T(2J1) + lim fl2q2

£
qiq~ /~ dp ~ ~~

~ ~
~ ~~

~

(27)
L-+m

~ T T
I#J

x sign((p r~)(p
j))fl~ ~ ~~

~)fl~
~ ~~ ~)

~ 2
~ 2

+
~j

q~ /~ dp ~ ~~
~~~ ~~

fl
~ ~~ ~

~
0 ~ ~ 2

The L
- +oo limit exists provided the system is neutral and o < 3/2. Indeed, the 2J1 charges

create a dipolar field at large distances which decays as
p°~2

or faster. Taking the square gives
the upper bound on a for long distance convergency. This property also enables us to shift

variables and recast the previous expression as a sum
of pair contributions which all converge
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separately. We thus obtain

i2(~l
,

~2n)
"

~3T(2~) + fl~q~ ~
qiqj /~~ dp l~ ~~

~
~ ~~

~

(28)

1#J ~"
~ ~

x sign((p ri)(p rj ))fl ~ ~~ ~
fl

~ ~~ ~

T 2 T 2

~~ ~~
~~~ ~

~ ~
~~ ~~

~

After some rather simple calculations, and extracting the dominant behavior, we have

2a-1

q7(ri;.
,

r2n)
"

fl~q~T £ q~qjc(a) ~~ ~~ 2J1T (3 + (c(a) + d(o))fl~q~) (29)

z#j
~

The coefficients c(a) and din)
are given in terms of the Euler B function:

cia)
= ~j° j (~Bia, 2ji a)) Bin, a) 130)

din)
=

~ ~)~~ ~

2a-1 2
(31)

We note that
q7

has the dimension of a length, so that Z~ is dimensionless. The scaling
equations are now obtained and read

~ ~~ ~
= a + 2(2a 1)c(a)K~T~flq~ (32)

d In T

~u~ ~~
~~ ~ ~~~°~ ~ ~~°~~~~~~~ ~~~~' ~~~~

and the interaction function is modified by

1
~~~° ~~~~°~~~~~~~~

2a~-
1

~~~ ) l ~

~)l' ~~~~

where /h is the particle separation. These equations are obtained by imposing the normalization

constraints V(T)
=

0 and

~~
(/h

= T)
=

-1. (35)
d/h

Since the fundamental form of the interactions is preserved only for the Coulomb potential
la

=
I), these prescriptions are meaningful mostly near o =

I. In the case a =
1, we recover

Kosterlitz's RG equations as derived in [18]. We note that the second term in the r.h.s. of

equation (33) is not given in [18], but it does not change the critical behavior. Its meaning
is a natural reduction of fugacity because of excluded volume effects. The structure of these

equations, and in particular, the fact that a > 0 and 2(2a -1)c(a)K~T~flq~ < 0 shows that

the model keeps a finite temperature transition, and that the size of the Debye screening phase

increases as a decreases. Coming back to our problem, a is fixed to 1/3 for the single plaquette
problem. The interaction strength is larger if N increases and if ~ decreases, so if kf increases.

The dipolar phase is then expected at large N and large electron filling, in agreement with the

physical intuition that spin-charge separation is more likely to occur in the vicinity of the Mott

insulator and in the large N limit. This defines a critical Fermi wave vector k/(N) such that

spin-charge separation occurs for kf > k)(N). The aim of Section 4 is to obtain quantitative

results for the variation of k/(N) with the number of colors N.
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Fig. 2. RG trajectories for N
=

and different values of the Fermi wave vector. The time coordinate

is compactified
on a circle of length 400. We took

T =
I. Some trajectories cross each other. This is

due to the fact that the potential (19, 20) depends explicitely
on i and thus

on
the initial conditions.

We have plotted the square of the fugacity fugacity z~
=

K~T~
as a function of the effective inverse

fictitious temperature of the monopole plasma. The dipolar phase corresponds to the fixed point
(fl, z)

=
loo, o) and the Debye screening phase corresponds to the fixed point (fl, zj

=
lo, oo).

4. Monopoles in Dimension 2+1

We now consider the 2+1 dimensional problem. The derivation of the RG equations is a

straightforward generalization of what has already been done in the 0+1 dimensional case. The

potential V(r, T) is given by equations (19) and (20). We use periodic boundary conditions in

time, with a period L. This regularization will also be used in the numerical calculations. Small

dipoles (with a length between
T

and
T + dT) can only be parallel to the temporal direction

since we require the local neutrality condition f q(r,T)dT
=

0, so that the cut-off
T is only

introduced in the temporal direction. The function
~J is given by

L /2

§7(Tl tl, T2nt2n)
"

2fl~q~T~ ~j ~j
qj qk dT30 V(0, T)30 V(Tk Tj T, l~j,k T)

r J#k

~/~

+2fl~q2~2 ~

L/2~ ~
~~ ~r/2 ~~~~~~'~))~ dT. (36)

In this expression, the summation over r is a summation over the plaquettes which contain

the small dipoles (with
a separation in the temporal direction between

T and T + dT). /hj,k is
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Fig. 3. Critical Fermi
wave vector as a function of the number of colors. The errorbars indicate

the precision in the location of the fixed point. The dashed line indicates the maximal value of the

Fermi wave vector (@).

the difference between the time coordinates of the monopole j and the monopole k. As in the

expression (27), the integration over the time coordinate of the small dipole contains a hard

core condition. We evaluated numerically the integrals in (36), and took into account only the

potentials V(r, T) such as (r( < A, with A
a lattice cut-off. The RG trajectories are plotted

in Figure 2 for different values of the Fermi wave vector. Notice that some trajectories are

free to cross each other since the potential depends on the initial conditions via i. We can

check the validity of the predictions of the 0+1 dimensional approach: if kf < k), the plasma
is deconfined whereas it is confined if kf > k). For a one-color model, we find k/

=
0.5 ~ 0.05.

However, the Fermi wave vector is bounded above by @ since there is less than 1/2 electron

of a given color per plaquette. We conclude that there exists a transition even for the one-color

model. We now adress the question of the N colors monopole model. The action is simply
multiplied by N, inducing a change in the initial conditions of the renormalization procedure.
We plotted in Figure 3 the critical Fermi wave vector k) as a function of the number of colors.

We see that for N
=

2, which is the case of physical interest, that a possibility of a non Fermi

liquid arises as the doping increases.

5. Conclusion

To conclude, the main result of this investigation is the possibility of tuning the microscopic

parameters of the model (here the number of colors and the filling factor) in such a way that

confinement between spinons and antiholons arises or not, depending on these parameters.
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Using a different approach, it had been previously claimed that the Ioffe-Larkin type of plasma
relevant to the t-J model is always in the dipolar phase, so that spinons and holons have a

chance not to form a Fermi liquid [10]. It is true that our plasma action (Eq. (10) is obtained

from the simplest fermion loop, without dressing the fermion Green's function, and this may

be the source of the difference between the results. We were guided here by the very strong
anisotropy of the intermonopole potential, making it much stronger along the time direction,
and requiring the neutrality constraint for each plaquette along the time direction. Our intu-

ition is that screening may only be more effective if the two spatial dimensions are added to

the one plaquette problem, thus weakening the strength of the large distance inter-monopole
interaction. We hope that these ideas may lead to a more rigourous approach, and possibly
Monte-Carlo studies of this plasma. Moreover, we have also presented arguments showing that

a satisfactory microscopic derivation of the plasma action is still missing. One difficulty is

connected to the ambiguity present while implementing the necessary periodicity requirement
from a perturbative calculation which by essence assumes "flat" field configurations. A second

one, and maybe related to the previous remark, is the diverging bare fugacity which results

from the Villain-type treatment developed in the Appendix.
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Appendix

Derivation of the Monopole Fugacity in the Iolfe-Larkin Approach

We start from the quadratic action in the transverse subspace

S
=

) ~ ~ ciik, w)eiik, w)en-k, -w) + ~bik, w)bi-k, -w). 137)

~ k

In this expression, b is a scalar field and ei is related to b by the Faraday equation

wb(k, w)
=

k x ei(k, w) I. (38)

Suppose we consider an instanton located on a given plaquette To at time To- The idea is to

replace b(r, T) by b(r, T) 21r9(b(r, T) ir)br,r~. Minimizing over transverse configurations of b

leads to the instanton profile

~~~~'"~ ~ci(k,$1~2~ ~tk2~~~'"~ ~~~~

~~~'"~ ~ ~ci(ij)j~~lk2 ~~~'"~' l~°~

Here, q(k, u~) =
2irexp (-I(k To + wTo)) is the corresponding topological charge density. The

fugacity is obtained from considering quadratic fluctuations around the single-instanton solu-

tion and integrating them out. We have to single out the zero mode which corresponds to a

global translation along the time direction of this solution. This is a standard procedure, and
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we just quote the result [19]

A fl lo) ~/~

~
@ fl~~j c~

~~~~

In this formula, A is the norm of the zero mode function

j~ ~~ __

°blr, T)
~~~~

' oT

Ftom equation (40),
we obtain

1/~
jn ~4

~ ~~~
N~

(
(ci(k, w)w2 + ~tk2)2

~~~~

,"

The second term is related to the ratio of the product of eigenvalues of the Hessian matrix

in the vacuum and in the presence of the instanton. In the denominator, it is necessary to

exclude the zero eigenvalue coming from translation invariance. The Hessian matrix is found

by expanding the action (37) with the shift b(r, T) -
b(r, T) 21r9(b(r, T) ~), up to quadratic

order in field deviations bb(r, T) around the instanton solution. Written in Fourier space, the

quadratic part of the action is

b~S
=

~(~jA(k,w)bb(k,w)bb(-k,-w) (44)
~

Sk,w

( ~ ~j ~j e~~l~~~')~°+1"~"')~°lbb(k, w)bb(-k', -w').
° S k,~ k,,w,

We have used the notations A(k,w)
= ~t + ci(k,w)u~~/k~, and

hi
" )lT0,T01' 14~)

where b is the instanton profile. The eigenmodes corresponding to equation (44) are obtained

from a rational secular equation since the scattering potential is separable. This equation reads

(hi N~
(

e
A(k, w)

~' ~~~~

From the structure of this equation, it is possible to derive the determinant ratio as

fl ~1°) (hi N~
(

(ci (k, w)w2 + ~tk2)2
~~~~

~~~ ~~ ~~~ ~

,w

~~

Using equation (41), and the expression for A leads to K
= (~t(b[( )~/~ Ftom equation (40),

we

finally get

~

i/2

~ ~~
~~

~j ci(k,
)w2

+ ~tk2
~~~~

,"
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