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Abstract. We study an interface moving in
a

diffusion-field in the high~speed region around

unit-supercooling- A tunable relaxation term in the diffusion equation allows us to obtain
non-

singular stationary solutions for arbitrary growth rate. We find
a change-over between KPZ and

Kuramoto-Sivashinsky type behavior, and a discontinuous transition between the latter and

compact seaweed growth morphology which develops logarithmic singularities in finite time in

qualitative agreement with computer simulations of the fully time dependent moving boundary
problem in two dimensions. A special multiple-scale analysis near absolute stability yields

an

equation for the interface profile which reduces to the Kuramoto-Sivashinsky equation and
an

equation known from directional solidification in some
limit

Introduction

Pattern formation in nonequilibrium systems [1, 2] typically occurs when two possible phases
of a system are driven out of coexistence so that one of the phases grows at the expense of

the other phase. Implicitly it is assumed here that the two phases do not mix perfectly but

are separated by an interface which moves during the growth. Some of the basic questions one

would like to answer in this context concern the kind of structures that can be formed by such

an advancing interface and how the structures and the conditions under which they are formed

can be characterized.

The growth of a crystal from the melt or from a solution is a typical example for such

a pattern forming process. This type of phase change usually requires the transport of at

least one conserved quantity, the solute material or the latent heat of solidification, which is

transported via diffusion. This is the so-called Stefan-problem [3] or moving boitndarg problem.
It is known since about three decades [4] that a nucleus of the new phase growing at the ex-

pense of the unstable phase becomes unstable as its radius becomes bigger than a few times the

critical radius. If the surface tension is anisotropic, for example due to crystalline anisotropy,
it is generally believed that the nucleus finally deforms into a dendritic pattern like a snow-

flake [2, 5]. The limit of vanishing anisotropy, however, is much less clear.

There has been a recent attempt to formulate a theory [6, ii for the fundamental morphologies
and the most relevant parameters controlling their appearance.

(*) Author for correspondence (e-mail: t.ihle@kfa-juelich.de)
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1. The Dilfusion-Relaxation Model

We will use a modification of a standard model for solidification. The model describes diffusion

of heat or of a chemical component in the bulk of a two-phase system such as a
freezing solid

in contact with its melt. The interface is assumed to be in local thermal equilibrium, the liquid
far ahead of the solid-liquid interface is supercooled. The boundary condition at the advancing

interface is influenced by the structure of the moving interface, which is also changing with

time. This makes the problem highly nonlinear. Since the actual shape and position of the

boundary is not fixed, a further condition is needed. This is the respective conservation law for

heat or matter at the advancing interlace: For a liquid-solid transition latent heat is released

during freezing, which must be transported away into the supercooled liquid by a diffusion

current. The gradient of the diffusion field at the interface accordingly is proportional to the

local speed of advancement of the interface. We discuss here a modified version of the so-called

one-sided diffusion model [2,14,17] where diffusion is only considered in the phase ahead of the

advancing interface, in order to keep the equations as simple as possible.

~~~~'~'~~ ~~~~~~~'~'~~ ~~~ ~~~

u)
=

/h do K pun (2)

vn =
-D fi i7us (3)

(1) is the fully time-dependent diffusion equation ii.
e. without quasistationary approximation

[17] ), (2) is the boundary condition for the diffusion field u at the interface, at infinity one has

~t =
o. (3) is the conservation law for the solute or impurity at the interface, vn is the normal

velocity of the moving boundary and here the special case of a constant jump of unit height
in the concentration u across the interface is assumed. u(x, z, t) is the normalized diffusion

field [2, 5], /h
=

o...i is the normalized dimensionless supercooling, D the diffusion coefficient,
do the capillary length. The specific modification introduced here is the parameter I as a

relaxation coefficient which is zero in the standard model [2]. Furthermore fl is the kinetic

coefficient, and K the curvature of the interface. Furthermore, the Mullins-Sekerka length

pms "
21rfiG is important to characterize interface instabilities, with iD

"
2D Iv being the

diffusion length.
Without the relaxation term in the diffusion equation a bounded stationary pattern is only

possible at unit undercooling /h
=

1 because of energy conservation. At smaller undercooling

a seaweed-pattern will form with infinitely deep grooves filled with liquid in the stationary
pattern.

It would be convenient for an analytical investigation of the doublon structure to represent
the solid-liquid interface by a single-valued function and to expand around a stationary flat

interface.

In order to make such an expansion around a flat interface, we have to modify the conser-

vation of energy or mass, respectively. This is the reason for introducing a small relaxation

term I > o into the diffusion equation ii which forms together with the boundary conditions

(2,3) the full diffusion-relaxation model. Physically this term describes a global loss of heat

or mass due to a non-ideal isolation of the system to the outside [22]. Practically this occurs

under growth conditions where the system is almost two-dimensional so that the exchange with

the environment takes place in the- third dimension. If the undercooling approaches one, this

correction becomes infinitesimal.
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From (1-3) we obtain a condition for the velocity of a stationary flat interface moving at

constant rate:

~ ~~ ~~ ~~
~ ~~ ~~~

In the limit of vanishing kinetic coefficient fl the equation simplifies to

Otherwise we obtain a third order equation for the velocity which has for all undercoolings
/h > o a positive and bounded solution. At /h

=
1 and for lfl~D2 < 1 one obtains an

approximate solution:

~ i/3

U ~3
D~/~ (j) I/h

=
1). 16)

This means that an arbitrary value for the velocity of the planar front can be adjusted
by means of infinitesimal small relaxation and kinetic coefficients I and fl, respectively. The

kinetic coefficient cures the divergence of the velocity at /h
=

1 as it is well-known. The

combination with a nonzero value of I allows for a smooth crossover from the already known

results [25] in the kinetic regime with /h > 1 to the interesting regime with /h < 1.

At first we investigate the linear stability of a flat interface starting from the stationarity
condition (4) by introducing a perturbation ((x, t)

= (q,w~ exp(~aqt + iqx) of the interface in

z-direction (normal to the interface) and a corresponding perturbation of the diffusion field.

For simplicity we use in all following equations dimensionless quantities like the relaxation

coefficient I, capillary length d, relaxation rate uJ, wave number k, and kinetic coefficient fl
obtained by normalization with the diffusion length

=
2D Iv for length scales and by the

diffusion coefficient D and diffusion length for time scales: 1
=

l12, d
=

doll,
~a = 12~aq ID,

k
=

qi and fl
=

Dflli.
This gives the following dispersion relation for the growth rate ~a

of a small amplitude
perturbation as function of its wave number k

:

2a + dk~ + (1 + ))~a
=

~ (2 dk~ )~a) ii)

with the parameter a =

11
=

2/(/h flu 1.

In this normalization the dimensionless diffusion-length now has the value one and the di-

mensionless speed of the planar front has the value two.

First we restrict our consideration to the case of zero kinetic coefficient fl
=

o. Now the

undercooling /h must be smaller than 1. At unit undercooling the parameter a defined just
above also is equal to one.

As long as 1 /h is kept fixed we can expand ~a in powers of k2

~a =

cik~ + c2k~ + O(k~). (8)

and then one obtains from ii) the coefficients

~~

~~ ~~~ 2(/~ /h) ~~~

~~

11h ~)3
~~~ ~~~~ ~ ~~

~~ ~ ~~~~

/h~1(~~/-2(~ ~~~(1~/h))) ~~~~
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(We show here for simplicity only the special case of fl
=

o, while the coefficients have been

evaluated for arbitrary fl. The expansion (8) into powers of k~ converges safely only for

k2e Ill /h)2 < 1. The derivation of a local equation as done in the following requires

e < 1 /h for the case of fl
=

o).
It follows from equation Ii) that at 1- d(a + a2) < o the interface is absolutely stable [25]

which means that for arbitrary wavenumber k the real part of ~a is not greater than zero.

Therefore we have defined here the small expansion parameter e so that e =
o marks the limit

of absolute stability:

f=i-dla+a~), With
a=fi=~ ~p~-I (ii)

In other words, e measures the distance from the stability threshold. This parameter therefore

discriminates between various growth modes. Combining the stationarity condition (4) with

equation (11) eliminates the diffusion length and allows to express e
by means of the normalized

relaxation strength do Vl and the undercooling:

Figure 2 shows the absolute stability curve e =
o in the space

doff
versus /h. (Further

details of Fig. 2 will be given later).
For k between o and ks the growth rate ~a is positive with ~a ~w

e2 and k~
~w

@. Near absolute

stability e =
o, it is possible to derive a local differential equation for the height profile by a

singular expansion method first used in the context of crystal growth by Sivashinsky [23] and

others [22, 24,25]. This procedure will be performed below for the present variant of the model

system.
The expansion (8) is only valid when e < 1- /h, because the higher the power in k the

higher powers of cl Ii /h) appear in the coefficients. A violation of this condition would make

the series divergent even in the relevant unstable k-band o < k < ks.

In the following considerations we will now investigate the role of the kinetic coefficient )
together with the relaxation parameter I. The equations (1-3)

are conveniently transformed

into a frame moving along with the flat interface:

itt "
T7~it + 2itz lit (13)

~~~~~~~ ~~~(i/())3/2 ~(i~(~l/2 ~~~~

2 + ht
"

-(itz h~~t~)
)~~~~~

(15)

h(x,t) describes the position of the interface in the moving frame.

2. Multiple Scale Analysis

A multiple scale analysis is being performed by appropriately changing time and length scales

for the slow variables. This scaling of time and length parallel to the interface follows from the

dispersion relation with small parameter e according to

X
=

e~/~
x

(16)

Z
= Z

T
=

e~t.

Since the height profile is a straight line at e =
o and the diffusion profile should have no X

dependence the height function h(X, T) and the diffusion field ~t(X, Z,T) are expanded in the
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a) KPZ

~~
#

CS

0.2 0.4 0.6 0.8 1.0 1.2

A

b) KPZ

~

~

~ X

cs..

0.2 0.4 0.6 0.8 1.0 1.2 1.4

A A~

Fig. 2. Kinetic phase-diagram in the space of supercooling A and normalized strength of the

relaxation parameter dol. a): The kinetic coefficient fl is zero, which is
a

singular case.
b): Nonzero

kinetic coefficient Dfl/do
=

0.2 which defines A~
=

I + Dfl/do. The topmost full line, which gives a

lower bound to the region marked KPZ, is the limit
e =

0 of absolute stability. Above that line
a

flat

interface is absolutely stable. Below that line e
becomes positive and a flat interface becomes unstable

against spatial modulations. The dynamics in the stable region is described by the KPZ-equation
(KPZ), equation (24). The KS-equation (KS), equations (18, 50), is only valid in a small region below

the
curve e =

0 of absolute stability, which is bounded by
e « 1 and

e < Ac A. A precise value for

this bound is not known, but schematically
we give here

e < 0.2 (dashed) and
e < he A (full). At

sufficiently high supercoolings there exists another local equation IDS), equation (46), which is valid

for arbitrary values of e/(Ac A) (but still bounded by
some e

and small Ac A). The ranges of

validity of the KS- and the DS-equations overlap in
a region

near
A

=
1. For smaller values of the

relaxation parameter one must expect a
transition region (X), which cannot be properly described by

a
strictly local equation. At

even lower values of J
one reaches the "compact seaweed"-region (CS)

consisting finally of stable doublons.

following way:

~t(X, Z, T)
=

~to(Z) + e~ti IX, Z, T) + e~~t2 IX, Z, T) + (17)

h(x, t)
=

eH(X, T)

H(X, T)
=

Ho IX, T) + eHi IX, T) + e~H2(X, T) +
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Now the problem (13-15) can be solved order by order in e
(details

are for instance in

[25] ). Keeping terms up to third order one obtains a closure condition which finally yields the

Kuramoto-Sivashinsky (KS) equation [26-28]

Ho~
=

-aiHoxx a~Hoxxxx + H]~ l18)

with

~~ "

2 ibli b) + J12 b)1
~~~~

4

j3 b)
~~~~~~ "

8 j2 b)2 jbji b) + J(2 b)j

The derivation of (18) in principle is an asymptotic gradient expansion of Ho, the linear

part being in agreement with the linear spectrum Ii). In the limit of a vanishing relaxation

coefficient I the known equation for the kinetic regime at /h > 1 [22, 25] is recovered with

coefficients:

ai "

~
(21)

2fl

a2 "
~~, (22)

4fl

The nonlinearity H( is of purely geometric origin, it comes from the expansion of the square

root in the relation of the normal growth velocity depending on the evolution of the height
profile:

~" ~/~i] ~ ~ ~ ~~~~

with vn being the dimensionless normal velocity and F a function of derivatives of the height
profile h(x, t). The right hand side of this equation can be obtained from the observation that

for a completely flat interface all derivatives of h(x, t) must vanish.

Therefore the KS-equation (18) can be found immediately by combining the dispersion re-

lation (8-10) with this relation which gives the exact value of one for the coefficient of the

nonlinearity h(.
Since this consideration is independent of the sign of the threshold parameter e, equation (11),

it is also valid in the stable region e < o and one obtains in this case a Kardar-Parisi-Zhang
(KPZ) equation [29] (here without the noise term it is actually Burgers equation [30,31]):

~~
2 Ii /h)

~~~ ~ ~~ ~ ~~~~~~~~ ~ ~ ~' ~~~~

This equation together with the KS-equation (18) describes the neighborhood of the limit of

absolute stability near e =
o (11) which does now exist for arbitrary values of the dimensionless

supercooling /h due to the nonzero value of the relaxation constant 1.

3. Higher Order Expansion

It is instructive to perform the singular expansion (17) in fourth order of e.
The solvability

condition obtained by the same way as in the third order consists of an equation for the function
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Hi which is coupled to the already known function Hoi

~lT ~l~iXX ~ ~2~IXXXX ~ ~3~OXXXX ~ ~4~OXXXXXX ~ ~S~OXXT

+C6Ho~Hoxxx + C7H(~~ + 2HoxHix (25)

Twicewise differentiating of the KS-equation (18) gives an expression for Ho~~~ in terms of

pure spatial derivatives of Ho- Inserting this expression into (25) cancels the term Ho~Ho~~~

as expected by symmetry reasons and changes the coefficients C3, C4, C7. Equation (25)
becomes then:

Hi~
"

-GiHixx G2Hixxxx G3Ho~~~~ G4Hoxxxxxx G5Hj~~ + 2Ho~Hix (26)

Remembering that the searched solution H(X, T) is a sum of Ho and eHi it becomes clear

that the coupling term 2Ho~Hix expresses simply the existence of the nonlinearity Hj in the

equation for the summed up profile H. Therefore we can combine the two expressions (18,26)
to a modified KS-equation in terms of the old variables x, t, h(x, t) as:

lit
"

~fGlli~~ (G2 + fG3) li~~~ G41i~~~~~ G51i~~ + li~ (27)

with the following coefficients:

~2
Gi

= fi

~
b~(3 b)

~ 4(b-2)2R

~
b5(-3b2 + lob 4)

~ 4(b 2)2R2

~~
16(b

~2)3R2 ~~~
~ ~~~~ ~~ ~~~~~ ~~ ~ ~~~

~
b3(b 1)(b 3)

~ 2(b 2)2R '

with R
=

2b(1 b) + 2)(2 b) and b
=

/h flu.

It contains in addition to new linear terms, which can be found more easily by linear stability
analysis, a new nonlinearity h(~. This nonlinearity has the "wrong" sign, I.e. it limits the

validity of the KS-equation very close to the absolute stability as will be discussed firther

below.

4. Expansion near Undercooling /h
=

As already mentioned in the discussion of the dispersion relation after equation (11) it is seen

from the coefficients of the KS-equation that its validity is limited to the case e < 1- /h or

e < b(1 b) + I(2 b) with b
=

/h flu, respectively. The dispersion relation Ii) agrees in

the limit fl
=

o and /h
=

with the dispersion relation of directional solidification [32, 33] at

the high velocity threshold with vanishing temperature gradient. This suggests an alternative

analysis of the dispersion relation ii) but now for parameters in the range I /h
=

O(e). For
simplicity we restricted the following considerations to )

=
o and hence /h < 1.
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As expected we find that the width of the unstable band of wavelengths scales as qs ~w

@,
but the rate scales now as ~a ~w e.

Therefore we choose the following rescaling [32] :

X
=

e~/~
x (28)

Z
= Z

T
=

et

H(X,T)
=

h(x,t)

a = 11 ~)le

and repeat the singular expansion similar as in [33-35] while the new parameter a characterizes

the scaling regime.
First we have to expand the parameter I in powers of e by means of the stationarity condition

(11) 1+ I
=

(211h 1)2 and the definition of a:

I
=

4ae + 8(ae)~ + O(e3) (29)

The capillary length d has also to be expressed in powers of e:

with a =
211h 1. Written in terms of the rescaled variables and neglecting terms oi order e~

the model equations (13-15) become: (fl
=

o)

~tzz + 2~tz
"

4ae~t + 8(ae)~~t + e~tT e~txx (31)

~li~nter -
i af + II

f
~°l

ii ilii~~/~ 132)

2 + eHT
=

-(~tz eHx~tx )~nt~r (33)

The two boundary conditions (32,33)
are defined at Z

=
H(X, T), which is of order one.

Therefore we expand them at Z
=

Ho(X,T) and not at Z
=

o as in the derivation of the

KS-equation.
At each power in e one obtains a set of three equations (Equation of Motion (EOM), Gibbs-

Thomson relation (GT) and Continuity relation (Cont))

Order (e°):

EOM ~tozz + 2~toz
"

0 (34)

GT ~to)z=Ho
=

(35)

Cont ~0z )Z=H0
"

~~ ~~~~

The solution is easily found to be

~to " exp (-22 + 2Ho (37)

Order (e~):

EOM ~ti zz + 2~ti~
= ~to~ ~to~~ + 4a~to (38)

GT ui + ~to~ Hi )z
~ = -a +

~°~~
(39)

" ° 2

Cont ~ti~ + ~tozz Hi
z= ~~ =

Hox~tox Ho~ (40)
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The solution is

~ti =
(HOHT HoHoxx + 2aHo 2HoH(~ + 2Hi + Ho~~ /2

a

+ Z (-Ho~ + Hoxx 2a + 2H(~ )) exp (-22 + 2Ho) (41)

Order (e2):

EOM ~t2zz + 2~t2z
" ~ti~ ~tixx + 4a~ti + 8a~~to (42)

~~~~ ~~~ ~ ~~~~~~ ~ ~~~~~~ ~ ~~~~~~~~
Z=Ho

"
~~lT + ~0x ~llx + ~lx ~l0x + ~l H0x ~l0xz Z=Ho

(~~)

In the following we will need only the iihomogeneous parts B and D of the solution ~t21

~2 "
IA + BZ + DZ~) exp (-22 + 2Ho) (45)

which can be found by a tedious but straightforward calculation.

Comparison of the left hand sides of the boundary conditions, for instance (43,44), shows

that they only differ in one additional Z-derivative. Since all solutions ~ti necessarily contain

the exponential factor exp (-22) the addition of the Gibbs-Thomson equation (multiplied by

a factor of 2) to the continuity equation kills all contributions arising from the homogeneous
parts of the solutions ~ti. In the zeroth and first order off this operation gives only zero.

In the second order a solvability condition for the profile Ho in the form of a local evolution

equation is obtained:

HOT~ 3Ho~~~ + 4Hoxx + 2Hoxxxx + 8a(Ho~ Hj~

+ 3(H(~ )xx + 2(H(~ )x 2(H(~ )T 2Ho~Hoxx
"

o (46)

It contains only derivatives of Ho because of the translational invariance in Z direction.

As expected, in the limit of /h
=

1, I.e. a =
o, the equation agrees with the equation (4.1)

in [32] for directional solidification at high speed but now in the limit of vanishing temperature
gradient.

In the other limit of a =
(1 /h) If » the KS-equation (18) up to terms of order Ii /h)

is recovered. See Figure 2 for a comparison of the range of validity of the different effective

equations. The limit o -
0 essentially means that the relaxation term I goes to zero. When

o goes to infinity the deviation from absolute stability
e =

o disappears.

5. Stationary Solutions

We will now discuss consequences of equation (46). Its stationary version reads:

( (vxx + 12 U)Y + v~ + 3Yvx + 401U v~)
=

0, v =
Hx (47)

where "stationary" means that the pattern is time independent in a frame which moves with

the constant velocity 2 + v compared to the planar front with dimensionless velocity 2.
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By means of the transformation z(X)
=

exp(H(X)) the nonlinear equation (47) which is

actually a modified Dufling-oscillator can be reduced to a linear equation in the limit a =
o:

1 ~xxx + ~ ~~~x
1+ 4a Iv ~i1~ =

o. 148)

An exact periodic solution for a =
o can be easily given:

H(X)
=

ho + In )Ai cos
fiX + A2 sin fiX + 11. (49)

For certain parameters Al and A2 there is the possibility of infinitely deep gaps in the height
profile. Asymptotically these gaps behave like In(X)

or
In(X~) at small X.

The full dynamical equation (46) was integrated by means of a fifth-order Gear's backward

difference method [36] with a finite-difference evaluation of the Jacobian using the routine

DIVPAG from the IMSL-library. It turned out that a spectral method for evaluating the

spatial derivatives showed numerical instabilities for small o m o-I- Therefore the spatial
derivatives were evaluated by traditional finite differences.

The KS-equation in one dimension has two stable bands of periodic solutions [25]. In analogy

we here (46) also look for periodic solutions, expecting that they will develop deep groves
which ultimately become infinitely deep. In order to separate the contributions from various

wavenumbers we used periodic boundary conditions with a small periodicity so that only one

mode was linearly unstable on the flat interface. Starting from the Kuramoto-Sivashinsky limit

of high a a stable periodic solution is found down to a critical value of a~r;t * o,01., o-I, its

precise value depending on the imposed periodicity length. Since these amplitude equations
(27,46) usually originate from asymptotic expansions it is not a priori clear, how many terms

should be taken into account for a best approximation of the original problem. Accordingly
the precise value of a~r;t also depends on the number of terms included in the expansion.

At smaller
a

infinitely deep grooves are forming. It is shown in Figure 3 that after an initial

variation the pattern settles into a plateau-state with very small but still growing amplitude.
After some time suddenly a singularity develops. The time tD before this happens scales with

the parameter a (28) as tD
+~

1/
a

for small deviations of a from a~r;t. The nature

of the finally reached singularity In(X)
or

In(X~) is not changed by a # o as seen in equation
(46), because H( < H(~, X

-
o, and HT

=
O(1). The singular structure

~w

In(X) of

the local equation (46) results simply from the gradient expansion (after Eq. (28)). That

means there is always more than one term containing the highest number of X-derivatives

which can only be balanced by H
~w

In(X) near the singularity. Of course at the singularity
the gradient expansion breaks down since higher derivatives cannot be neglected. Hence the

precise structure of the forming gaps in the real system cannot be obtained from the local

expansion. But from the theory of channel growth [15] we know that there is a logarithmic
behavior in such gaps, which agrees here by accident. More details will be discussed further

below.

If one chooses an initial condition with an amplitude bigger than some critical value the

singularity forms even if a is larger than the critical value .a~. The critical amplitude above

which a perturbation will grow without bound must be the larger with increasing deviation of

a from a~.

The same effect has been observed in the dynamical integration of the rescaled version of

the KS-equation (27)

HT
=

-Hxx Hxxxx + )H( eH(x + O(Hxxxxxx), (50)



N°7 DISCONTINUOUS TRANSITION BETWEEN SEAWEED... 961

0 1000 2000 3000

Fig. 3. A simulation of the model equations (i-3) with periodic boundary conditions (for details

see [18]) quite close to the absolute stability limit. Starting from
a

small sinusoidal perturbation the

pattern saturates initially to a bounded state with small amplitude (upper curve). Note that this state

already differs significantly from
a state described by the KS equation~ since here the curvature at the

tips of the pattern is stronger than at the grooves. At
a

later time (lower curve) there is
a very fast

jumplike formation of deep holes in a
few of these grooves. Parameters: A

=
0.7, do

"
6, e =

0.0845,

fl
=

0, D
=

1. All lengths
are given in internal units bx of the spacing of the diffusional grid.

200 300 400 500, 600

Fig. 4. The formation of
a

doublon at moderate relaxation. The initial condition was a
doublon

with a small groove (dashed curve) which develops to a deep groove (depth m 1.71D, solid curve).
Note, that the doublon structure is still clearly visible despite the perturbation by the relaxation term.

Especially the distance between the two asymmetric parts remains a
well defined quantity. Parameters:

A
=

0.7, do
"

3.85, e =
0.66, fl

=
0, diffusion length lD

=
2D/~

=
49.4, D

=
1. As in the previous

figure all lengths are given in units bx of the diffusional grid.

where higher order linear terms are neglected for simplicity. For a small aspect ratio T
=

L/(2vi1r)
=

o.89, L being the periodicity length, we find the usual stable stationary solutions

which have sharper curvature at the grooves than at the tips due to the nonlinearity H(. If e

is increased there is a critical value e~ above which singularities
are

formed.
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The physical mechanism for the formation of this finite time singularity is quite simple.
Suppose we have an initial condition H

=
A(t

=
o) cos(qX) with q in the unstable wave number

band. Initially this mode grows exponentially in time due to the linear instability. Now the

nonlinearity H( becomes active and increases the steepness of the profile, I. e, generates higher
modes like cos(2qX), cos(3qX) and so on. This results in a sharper change of the profile in

the grooves than at the tips and the stabilizing Hxxxx term compensates the destabilizing
Hxx term in the grooves more than at the tips. This leads to a constant shift of the pattern,

but the distance between tips and grooves saturates, I.e. the pattern becomes stationary in

a moving frame. If the amplitude of this stationary pattern is of the order of1le the term

Hxxxx is not able to balance the nonlinear contribution -eH(x. That means that the depth
of the grooves becomes larger and the nonlinearity becomes more dominant and so on. Finally

we obtain from (50) for very deep grooves the approximative evolution equation for the depth

ai It) of the groove

di
+~

eq~a( (51)

with the solution

~~l~~
"

1

~)j~(o)
t

l~~~

If we assume ai lo) of order lie and q of order one, the time difference between reaching the

critical amplitude and the formation of an infinite groove is of order 1.

For a more quantitative description one may transform equation (50) into Fourier space

assuming a symmetric pattern H(X)
m

£)~~ aj It) cos(jqX) with amplitudes aj It) and the

basic wavenumber q =
21r IL. Since only one mode is linearly unstable it should be a good

approximation to set all modes higher then three to zero. This simplifies the problem to three

equations for the temporal evolution of the modes

ii
" ai~ai + ai a2Po + a2a3 Pi

d2
= a2~a2 + aia3P2 a(P3

d3
= a3~a3 aia2P4 (53)

with q =
21r/L, ~aj =

j~q~(1 j~q2) and

Po
=

q~(1 4eq~)

Pi
=

3q~(1 12eq~)

P2
=

q~(1
6eq~)

P3
" (q~(1 + 2eq~)

P4
=

q~(1 + 4eq~) (54)

The time derivatives are set to zero and we obtain the three modes of the stationary solution:

a2~a2
~~ P3 a2P2P4/~°3

~~ ~~14 ~ ~

a3 =

~~~~~
(55)

~a3
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Fig. 5. Temporal evolution of the basic mode al after equation (53) for El "
0.244 and e2 "

0.2438

which
are

right above ear,t "
o.24375 and therefore show

a
finite time singularity. The length of the flat

plateau scales
as (e ear,t)~~/~ The dashed line shows the temporal evolution at e =

0.24372 < ear,t

which has no divergence.

with

That means
there are two stationary solutions as long as the

quantity
Q in

positive.
An integration of the

dynamical equation
(50)

howed,
that only the

olution with

the bigger plitude is stable. This was confirmed by nding the
eigenvalues

of the

matrix btained by around the
stationary state. If Q approaches zero the two

tates get closer to each other and one of
their eigenvalues

pproaches zero. If Q =

is only one marginal stable state, I.e. one eigenvalue is zero and the second time
erivative

of the three modes
lso

becomes
zero. We enote the of

this state as the critical

mplitudes and the e as e~r;t. If Q < o there is no nontrivial

the second
of the

ritical state is
aintained namely

that the econd
ime is

zero for a state
hich

is very
close

to the critical
one.

If e is a ittle above
amplitude eems to reach a stationary state at time ts,

Figure
5.

Then
a flat

characterized

by a very
small constant rowth of the amplitude. At time tD the plitude

goes rapidly to
infinity.

At time tM
in the middle of the lateau there is a

the evolution
of the mplitudes, I-e- d2/dt2a; = o

The amplitudes
at this turning point

are very close

this point ields:

d; = u; +
;/ht~

+ O(/ht3 ) (57)

The existence of such a turning point explains the
onstant low growth of the

mplitude
of

the attern after the
initial

aturation. The initial aturation at ts and the singularity
at tD
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velocity term, I,e. they are of the same order and /ht becomes

~t
=

jt~ ts)/2
>

fi.
j58)

c>

Furthermore it can be shown that u; scales like u; ~w

be
= e ear;t, where e~r;t corresponds to

the critical state with Q
=

o, and c; scales as c; ~w

be2. Hence the length of the plateau tD ts

scales like ill& which was confirmed by dynamical simulations of equation (50). At times

larger than tD the evolution of the amplitude is described by equations (51, 52). From the

condition Q
"

o the critical e~r;t was obtained by

for.t - ~q~i/
~~~

Ii + b
2fil b

=

l~°~
159)

Note that this expression remains finite at b
=

).
This gives e~r;t #

o.24375 and ~tss,~r;t "
2(ai,cr;t + a3,cr;t)

"
13.o, with L

=
7.8677 which

is very close to the values e~r;t "
o.22918 and ~tss,~r;t "

11.30, obtained from the dynamical
simulations of (So). The error becomes bigger if L is larger, because then the linear damping

of the second and third mode is smaller. For instance at L
=

10.54 equation (59) yields

e~r;t #
o.37, but the dynamical simulation gives 0.2955 < e~r;t < 0.296.

In conclusion the formation of singularities is due to the nonexistence of a curved stationary
solution apart from a flat interface (at least in this approximation which neglects modes higher

than three). The critical
e

and the critical amplitude can be found from equation (59) with an

error less than 25% in comparison with direct numerical simulation of equation (So).

6. Numerical Simulations and Conclusions

The numerical method to solve the Stefan-Probiem (1-3) is the same as the one previously
used for the standard growth model without relaxation [18]. There the method is described

in detail and we shall only mention some basic features here. First the solid-liquid interface

is handled explicitly, I.e. the interface is discretized and represented by a set of points. The

two-dimensional diffusion field
~t is discretized too on a simple square grid.

After setting initial values for the interface position as well as for the diffusion field, a

diffusion step by means of the discretized version of the diffusion equation ii is performed

ui)~
=

i~i +
($

li~l+i,j + i~i-i,j + i~i+i + i~i-1 4i~i) D /ht >i~i (60)

with a small time step /ht < (/hx)2 /(4D), where /hx is the lattice unit of the diffusional grid.
Then the gradient of the new diffusion field is determined at the interface and each point of the

discretized interface is advanced by the distance un /ht according to equation (3). After that

the boundary condition (2) has to be incorporated into the diffusion field. The whole procedure
is now repeated beginning with the diffusion step and so on. The moving interface was always
kept approximately at the center of the lattice, which allows growth over any distance. The

distance between the moving front and the end of the periodic channel far inside the liquid

was at least five diffusion lengths, in order to keep the growth unaffected by boundary effects.

Since anisotropy is an important parameter for the selection of dendrites the artificial

anisotropy introduced by the square diffusional lattice has to be reduced.

Therefore two or four independent diffusion lattices are used which are rotated and shifted

against each other. In each time step the diffusion equation is solved independently on all
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lattices. We then locally advance the moving boundary independently on all lattices and

average the resulting new boundary position over all lattices.

For free dendritic growth it was shown that this averaging is crucial at small anisotropy.
Without that a dendrite would grow twice as fast at capillary anisotropy e4 " o.05, defined by

do
-

doll e4 cos48) in equation (2).
In order to observe the transition from the seaweed structure to the Kuramoto-Sivashinsky

type chaotic behaviour [28] we used a stationary doublon finger structure [18] at /h
=

o.7 as

initial condition and switched on the relaxation term in the diffusion equation with a small

dimensionless relaxation parameter A
=

do Vl. After reaching a new stationary state the

relaxation was further increased at constant undercooling /h. Besides an increasing stationary
velocity and decreasing distance of the two tips the doublon finger structure survives this

process up to very large relaxation parameter I. Of course now the gap between the fingers
has no longer an infinite depth, since slow growth deep inside the gap is possible due to the

relaxation term. At some value of A between o.1 and o.27 there is a crossover between a gap
with an infinite slope h~ and one with a finite slope.

A simulation with periodic boundary conditions on one grid and an initial condition of a

slightly perturbed flat interface with seven bumps and A
=

o.27, I.e. e =
o.0845, showed the

following behaviour. The amplitude of the perturbation converges quickly (on the time scale of

the derived KS-equation to a state, which seems to be stationary, since the amplitude increases

extremely slowly. At a later state it comes to a jump-like formation of deep grooves in some

but not all gaps of the interface. Since the gaps which remain stable and bounded have almost

the same form as the gaps which later develop deep grooves we conclude that we are near the

threshold of a discontinuous transition between a bounded structure and a structure with deep

grooves of order diffusion length. The first state corresponds to the Kuramoto-Sivashinsky
equation and is metastable, I.e. by accident in some of the gaps the numerical fluctuations

have pushed the pattern across the critical amplitude. The formation of the holes is the birth

of the doublon finger structure or compact seaweed morphology.
The holes are not in(nitely deep in reality due to the relaxation parameter1 > 0 as suggested

by the analysis of the local equation. But this saturation of the depth is beyond the validity of

the perturbation expansion, since the depth is of the order of the diffusion length and nonlocal

effects are becoming important. Furthermore the validity of the expansion is probably restricted

to profiles with H( « 1, since an expansion of 1+ H( is involved in the calculation.

On the other hand we can assume that the normal velocity un of the interface can only
depend on intrinsic properties of this curve like, for example, the curvature and derivatives of

it along the curve [37, 38] and of their history. That means there must be an equation of the

form
~ ~

~" ~ ~ ~~ ~ ~ ~~
~~

~ ~ ~~
~~ ~ ~~

~
~ ~ ~~~

where K is the local curvature, s is the arclength and F consists of higher order nonlinear

terms which represent the history of the curve, (or instaice terms containing k, and terms

which are due to the change oi the arclength. Note that only terms with even powers oi s are

allowed, since the velocity must be invariant under s - -s. If we expand (61) (or K < 1

we can find all linear coefficients a; and the first nonlinear coefficient bi by using (23) and

comparison with the KS-equation (27). The generalized equation (61) is valid as long as the

minimum radius of curvature is much bigger than the diffusion length. In the deep gaps this

is of course not fulfilled.

At
e =

o,0845 we are far away from the calculated threshold at e~r;t " 0.3 and a =
Ii -/h) If

=

3.55 is far away from a~r;t < o-I- We checked that the numerical fluctuations are much too

small to destabilize the bounded state.






