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Abstract. We investigate the accuracy and limits of validity of the two-wave approximation
in the dynamical theory of electromagnetic scattering by periodic dielectric media. The errors

ensuing from the approximation are estimated by applying the dynamical theory to a
scattering

problem for which an alternative exact electromagnetic solution is available and comparing
results. The conditions for applying the approximate theory and its accuracy are

discussed in

terms of concepts peculiar to the classical dynamical theory of the scattering of X-rays in crystals,
such as the Ewald sphere in the reciprocal space and the resonance error.

After introducing the

basic equations of the dynamical theory of electromagnetic scattering by three dimensional

periodic dielectric media, the theory is applied to the scattering by one-dimensional periodic
layered structures where

a rigorous analytical solution is available. The analysis of the errors

involved in the two-wave approximation indicates that, in the general case, the quality of the

approximation cannot be quantified in terms of just the resonance error but it is also strongly
affected by the dielectric contrast. Simple formulae

are
reported yielding

a
reliable error estimate

in many practical cases. An extension of the results to the two and three dimensional case is

also provided. Finally, it is suggested that
a

modification of the boundary conditions which
are

usually enforced in the dynamical theory when solving the propagation equation could improve

its accuracy and extend the limits of validity of the two-wave approximation.

1. Introduction

The propagation of electromagnetic waves in periodic media exhibits many interesting and

potentially useful characteristics. Examples include the X-ray diffraction by crystals, light
diffraction by the periodic strain variations accompanying a sound wave, total reflection of

light in periodic layered media, holography. Many of these phenomena are currently employed

in a variety of optical devices such as diffraction gratings, holograms, free-electron lasers,
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distributed-feedback lasers, distributed-Bragg-reflector lasers, high-reflectance Bragg mirrors,

acousto-optic filters, and so on. In addition, interdisciplinary analogies also lead to new exciting

areas of research. An example is the recent discovery of three-dimensionally periodic dielectric

structures exhibiting what is called a photonic band gap 11,2], by analogy with electronic band

gaps in semiconductor crystals.

The Theory of Dynamical Scattering (DST), originally proposed by Darwin [3], Ewald

[4, 5] and Laue [6] in order to give a rigorous description of the X-ray diffraction by per-

fect crystals and later extended by Zachariasen [7], James [8, 9] and Kato [10], has proved to

be a powerful tool in the study of the propagation of electromagnetic radiation in periodic

structures [11-13]. It has been successfully used also to describe diffraction of electrons [14]
and neutrons [15] by perfect crystals, light diffraction by cholesteric liquid crystals [16] and,

more recently, it has been extended to free [17] and guided [18] propagation of electromagnetic

waves in periodic dielectric media from microwaves up to optical frequencies. Interesting effects

admitting technological applications, such as the Borrmann effect, the Fankuchen effect, the

Pendel16sung effect, total reflection and angular amplification are expected in these different

frequency ranges [8, 9, 11,12, 16-18].
A dynamical diffraction theory of deformed crystals was developed by Takagi [20,21], Taupin

[22] and later by Boeuf et al. [23], with a view to providing a rigorous theoretical description
of the electromagnetic scattering by elastically bent perfect crystals such as curved crystal

monochromators both in Laue and Bragg geometry. In analogy, a DST approach has been

recently used [24] in order to study the effects involved in the dynamical diffraction of elec-

tromagnetic waves by weakly curved periodic layered media, in the frequency range extending
from millimeter waves up to the optical spectrum. In particular, an interesting effect that was

highlighted consists in the possibility of continuously sweeping the direction of the diffracted

beam over a relatively wide angular range by controlling the frequency. This effect seems

to be promising for those technological applications where a
frequency-direction conversion is

required.

The DST considers the total wave field inside the periodic medium, where diffraction is

taking place, as a single entity. The sequence of formal steps consists in setting down Maxwell's

equations, introducing a periodic dielectric constant in order to describe the medium, assuming

wave solutions consistent with the periodicity ii-e- in the form of a superposition of Bloch

waves), obtaining a set of homogeneous linear equations for the ratio of the field amplitudes
and writing down a determinant whose value must vanish for nontrivial solutions to exist,
consequently constraining the wavevectors. The main question posed by this approach is the

number of waves which must be considered in the field expansion in order to obtain a good
approximation of the wave solution. In X-ray, neutron and electron diffraction by perfect

crystals, the so called two-wave approach gives very often an excellent approximation of the

total field [7, 8,11,12]. This occurs when the two plane waves are resonantly coupled by Bragg's
law since in this condition the amplitudes of the two waves become dominant over all others

making up the total field. In the case of X-rays, this results from the small dielectric contrast

with respect to empty space ifi(r)
=

e(r) -1, whose magnitude is typically 10~~ -10~~,
which in turn is a consequence of the small perturbation produced by the electron density

distribution of the crystalline material. This is not, however, the general case in the scattering
of electromagnetic waves by periodic dielectric media ii?]. The entity of the perturbation
produced by the periodic variation 6e(r) of the dielectric constant ei of the unperturbed
matrix can vary over a wide range of values. Since the two-wave approximation progressively

deteriorates with increasing perturbation, the question arises as to the limits of validity and

the degree of its accuracy as a function of the ratio Ae(r)let. This is an important problem
since the DST formalism is quite general and when even the two-wave approximation holds, the
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mathematical expressions of the excited fields take the same form as derived in reference ii?],
and the predictions of the two-wave theory are reliable. It must also be stressed that even

though the n-wave approximation gives a,more accurate description, the complexity of the

analysis greatly increases with the number
n of waves considered and it is very hard to obtain an

analytical solution when n > 3; in this case a sophisticated numerical approach is required [13].
In addition, useful insights may be provided into the more general problem of accuracy of the

n-wave approximation.
The conditions of applicability of the theory and its accuracy are discussed in terms of

concepts peculiar to the dynamical theory, such as the Ewald sphere in reciprocal space and

the resonance error, which allow a meaningful physical interpretation of the results.

In the following, we first introduce the basic concepts of the DST of electromagnetic waves by
periodic dielectric media. Then, the theory is applied to the case of electromagnetic scattering
by the so called periodic layered media, I-e- one-dimensional periodic (ID) structures made

up of alternating layers of non-magnetic lossless dielectric materials with different dielectric

constants, for which a rigorous analytical solution is known. A comparison of the results

deriving from the two different approaches shows the limits of validity and the accuracy of the

two-wave approach.

2. Fundamental Equations of the Dynamical Theory

Consider a three-dimensional (3D) periodic dielectric medium. We write the dielectric constant

e(r) as

fir)
= fi + Ae(r) Ii)

where ei is the unperturbed part of fir) and heir) is the triply periodic function representing
the perturbation. In the DST the propagation of the electromagnetic field is described in terms

of the displacement vector D which satisfies the following differential equation 11 7]

~2~
V~D + V x V x (~D)

= eiiloj (2)

where
El (3)ifi(r)

"
1 @

The function fir) is triply periodic and can be expanded in the Fourier series with Fourier

coefficients ifiH

ifiH
"

~fi(r) exp(2~riBH r)dV (4)
V Iv

where V is the volume of the unit cell, BH is the reciprocal lattice vector associated to the

triad of Miller indices H
=

(h, k, I). The periodic nature of the medium makes it possible to

express the general solution of equation (2) as a linear combination of Bloch waves

Dir, t)
=

~j DH exp [2~ri( ft KH r)] (5)

H

where

K~
=

Ko + B~ j6)

and f is the frequency of the electromagnetic radiation.
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The amplitudes of the wavevectors KH can be conveniently written in terms of the modulus

K of the wavevector of a plane wave propagating in an unbounded homogeneous medium with

dielectric constant ei (K
=

f(eiilo)~/~)

KH
=

K(I + bH) (7)

where bH is the so called resonance error.

By inserting equation (5) and the Fourier expansion of equation (3) into equation (2), an

infinite set of linear homogeneous equations is obtained [7]

(~~ ~~)~H ~~ ~l ifiH-LDL[H] (~)

L

where DLjHj is the projection of DL Perpendicular to KH. A given wavefield thus contains in

general an infinite number of waves.

We are interested in the solution of equation (8) in the case when the periodic variation of

the dielectric constant can be considered as a small perturbation. In this case it is possible,
under certain conditions, that only two of the plane waves in equation (8) have significant
amplitudes (two-wave approximation). A given wavefield thus contains a wave propagating
along Ko (the incident wave) and a wave propagating along KH (the diffracted wave), that

is, Bragg diffraction occurs. The moduli of the wavevectors Ko and KH are very close to K,

resonance errors are small enough so that (K[ K~)/K(
m 2bH and we can write

DH
=

£
~.~bH-LDLIHI (9)

~

The last equation shows that a resonance effect is associated to the smallness of the resonance

error, which makes the amplitudes of the corresponding waves dominant over all the others.

The system (9) for the amplitudes Do and DH of the wavefields then reduces to [7]

(~o 2bo)Do + PifinDH
=

o (lo)

P~HDO + (~to 2i~)D~
=

o

where H
=

-H
,

P
=

I (P
= cos 2H) for a polarization normal (parallel) to the plane Ko, KH

and 2H is the angle between Ko and KH. Equations (lo) have a non trivial solution only if

the determinant vanishes, which gives the dispersion equation

(~0 210)(1fi0 2iH)
"

l'~(lfiH(~ Ill)

A linear relation between bH and bo can be found by combining equations (6) and (7) and
considering that the resonance errors bo and bH are much smaller than unity. If K indicates the

wavevector of an incident plane wave entering the periodic structure through a plane boundary
with unit inward normal n and ~o is the direction cosine of the incident wave (~o

=
K .n/K),

as

long as the incidence angle is small enough so that the approximation 11 +2bo /~( )~/~ re 1+bo /~(
holds, the following linear relation between bH and bo holds [7,17]

bH
=

~
bo +

) i12)

where

1 BH
j ~

K
n

~~~~

a =

~ (B( + 2K BH)
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In particular, when the wavelength of the incident wave is varied while maintaining a fixed

direction of incidence, equation (13) for a reduces to

a =

4~
~

~~
sin~ HB (14)

B

where HB is the Bragg glancing angle, lB is the value of wavelength which satisfies the Bragg law

with
= HB (lB

"
2d sin HB) and I is a neighbouring wavelength. By inserting equation (12)

into equation (II),
we obtain an equation in bo

,

whose solutions can be written as [7]

j l~ ~
i~° ~ ~~~ ~

~~~~~'
~~~~

where
~

j2 (16)(
=

j~fio
+ j° ~ ~~~~

Introducing the variable x =
DH/Do and solving the system (lo), two solutions xi and x2

are obtained. Since there are two possible values for bo, bH and for the amplitude ratio x,

two internal incident waves and two internal diffracted waves are generated by the incident

external wave with wavevector K. The general expressions of the total incident and diffracted

field are given, respectively, by

e~~~l~~~~'~~ (D[e~~'~ ~ + Di
e~~'~~j Ii?)

e~~4f~~l~+~H~'~l (xiDje~~'~~ + x2Dje~~'~~j

~~~~~

~i
=

2~rKbj / sin 42
"

2~~~i / ~~~ ~ ~ ~~

It is possible to give a simple physical interpretation of the resonance error by using the

construction involving the Ewald sphere in the reciprocal space [7,11,12] (see Fig. I). According
to equation (7) the modulus of the resonance error bH (or bo) represents the distance of the

reciprocal lattice point H (or O) from the surface of the Ewald sphere, normalized to the

radius K of the sphere. Only when the resonance error is very small, I-e- the points H and

O are very close to the surface, the resonance coupling between incident and diffracted waves

makes the amplitudes of the two waves dominant over all the others, thus justifying the two-

wave approximation. In the next paragraphs we
will try to answer the following question:

how close to the surface the reciprocal lattice point H must be in order to obtain a two-wave

approximation of the wave solution within a specified degree of precision?

3. Application of the DST to Periodic Layered Media

In order to answer the above question it is necessary to consider an electromagnetic problem
which allows an exact solution and next compare the results with those expected by the DST.

To this purpose we consider the wave propagation in a periodic layered medium made up of

alternating layers of nonmagnetic lossless dielectric materials with different dielectric constants

ei and e2 (see Fig. 2a). In the unit cell it is (Fig. 2b)

e2 (z( < b/2
~~~~

El b/2 I (z( < A/2
~~
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z

(b)
~~~

Fig. 2. Schematic drawing of
a

periodic layered medium. a) The periodic structure consists of

alternating layers of nonmagnetic lossless dielectric materials with different dielectric constants El and

e2. b) The unit cell of the ID periodic structure.

where

F(b,p,In)=cos )pb
cos

)(I-b) -)
p+ ~)sin )pb sin

)(I
-b) (22)

n n
P

n n

The term (C(~ is related to the reflectivity (R~(~ of the single unit cell by the equation
(Eq. (6.2 12) of Ref. [26]

[C(~
= ~j~

j~
=

~~ ~~
~

sin~ 2~K2b
=

p ~

sin~ )pb) (23)
1

u
RI n2 P

n

and RI #
f~~~, R2 " f~~~> P "

n2/ni
"

(f2/fi)~~~, ~n
"

~/l~, b
"

b/l~
,

K2
"

f(f2/l0)~~~
The DST approach, on the other hand, follows the lines reported in the previous paragraph.

In this case the vector 0H of the one-dimensional reciprocal lattice is given by 0H
"

0h
=

(h/A)n, with h
=

o, +1, +2,.
.,

and the function ifi(r) is periodic only with respect to z. By
performing the integration (4) while fixing the origin of the coordinate system in the centre of

the unit cell (Fig. 2b), the Fourier coefficients ~h take the form
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The twc-wave approximation can be used when the reciprocal lattice point H is close to

surface of the Ewald sphere, I.e, when KH " Ko " K. The latter condition is verified when

the wavelength I of the incident radiation is close to the value lB which satisfies the Bragg's
law, I-e- hlB

=
2A. In the DST, the reflectivity is generally expressed as a function of a

dimensionless parameter y which depends on the wavelength and measures the deviation from

the Bragg condition for the diffraction ii,17,18]. For normal incidence, normal polarization,

and taking h
=

1, the expression of y is given by

( ~bo 21> >~j/>~
~ " ifliil2Pi~b~i =

jq~ij
(25)

By using equations (25) and (16) it is possible to express the resonance errors in equation (15)
in terms of y

,

trio and (ifih( as follows

i I" lbo
+ )llbhl (-Y + (Y~ I)~~~j (26)

This equation allows us to calculate the resonance error as a function of the wavelength de-

viation from the Bragg wavelength. Considering equation (26) and the expression of ifih, it

is immediate to observe that in the y-range commonly considered in the DST, I-e- Ay corre-

sponding to a few units around y =
o, the order of magnitude of the resonance errors is the

same as trio. For this reason and considering also that ~Jo does not depend on the frequency
and it is related to the geometrical and physical parameters of the structure more simply than

bo
,

the two-wave approximation will be considered in the following in terms of the magnitude
of ~o rather than bo.

The ratio of the diffracted wave amplitude DH to the external incident wave amplitude D(
at the input surface is obtained from equations (17), after imposing the following boundary

conditions over the two limiting surfaces [7,17]

~~0 + ~0 ~e
~~

XI
Die ~~~~ + X2Dje ~~~~

#
0

where E) is the electric field of the external incident wave. The reflectivity R'~ is calculated

as the ratio (DH/E)(~

~~~
(y~

~~~~~~(A(~~~~~1)1/2)
~~~~

where

A
=

7rlfll~/~PK11bhlL/ Sin (29)

which is valid both for (y( > and (y( < 1, being in the latter case
sin~ [A(y~ -1)~/~]

=

sinh~ [A(1 y~)~/~).
Equality between equations (20) and (28) requires the following two conditions to be satisfied

A
=

2N~rK'A (30)

sin ~~I'A(
~i

~~~~

Consider equalities (30) and (31) separately. The term Afi
can be explicitly written

in terms of the quantities appearing in equations (20-23) in the form

A I
= NA)S($, p, In) (32)
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S($, p, In)
=

[b(I I /p~) (1« 2)j~
~(~

~/P~~
)~~~

~~~~

~~~~~

~

If we indicate by

Q(b'P'>*)
" ~°~ ()S(" '>n)j

(34)
' n

equation (31) requires the following condition to be verified

lQ(I, P, In)(
=

lF(b, P, in)( 135)

The strength of the perturbation is measured by the two parameters p and b. Small pertur-
bation means that either one of the two conditions, p ci I and ci 0, is verified. For a given
wavelength, I.e. once fixed the normalized wavelength In, Q and F are both functions of the

two variables p and $. As shown in the following, the first two terms of the Taylor expansion
of the two members in equation (35) are the same in a neighbourhood of the point (p

=
I, $),

with assuming any value between 0 and I. In fact, to the first order approximation, it is

F(b,
p, In

= cos

) )(p I)b sin
~~

(36a)

Q II, p, In
= cos

~~
+

~~
(p I)b sin

~~
(36b)

Differently, the first order Taylor expansion in a neighbourhood of (p,$
=

0) for any given
value of p gives

~~~'~'~~~
~~~

~
~

~n
~~ ~~~~~~~ ~) ~~~~~

from which it follows that the moduli of F and Q become equal only as p approaches I. In

addition, equations (37a,b) show that while the dependence of the two functions F and Q on

the parameter b is the same to the first order, the dependence on p is different. This result

indicates that the dependence on the dielectric step p is the dominant factor in determining

the limits of validity of the two-wave approximation. Although this conclusion is physically

reasonable, however it is not obvious a priori because in all the equations of the DjT the effects

of the perturbation are expressed in terms of the parameters trio and ifiH which combine the

effects of and p; accordingly, the separate effects of and p are not distinguishable.

We define the relative error ei involved in the calculation of the eigenvalues of the unit cell

as

_~~_
Q(b,P,In)

j3~j
~~ Fit,

P, in)

Formulae (37a,b) allow us to give an estimate of ei by considering the first order approximation

of the ratio Q/F with respect to the variable b.

ei ~

i
12 (P~ + P~~)I tan

)
=

~iii P~)fb0 tan )) (39)

The above equation is derived under the hypothesis that the argument of the modulus in

equation (39) is lower than I, as it is in a wavelength range centred about In
=

2 when (p -1)
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b=0.I ".

o

1.6 1.7 1-B 1.9 2 2.1 2.2 2.3 2.4

Fig. 3. Comparison between the
error et calculated by its exact expression equation (38) (solid

line) and by the approximated formula equation (39) (dashed line) for different values of p and $.

and are
small enough. The formula shows that the error is very small when In m 2 (I,e.

when the Bragg's law is close to be satisfied) and becomes zero when I,1
=

2 (the Bragg's law

is exactly satisfied). In spite of its simplicity, formula (39) provides a good estimate of ei; in

fact, as shown in Figure 3, where it is compared with the exact expression of ei (Eq. 38) for

different values of p and b, equation (39) gives satisfactory results even in the worst case, I.e.

=
0.5 (for larger values of the role of the two materials ei and e2 could be more conveniently

exchanged). Accordingly, equation (39) can be used to estimate the error occurring in periodic

structures having more complicated dielectric profiles (such as those realized in the fabrication

of actual periodic structures for optical applications) for which it is possible to calculate trio

and to give at least
an estimate of p. Finally, we note that all the equations in the present

analysis are valid both for 0 < p < I and for p > I. However, for the sake of brevity, only
results concerning the first case will be shown in the following.

So far
we have considered the approximation involved in determining the eigenvalues of

the periodic structure. Now, the accuracy of equation (31) is checked. Although the exact

determination of the eigenvalue 2~rK'A requires the solution of equation (21),
we have just

seen that this eigenvalue is accurately approximated by (30), I.e. (see also Eq. (32))

Sin 2~K'A
G3 Sin ()S(I, P, I«)j (40)

«

When is small, by considering the first order Taylor expansion of each member of equa-

tion (31),
we get

~

(C(
~_

In ~~~ ~~
j41~)

(sin 2~K'hi '~

~i~ ~ jj ~)jli "

I
~_

jl p~~ j41b)
y2 Ii In 2
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e
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o-B

o.6

0.4

~~
p =0.9 b=0.I

b=0.2

0

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

Fig. 4. Comparison between the error e2 calculated by its exact expression equation (42) (solid
line) and by the approximated formula equation (43) (dashed line) for different values of p and I.

respectively. Accordingly, the relative error e2 involved in the approximation of the amplitude
of the reflectivity and expressed as

can be written as

~

e2 * 1 ~~~/"
~~~ ~~

~

~ ~

(43)
_( j ~) p I
j n

n

The comparison for different values of between e2 as obtained from equation (43) and its

exact expression (42) is shown in Figure 4; the approximation is not as good as in the case

of ei and it gives satisfactory results only when b < 0.2. A comparison between Figure 3

and Figure 4 shows that e2 is always greater than ei over the whole range of wavelengths
considered. In addition, for relatively small values of the difference (p Ii (less than about

10~~,
e2 is dominant over ei. For these reasons, in determining the accuracy of the wave

approximation it is sufficient to consider the contribution of e2 Furthermore, the nature of

the two errors, ei and e2, is quite different. While ei measures the error in the argument

of the sinusoidal functions of the reflectivity curve or, equivalently, the error
involved in the

calculation of the eigenvalues of the cell, e2 is connected to the error in the amplitude of the

reflectivity curve; ei is then strictly associated to the two-wave truncation in the total wavefield

expansion whereas e2 is mainly affected by the further approximation introduced through the

boundary conditions (27), I-e- neglecting the reflected wave at the input surface and assuming

the dielectric constant step through the limiting surface enough small to justify the use of the

D vector in the continuity equation for the tangential electric field. Accordingly, the error e2

must be considered to estimate the overall degree of approximation whereas ei seems to be
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Fig. 5. The behaviour of e2 as a function of in for different values of p and ~fio i
a) &lo =

-10~~;
b) ~o

"

-10~~

more adequate to determine the accuracy of approximation which is strictly connected to the

two-wave expansion of the wavefield.

The behaviour of e2 and ei as a function of In for different values of p and trio is reported in

Figures 5 and 6, respectively. We observe that, once fixed trio, each given value of p determines

a corresponding value of $; in addition, when trio is negative (I.e, p < 1), reducing p corresponds

to reducing $. Curves corresponding to positive values of i~o (I.e. p > I) are not reported in

the figures since, for the same values of (i~o and (p Ii,
we

found the same order of niagnitude
of the errors and only slight differences in the behaviour of the curves.

The consideration of Figures 5, 6 highlights the following results. The maximum error e2

involved in the two-wave approximation cannot be expressed only in terms of the magnitude
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of i~o (hence of the resonance error) but also requires the specification of an upper limit for

the quantity 1- p. In other terms, it is not sufficient to assign the magnitude of the resonance

error to provide an estimate of the accuracy of the approximation; depending on the value of

p, the same resonance error leads to approximation errors varying from a few percent to more

than 50 percent. Using the curves reported in Figure 5 it is a possible quantitative evaluation

of the maximum error e2. As an example, Figure 5a shows that when i~o
"

-10~~ and the

difference 1- p does not exceed 10~~, e2 is lower than 2% in the range of In between 1.8 and

2.2 which corresponds to a fractional normalized bandwidth AIn/In
=

0.2. Value of i~o of

this order of magnitude and even lower (10~~ 10~~) are usually found in X-ray, neutron and

electron diffraction by perfect crystals where the two-wave approximation is well known to give
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I-A ~i

AEM

AE~ z

Fig. 7. ID periodic layered structure with
a

general z-dependence of the dielectric constant profile

within the unit cell. ACM and /hem are
the maximum and the minimum value of AC in the unit cell,

respectively.

a very accurate description of the diffraction phenomena. The present results show that the

same holds for the scattering of electromagnetic waves by periodic dielectric media provided

that the perturbation is small enough to make (i~o lower than rd
10~~ and the difference ii pi

lower than Ge
10~~. Figure 5b shows that good results are possible even for values of i~o much

higher than those typically encountered in X-ray, neutron and electron dynamical diffraction,

provided that (p ii is sufficiently small. In particular, we see that if (p -11 < 10~~ the error

is lower than 5% percent in a relatively wide wavelength range (AIn/In m 0.I) and better

performances are achieved with smaller values of (p Ii.
Similar considerations hold for the error ei. In this case, however, the maximum error is at

least two orders of magnitude lower than the corresponding e2.

The above results concerning the limits of validity of the two-wave approximation in ID

periodic layered structures can be extended to the general case of ID periodic media with

any z-dependence of the dielectric constant profile within the unit cell. To this purpose it is

necessary to identify the parameters which play the role of and p in this approach. In the

general case, the dielectric constant e(z) of the ID periodic structure within the unit cell can

be written as

e(z)
= El + Ae(z) (44)

where the perturbed part Ae(z) is any function of z (see Fig. 7) and is small with respect to

ei. The Fourier coefficient i~o is a complex number and the accuracy of the approximation

must be discussed in terms of its modulus, (i~o(. Since the error depends on p more strongly
than on b, we can replace the original structure by a periodic layered one characterized by the

parameters p and $, given by the following equations

p =

~~~ j ~~~° ~~~

145)

'
"

~)~
2

(46)

where AeM and hem are the maximum and the minimum value of he in the unit cell, respec-

tively. The new structure is actually more perturbed than the original one and, accordingly,

an estimate of the maximum error based upon this structure will provide an upper limit for

the real error in the original structure.

Finally, a simple extension of the results to 2D and 3D periodic dielectric structures is

possible by considering an equivalent ID structure where (according to the general definition

of the Fourier coefficients (i~H in equation (4)) the quantity is given by the perturbed surface

fraction of the total unit cell surface (2D case) or the perturbed volume fraction of the total

unit cell volume (3D case). Again, this result will provide an over-estimate of the actual error
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"

1) with circular cross section (radius R
=
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of the experiment reported in reference [18j. The holes are made
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dielectric matrix of polyethylene
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"

2.345). The lattice parameters of the unit cell
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15.I mm
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3.I
mm.

in that if (i~o( and p satisfy the limitations above stated, the maximum error will be the one

calculated for the ID case. However in this case, because of the different dimensionality of the

structure, a given combination of (i~o( and p could result in actual errors much lower than the

maximum estimated. An example of this is given by the results of the experiment described in

reference
11 8]. The structure considered in this experiment consists of a 2D grating of cylindrical

holes (e2
=

1) with circular cross section (radius R
=

0.75 mm), made on a dielectric matrix of

polyethylene (El
=

2.345). The lattice parameters of the unit cell (see Fig. 8) are al =
15.I mm

and a2 "
3.I mm. The expression of (~,o( for this structure is

i~o
"

~~
l

~~
=

~~ (l p~~ (47)ai~
e2

ia~

The value of b is given by the ratio of the cross section of the circular hole to the total

surface of the unit cell, I,e.
=

~rR~/(aia2)
"

3.775 x10~~,
p =

(e21ei)~/~
"

0.653 and

i~o "
-5.077 x

10~~ The errors ei, e2 obtained with these values of i~o and p over the whole

experimental frequency range investigated (7.4 GHz 8.6 GHz) are reported in Figure 9. We

observe that even if ei is less than 3% over the whole frequency range the amplitude error is

very high. Such a high value of the error is not confirmed by the experimental evidence [18]
which, on the contrary, indicates a good agreement over the whole frequency range between

the experimental reflectivity curve and the theoretical one
(calculated in the framework of the

two-wave approximation) as shown in Figure 10. The probable reason is that the ID equivalent

structure considered is too severe in that it leads to an excessive over-estimate of the error. An

alternative and more reliable estimate of p can be obtained by considering the ID equivalent
model of the real actual 2D structure reported in Figure II, where < e > is the weighted

average of the dielectric constant over the rectangular surface of dimensions a2 x (2R). In

this way we obtain p =
0.884, and b is then calculated as =

~°

~
=

0.181. With these
I p-

values, the maximum estimated error greatly reduces as shown by Figure 12, and a reasonable

agreement with the experimental results is found.
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frequency range investigated. Here in is the guide wavelength of the TEio mode propagating in the
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obtained by the DST in the framework of the two-wave approximation (dotted line).

For the in scale, see
the caption of Figure 9.
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Finally, a comparison between the experimental and the theoretical curve in Figure 10 indi-

cates that the agreement is much better for the positions of the peaks than for their amplitudes.
This experimental finding confirms the smallness of ei with respect to e2 shown by the theo-

retical analysis in this paper.

4. Conclusions

The analysis of the errors connected to the two-wave approximation in the DST of electromag-
netic waves by periodic dielectric media has shown that, in the general case, it is not possible

to quantify the goodness of the approximation in terms of only the resonance errors. How close

to the Ewald sphere the reciprocal lattice points must be to produce the strong resonance effect

which justifies the approximation is a question which does not allow an absolute answer but

is strictly related to the nature of the perturbation. In particular, it has been shown that the

dielectric constant step, together with the resonance error, plays the main role in determining
the limits of validity of the classical two-wave approach of the DST. Accordingly, a different

behaviour is exhibited with respect to the case of X-ray, neutron and electron diffraction by
perfect crystals where the entity of the perturbation is always very small. In the scattering
of electromagnetic waves, resonance error

of the order of 10-~ and even lower could not be

sufficient to justify the approximation if the dielectric constant step is too high. On the other

hand, resonance errors of the order of 10-~ and even larger can give rise to satisfactory results

provided that the dielectric constant step (p Ii is small enough. The analysis developed and

the formulae obtained for the errors ei and e2 make it possible a quantitative estimate of the

accuracy of the approximation for a given scattering problem. Finally, we showed that the

accuracy of the two-wave DST is limited by the error e2 which, differently from ei, is strongly
affected by the further approximations introduced through the boundary conditions. Since ei

is typically orders of magnitude lower than e2, the accuracy of the approximation which is

strictly related to the two-wave truncation of the field, measured essentially by ei, is much

better. This is also confirmed by the results of the experiment performed on a 2D periodic
dielectric structure at microwave frequencies. Accordingly, better results could be obtained

within the two-wave DST approach by a proper modification of the boundary conditions in

the solution of the propagation equation.
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