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Abstract. We have performed
a

numerical investigation of the ground state properties of

the frustrated quantum Heisenberg antiferromagnet
on the square lattice ("Ji J2 model"),

using exact diagonalization of finite clusters with 16, 20, 32, and 36 sites. Using
a

finite-size

scaling analysis
we

obtain results for
a

number of physical properties: magnetic order parameters,
ground state energy, and magnetic susceptibility (at q =

0). In order to assess the reliability of

our calculations, we also investigate regions of parameter space with well-established magnetic
order, in particular the non-frustrated case J2 < 0. We find that in many cases, in particular
for the intermediate region 0.3 < J2/Ji < 0.7, the 16 site cluster shows anomalous finite size

effects. Omitting this cluster from the analysis, our
principal result is that there is N6el type

order for J2/Ji < 0.34 and collinear magnetic order (wavevector Q
=

(0, ~)) for J2/Ji > 0.68.

An error analysis indicates uncertainties of order ~0.04 in the location of these critical values

of J2. There thus is
a region in parameter space without any form of magnetic order. For the

unfrustrated case the results for order parameter, ground state energy, and susceptibility agree

with series expansions and quantum Monte Carlo calculations to within
a percent or

better.

Including the 16 site cluster,
or

analyzing the independently calculated magnetic susceptibility

we also find a nonmagnetic region, but with modified values for the range of existence of the

nonmagnetic region. From the leading finite-size corrections
we

also obtain results for the

spin-wave velocity and the spin stiffness. The spin-war,e velocity remains finite at the magnetic-
nonmagnetic transition,

as
expected from the nonlinear sigma model analogy.

1. Introduction

In this paper we consider a simple example of quantum frustrated antiferromagnetism, namely
the frustrated spin-1/2 Heisenberg model, with Hamiltonian

H
=

Ji ~ Si Sj + J2 ~ Si Sj, (1)

fi,Jl fi,J'l

The spin operators obey Si Si
=

3/4, and Ji
"

1 throughout this paper. The notations (I,j)
and (I,j') indicate summation over the nearest- and next-nearest neighbor bonds

on a square

(*) Author for correspondence (e-mail: heinz@solrt.lps.u-psud.fr)
(**)Laboratoires assoc16s au CNRS

@ Les #ditions de Physique 1996



676 JOURNAL DE PHYSIQUE I N°5

lattice, each bond being counted once. While the model has attracted most attention as a

simplified model ill of the effects of doping on copper oxide planes in the high-temperature
superconducting copper oxides, it is of rather more general interest. A complete understanding

would provide a clear example of answers to several general questions about quantum phase

transitions.

The first question is that even in a ground state with rathe1classical looking symmetry, in this

case an antiferromagnet, how do we show unequivocally that the order really is of long range

and not simply local? How do we calculate physically measurable correlations without relying

on low order perturbation theory? In the present case, for small frustration the appearance, in

the limit of infinite size, of spontaneous symmetry breaking is displayed in a relatively simple

model. Indeed the renewed interest in the model was because of doubts that the unfrustrated

case would display long-range order in the thermodynamic limit. While such doubts are now

relatively rare thanks to extensive numerical calculations and tighter rigorous liniits for higher

spin and lower spin symmetry, [2j there is as yet no rigorous proof for the isotropic spin one-half

model in two spatial dimensions. One reason for the present study is to test the quantitative

success of ideas of finite size scaling as applied to numerical diagonalizations that are perforce
limited to what seem unhelpfully small samples.

The history of finite size effects goes back to Anderson in the nineteen-fifties, [3j who first

invoked the fact that the infinite degeneracy of the ground-state with spontaneously broken

continuous symmetry must be manifest in a large number of nearly degenerate states in a

large but finite system. This idea of a "tower" of states whose degeneracy corresponds to the

ultimate symmetry, and whose energy scales determine the long distance parameters of the

spontaneously broken model of the infinite system has since been made more precise and less

dependent on perturbative concepts in the language of non-linear sigma models [4j. The model

we consider here has the advantage over, for example, the triangular or KagomA antiferromag-
nets [5,6j in that the classical limit has a simpler unit cell and thus the structure of the towers

should be simpler to test. One of our aims here will be to show that it is possible to extract the

parameters of the long wavelength physics in the ordered regime. In practice the difficulties of

applying finite size studies are still considerable: there are subleading as well as leading cor-

rections which make the ultimate goal of reliable quantitative calculations difficult even here.

It is helpful that we may easily stabilize the ordered state to study the disappearance of order

in a controlled fashion by applying negative J2.

A second general question relevant to other quantum phase transitions, is whether the finite

Size methods developed can be applied all the way to a critical point at which the order may
disappear with a continuous transition. The first step is to identify the parameter J2c of

this critical point unequivocally; even its existence is still a matter for contention. Indeed

some self-consistent spin-wave expansions have been interpreted as indicating a first order

transition [7-9j, at least for large spin. We shall present results which we feel are rather

convincing as to the existence of a critical point and a reasonably accurate estimate of its

value.

A third question, separate from the study of ordered antiferromagnetism, is the question of

what happens when this order disappears. In the mapping of quantum interacting ground states

to thermodynamics of classical models in higher dimension, there is at first sight a difference in

that quantum phase transitions tend to show order-order rather than order-disorder transitions.

Of course what one means by "order" is crucial to such a distinction. Here an ordered state

would be understood to have long range order in a different local order parameter, for example

a spin-Peierls dinierization variable or chirality parameter. In this paper we do not discuss

in detail the nature of the intermediate state, but we do produce evidence that at least it

corresponds to one of zero uniform susceptibility. This is compatible with either the chiral or
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2. Numerical Procedures and Results

We wish to find eigenvalues and eigenvectors of the Hamiltonian ii
on large clusters. In order

to achieve this, and given that computational power is and will remain limited, it is necessary

to use the symmetries of the problem to reduce the size of the corresponding Hilbert space as

much as possible. For the N
=

16, 32, 36 clusters we use:

1, translational symmetry IN operations for an N-site cluster).

2. reflection on horizontal (R-) and vertical (Rj) axes (4 operations). For the N
=

16 and

N
=

36 cluster, both symmetry axis pass in between rows of spins. However, for N
=

32,

the R--axis coincides with the central row of spin (see Fig. 1).

3. if a given eigenstate has the same eigenvalue under R- and Rj, then reflection on the

diagonal running from the lower left to the upper right of the cluster (RI) is also a

symmetry operation, and can be used to further reduce the size of the Hilbert space by

a factor 2. For the 32 site cluster, this operation has to be followed by a translation to

remap the cluster onto itself.

4. if the z-component Sz of the total'magnetization (which commutes with the Hamiltonian)
is zero, then the spin inversion operation I)

-
i) is also a symnietry and leads to

a
further reduction by a

factor 2. In principle a further considerable reduction of the

Hilbert space could be achieved by using the conservation of the total spin S~. However,
there does not seem to be any simple way to efficiently incorporate this symmetry.

The point group operations Id, R-,Rj, RI generate the point group symmetry C4u. These

operations are only compatible with the translational symmetry for states of momentum Q
"

0

or Q
"

(~r,~r). In particular, for our clusters the ground state is always at Q
=

0. For the

20 site clusters reflections are not symmetry operations, and we use rather a rotation by ~r/2

as generator of the point group. The symmetry group at the interesting momenta Q
=

0 or

Q
" (~r, ~r) then is C4.

We use a basis set characterized by the value of Szi at each lattice site i. An up (down) spin
is represented by a bit (0) in a computer word. Thus, a typical spin configuration (e.g. for

a linear system of 4 spins) would be represented as

iiii)
=

l1012
=

13 (3)

To implement the symnietry, we do not work in this basis, but use rather symmetry-adapted
basis states. E-g- to remain in the one-dimensional toy example, instead of (3)

we use the

normalized basis state

jjj iiii) + iiii) + iiii) + iiii))
= jjj13) + j14) + j7) + iii)) e j7) (4)

where the lowest "minimal") integer of the 4 states occurring in (4) is used to represent the

state.

Our procedure to determine eigenvectors and eigenvalues proceeds in three steps: I) starting
from an arbitrary basis state of given symmetry and Sz, the whole Hilbert space is generated
by repeated application of the Ji part of the Haniiltonian, and the basis set is stored; it) the

Hamiltonian matrix is calculated and stored in two pieces, c6rresponding to the Ji and J2 parts
of the Hamiltonian; iii) the matrix is used in a Lanczos algorithm to obtain eigenvalues and

eigenvectors of the Hamiltonian. The principal difficulty in steps ii) and (it) is that application
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Table I. The nitmber of states in the Hiibert space (nh) and the nitmber of nonzero off-
diagonal matrix elements (ne ) for the ciitsters itsed in this paper. The nitmbers are for states

in the AI representation (A representation for N
=

20 ) at momentitm Q
=

0.

N ah ne

16 107 3664

20 1,321 55,660
32 1,184,480 78,251,988
36 15,804,956 1,170,496,152

of the Hamiltonian to a state represented by a "minimal" integer will of course in general
not produce another minimal integer state, but rather a state that needs to be brought into

minimal form by the application of a symmetry operation. The trivial solution would be to

try out all possible operations. This however would be extremely time consuming (there are

576 symmetry operations for the 36 site cluster!). Instead we use a different procedure [15]:
the basis states are coded in a computer word so that the Rj operation corresponds to the

exchange of the two halfwords. Each halfword then can be an integer between 0 and 2~/~ We

then create a list specifying for each haifword the corresponding minimal state (integer) and

the symmetry operation (s) connecting them. The length of this list is relatively moderate (2~~
at worst), and it can be easily kept in computer memory.

The minimal state corresponding to a given basis state is now determined by looking in this

list for the minimal states corresponding to the two halfwords. If necessary, the two halfwords

are exchanged ii-e- a Rj operation is performed),
so that the smallest of the two halfwords

constitutes the high-bit halfword of the resulting state. Finally, the symmetry operation leading
to this high-bit halfword is applied to the remaining halfword. In about 80% of the cases this

symmetry operation is uniquely determined. In the remaining cases, more than one symmetry
operation has to be tried out in order to find the minimal state. However, the extra calculational

effort is relatively small: e.g, for N
=

36, only for about a thousand out of 2~~ possibilities

are there more than eight symmetry operations to be tried out. Using this method for N
=

36

the CPU time needed to calculate the basis set and the Hamiltonian matrix is approximately
30 min and 90 min., respectively [16]. For the smaller clusters, CPU time requirements are

obviously much less. In Table I we show the size of the basis set and the number of non-zero

matrix elements for states of Ai (N
=

16, 32, 36) or A (N
=

20) symmetry at Q
"

0. These

are the subspaces containing the groundstate, apart from the case of relatively large J2 on the

N
=

20, 36 clusters, where the ground state has point group symmetry B (N
=

20) or Bi
(N

=
36). Note that the number of basis states for the larger clusters is very close to the naive

expectation
/~ /ji&N)

m 1.57554 x
io7 for N

=
3&).

The number of matrix elements e.g, for N
=

36 is still enormous. It is however obvious that

the matrix is extremely sparse: on the average, there are fewer than 80 nonzero elements per

line, which has in all 15, 804, 956 positions. One obviously only wants to store the addresses

and values of the nonzero matrix elements. This would still need two computer words per non-

zero matrix element, however, this requirement can be further reduced noting that all matrix

elements are of the form Hi,j
=

Ji,2 (Ii /lj)f,j, where the Ii are the normalization factors of

the symmetrized basis states (like the factor 1/2 in (4)), and the [,j are small integers, which in

the vast majority of cases equal unity. More specifically, (
j

is the number of times the action

of the Hamiltonian on an unsymmetrized basis state iii cleates another unsymmetrized basis
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state j)
or a state related to j) by a symmetry operation. The values of the l~ intervening in

a given matrix element can be easily determined during the calculation, and we thus just store

the positions of the unit integer. For the cases where [,j
= n # I, the corresponding position

is stored n times. Finally, a Cray computer word has 64 bits, and therefore can accommodate

two addresses. In this way the whole matrix for the 36 site cluster can be stored in about

5 gigabytes, which is relatively easily available as disk space at the computing facility we are

using. Space requirements could be further reduced by a factor 2 using the symmetry of the

Hamiltonian matrix, however, this would have lead to a rather important loss of speed in the

subsequent matrix diagonalization.
To obtain the groundstate eigenvalue and eigenvector of the Hamiltonian we use the standard

Lanczos algorithm, implemented by the Harwell library routine EAISAD. This routine performs

rather extensive convergence checks and we thus avoid to perform unnecessary time-consuming
Lanczos iterations. The main problem at this level is the use of the still rather large matrix

(ci 5 gigabytes). The matrix clearly does not fit into the main memory of a Cray-2 (2 gigabytes).
We therefore store the matrix on disk, and read it in by relatively small pieces, whenever a new

piece is needed. This operation can be made computationally efficient by using "asynchronous"
input operations, which allow one to perform calculations in parallel with the read-in operation
for the next piece of the matrix. Moreover, using more than one input channel simultaneously
the read-in operation can be further accelerated. In this way the total time overhang due to

the continuous read-in of the matrix can be kept below 20% of total CPU time. To reach

a relative accuracy of10~~ for N
=

36, we need between 40 min. (J2
"

0) and 3 hours

(J2/Ji QS 0.6, slowest convergence) CPU time. We have performed a number of checks to

insure the correctness of the numerical algorithm. The most important one is to calculate the

groundstate energy for ferromagnetic interaction (Ji,2 < 0), which of course is known to be

(Ji + J2)N/2. However, the numerical calculation in the Sz
=

0 subspace is nontrivial because

the Hilbert space and, up to an overall minus sign, the matrix are of course the same as for

the antiferromagnetic case. We also compared our results with previous finite size calculations

[17-21) (for N
=

16, 20, 32) and quantum Monte Carlo results [22j (for N
=

36, J2
=

0), and

found agreement in all cases. Finally, an independent check of the numerical accuracy of the

Lanczos algorithm is provided by starting the Lanczos iterations with different initial vectors.

In each case we found a relative accuracy of at least 10~~ for the ground state eigenvalues.
Similarly, expectation values calculated with the eigenvector are found to have relative accuracy
of 10~~. In Table II we list ground state energies of the different clusters for a number of values

of J2. A more complete set of results is displayed in Figure 2.

More important for the following analysis are the values of the Q-dependent magnetic sus-

ceptibility (or squared order parameter)

1
~jjs . )e~~'~~~ '~ ~~

Following arguments by Bernu et al. [5] we use a normalization by a prefactor
~j

(
~~

instead

of the usual I/N~. In the thermodynaniic limit, these possibilities are obviously equivalent.
However, for the relatively small cluster we are using, there are sizeable differences in the

results of the finite-size scaling analysis. The choice in equation (5) is essentially motivated by
the fact that in a perfect NAel state M((Q) is entirely size-independent [23]. More generally,
this choice eliminates to a certain extent the overly strong contributions from the terms with

I
=

j in equation (5).
Some values of fiI((Q)

are shown in Table III, and complete curves are in Figure 3. The

values displayed land used in the following analysis) are always expectation values in the trite
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Table II. The groitnd state energy per site for different ciitsters and different uaiites of J2
(Ji is normalized to itnity). Where the ground state representation changes with increasing J2
(N

=
20, 36), the energies of both relevant representations are given. Boldface indicates the

approximate location of changes in the groitnd state symmetry.

J2 16 20(A) 20(B) 32 36(Ai) 36(Bi)
-1.00 -1.16457 -1.15103 -0.801770 -1.13251 -1.12922

-0.50 -0.927249 -0.915408 -0.648275 -0.900134 -0.897626

0.00 -0.701780 -0.690808 -0.519508 -0.680179 -0.678872 -0.603912

0.10 -0.659817 -0.648444 -0.501316 -0.639048 -0.638096

0.20 -0.619874 -0.607519 -0.487925 -0.599542 -0.599046

0.30 -0.582984 -0.568545 -0.479923 -0.562283 -0.562459

0.40 -0.551147 -0.532381 -0.476480 -0.528379 -0.529745

0.50 -0.528620 -0.500615 -0.476624 -0.500096 -0.503810 -0.493941

0.55 -0.523594 -0,487338 -0.478122 -0.489517 -0.495178 -0.490396

0.60 -0.525896 -0.491633 -0.491816 -0.484599 -0.493239 -0.492267

0.65 -0.539382 -0.516444 -0.517029 -0.502147 -0.506588 -0.506582

0.70 -0.563858 -0.543309 -0.545677 -0.527741 -0.529951 -0.530001

0.80 -0.627335 -0.600092 -0.609595 -0.586871 -0.585428 -0,586487

0.90 -0.696866 -0.659162 -0.677703 -0.651509 -0.645445 -0.649052

1.00 -0.768468 -0.719583 -0.747576 -0.718414 -0.707495 -0.714360

1.20 -0.914286 -0.842827 -0.88967 -0.854910 -0.848364

1.50 -1.13578 -1.03098 -1,10536 -1.06229 -1.05268

2.00 -1:50771 -1.34863 -1.46744 -lA1044 -1.39633

Table III. The normalized sitsceptibiiity (Eq. (5)) at Q
= (~r, ~r) and Q

= (~r, 0) for different
ciitsters and different vaiites of J2/Ji.

M(~r,~r) M(~r,0)
J2/Ji 16 20 32 36 16 20 32 36

-1.00 0.26924 0.26002 0.24296 0.23943 0.02778 0.02273 0.01470 0.01316

-0.50 0.26297 0.25221 0.23131 0.22660 0.02780 0.02273 0.01471 0.01316

0.00 0.24580 0.23430 0.20621 0.19879 0.02789 0.02278 0.01476 0.01322

0.10 0.23853 0.22785 0.19745 0,18893 0.02798 0.02284 0.01480 0.01326

0.20 0.22811 0.21949 0.18616 0.17601 0.02818 0.02292 0.01489 0.01335

0.30 0.21212 0.20816 0.17090 0.15800 0.02868 0.02309 0.01506 0.01354

0.40 0.18589 0.19193 0.14887 0.13109 0.03031 0.02348 0.01545 0.01404

0.50 0,14236 0,16693 0,11487 0.09236 0.03709 0.02452 0.01669 0.01594

0.55 0.11276 0.14834 0.09165 0.07062 0.04771 0.02621 0.01880 0.01965

0.60 0.07819 0.02915 0.05113 0.04378 0.07154 0.11508 0.04627 0.03822

0.65 0.04290 0.02015 0.01692 0.01954 0.10897 0.12615 0.10333 0.08167

0.70 0.02092 0.01303 0.01161 0.01232 0.13598 0.13461 0.l1321 0,10006

0.80 0.00721 0.00561 0.00520 0.00611 0,15407 0,14383 0.12265 0,11370

0.90 0.00374 0.00302 0.00251 0.00314 0.15930 0.14759 0.12616 0,11925

1.00 0.00236 0.00193 0.00147 0.00183 0.16164 0,14944 0.12759 0,12183

1.20 0.00126 0.00103 0.00072 0.00088 0.16379 0.lsl18 0.12876 0.12418

1.50 0.00067 0.00055 0.00037 0.00044 0.16507 0.15227 0.12939 0,12553

2.00 0.00033 0.00027 0.00018 0.00021 0,16586 0.15295 0,12977 0,12637
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Fig. 2. The ground state energy per site as a function of J2/Ji for N
=

16 (full line), N
=

20

(dashed line), N
=

32 (dash-dotted line), and N
=

36 (dotted line). For clarity, the curves for

N
=

20, 32, 36 are also displayed shifted upwards by 0.2, 0A, and 0.6, respectively. For N
=

16, 20 we

have results for J2/Ji in steps of 0.01, and only
a continuous curve is displayed. For N

=
32, 36, we

have only results at the points indicated, and lines are a guide to the eye.

ground state, e-g- for large J2 states of symmetry B (N
=

20) or Bi (N
=

36) are used. From

the results shown it is quite obvious that the dominant type of magnetic order changes from

Q
" (~r, ~r) at relatively small J2 (Ndel state) to Q

= (~r, 0) at larger J2 (collinear state). How

exactly this change occurs will be clarified in the following section.

3. Finite-Size Scaling Analysis

3. I. ORDER PARAMETERS. The results shown in Figure 3 show a transition between a N4el

ordered region for J2 $ 0.5 to a state with so-called collinear order ii-e- ordering wavevector

Q
" (~r, 0)) at J2 2 0.6. To analyze the way this transition occurs in more detail, we use finite-

size scaling arguments [24]. In particular, it is by now well established that the low-energy
excitations in a NAel ordered state are well described by the nonlinear sigma model. From this

one can then derive the finite-size properties of various physical quantities. The quantity of

primary interest here is the staggered magnetization mo(Qo) defined by

mo(Qo)"2 lim MN(Qo)
,

(6)
N-m

where Qo
"

(~r,~r). The normalization is chosen so that mo(Qo)
"

in a perfect NAel state.
The leading finite size corrections to mo are given by
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20, 32, 36. The dash-dotted line is the leading finite size behavior expected at J2

=
o (see

Eq. (7)).

where for the infinite system ~i gives the amplitude of the diverging matrix element of the

spin operator between the ground state and single magnon states at Q Ge Qo.

Least square fits of our finite-size results to equation (7) are shown in Figure 4. For small

values of J2 the scaling law is quite well satisfied: e-g- for J2
=

0 the four data points in

Figure 4 very nearly lie on the ideal straight line, and the extrapolated value of the stag-
gered magnetization, mu (Qo)

"
0.649, is quite close to the best current estimates [22, 25-27],

mo(Qo)
=

0.615 [28]. Using the same type of finite size extrapolations for other values of J2,

we obtain the results indicated by a dashed line in Figure 5.

For J2
"

0, a check on the reliability of our method can be obtained by comparing the

numerical results with what one would expect from equation (7), using the rather reliable

results for mu, c, and ps obtained by series expansion techniques [26,27, 29]. The curve expected
from equation (7) is shown as a dash-dotted line in Figure 4. It appears that there are sizeable

but not prohibitively large next-to-leading corrections.

Another measure of the reliability of the finite-size extrapolation can be obtained comparing
results obtained by the use of different groups of clusters. For negative J2, I-e- nonfnlstrating
interaction, the values of mo(Qo)

are nearly independent of the clusters sizes used, and the

results in Figure 5 therefore are expected to be quite accurate. In this region the next nearest

neighbor interaction stabilizes the antiferromagnetic order and therefore the staggered mag-
netization tends to its saturation value unity for large negative J2. On the other hand, for

positive J2 the interaction is frustrating. In this case, the agreement between different extrap-

olations is less good. We note however, that in all but two cases the staggered magnetization
tends to zero as in a second order phase transition, with a critical value of J2 between 0.34

and 0.6. The question than arises as to which extrapolation to trust most. In fact, none of the
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Fig. 5. The staggered magnetization mo(Qo)
as a

function of J2/Ji using different combinations

of clusters (a). In (b) the "critical" region J2 > o is shown enlarged.

clusters considered here is free of some peculiarity: for N
=

16 and J2
"

0, there is an extra

symmetry, because with only nearest neighbor interactions this cluster is in fact equivalent to

a 2 x 2 x 2 x 2 cluster on a four-dimensional hypercubic lattice; the N
=

20 cluster has a

lower symmetry than all the others (C4 instead of C4u)1 for N
=

20 and N
=

36 the ground
state changes symmetry with increasing J2i finally the 20 and 32 site clusters are unusual in
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that they are rotated, by different angles, with respect to the lattice directions. A priori, one

might then argue that the best choice should be the least biased one, including all available

clusters. As indicated by the dashed line in Figure 5, this leads to a critical value of J2 for the

disappearance of antiferromagnetic order of J2c * 0.48.

However, from Figure 4 it is quite clear that for J2 > 0.35 the 16 site cluster is highly

anomalous in that M((Qo) increases going to the next bigger cluster, whereas in all other

cases there is a decrease with increasing size. Clearly, in Figure 4 a much better fit is obtained

in this region by omitting the N
=

16 results, leading to a reduced value, J2c * 0.34 as

indicated by the full line in Figure 5. The anomalous results obtained from the N
=

16, 20, 32,

N
=

16, 32, 36 and N
=

16, 32 fits are certainly due to an over-emphasis put onto the N
=

16

results. Similar anomalous behavior of the 16 site cluster occurs in many cases in the region

0.3 < J2 < 0.8, and we therefore consider the results obtained using only N
=

20, 32, 36 as more

reliable. In particular, in this way we find a staggered magnetization of 0.622 at J2
=

0, only

about one percent higher than the best current estimate, mo(Qo)
"

0.615. Beyond the precise

value of the critical value J2c at which antiferromagnetic order disappears, the important result

here, obtained by the majority of fits, is the existence of a second order transition, located in

the interval 0.3 < J2 < 0.5.

One might of course argue that it is not the N
=

16 but rather the N
=

20 cluster that

is anomalous. However, closer inspection of the data in Figure 4 clearly shows that the

N
=

20, 32,36 data points remain reasonably well aligned even in the intermediate region

0.3 < J2 < 0.8, whereas the alignment for N
=

16, 32, 36 is much worse. The N
=

20, 32, 36

fit also is quite stable: omitting either the N
=

32 or the N
=

36 point from it, one obtains

only relatively small modifications in the results in Figure 5. On the other hand, starting from

N
=

16. 32, 36 and omitting either of N
=

32 or N
=

36 leads to strong modifications. Finally,
the N

=
16,20,32 fit (which together with N

=
16,32,36 and N

=
16,32 indicates a NAel

phase up to J2 " 0.6) also is unstable: adding N
=

36 or replacing N
=

32 by N
=

36 leads

to drastically modified results.

To obtain a more quantitative criterion for the quality of the different fits, we use standard

methods of error estimation, as described for example in reference [30]. The results for M( (Qo
in the thermodynamic limit N

- co obtained from N
=

16,20,32,36, N
=

20, 32,36, and

N
=

16, 32, 36 are shown in Figure 6 together with the corresponding variances [30] represented

as error bars. Extrapolations using other combinations of clusters lead to variances at least

twice as big as those for N
=

16, 20, 32, 36, and therefore are not discussed in the following. The

error bars have to be taken with some caution, because errors here certainly are not normally
distributed but rather systematic. Nevertheless, the relative size of the error bars certainly is a

significant indicator of the quality of the fits. As to be expected from Figure 4, the error bars for

the N
=

20, 32, 36 fit are nearly two times smaller than those obtained from the fit including all

points. Similarly, the total x~ for N
=

16, 20, 32, 36 and for N
=

16, 32, 36 are typically twice as

big and 30% bigger than the one obtained from N
=

20, 32, 36. This rather clearly demonstrates

the anomalously large error introduced by the N
=

16 cluster. Moreover, one observes that for

the N
=

16, 20, 32, 36 and N
=

16, 32, 36 fits, the NAel order disappears in a region where the

error bars are nearly as big as the value of M((Qo at J2
"

0, indicating a very poor quality of

the fit. Only for N
=

20, 32, 36 does the transition occur in a region of relatively small error bar.

Finally, we note that at J2
"

0, we have MS (Qo)
=

0.105 ~ 0.006, 0.097 + 0.004, 0,107+ 0.004

for N
=

16,20,32,36, N
=

20, 32,36, and N
=

16,32,36, respectively, whereas the best

current estimate for the staggered magnetization, mo(Qo)
"

0.615, leads to MS (Qo)
"

0.095.

Again, only the N
=

20. 32, 36 extrapolation gives consistent results. In the follo~v.ing, we
will

therefore mostly rely on the N
=

20, 32,36 extrapolations. From Figure 6 we then expect

the disappearance of NAel order somewhere in the interval 0.31 < J2/Ji < 0.38, with a best
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estimate of 0.34. Similar analyses can also be performed for other quantities calculated below

(collinear order parameter, q =
0 susceptibility), with similar results. We will therefore not

reproduce this type of analysis in detail below.

We now follow the same logic to analyze the behavior for larger J2, where Figure 3 suggest the

existence of magnetic order with ordering wavevector Qi
" (~r, 0). Of course, this state again

breaks the continuous spin rotation invariance, and therefore the low energy excitations are

described by a
(possibly anisotropic) nonlinear sigma niodel. There is an additional breaking of

the discrete lattice rotation symmetry (ordering wavevector (0, ~r) is equally possible), however,

this does not change the character of the low-lying excitations. The finite size behavior is

entirely determined by the low energy properties, and therefore we expect a finite size formula

analogous to equation (7):

~~~~~~~ j'~~o(Qi)~ +
~~~~~'

+~
(8)

Here the factor 1/8 (instead of1/4 in (7)) is due to the extra discrete symmetry breaking

which implies that finite-size ground states are linear combinations of a larger number of

basis states. Moreover, the nonlinear sigma model is anisotropic, because of the spontaneous

discrete symmetry breaking of the ordering vector, and consequently a precise determination

of the coefficient of the I-term is not straightforward. The important point here is however

the N-dependence of the correction term in equation (8).
Least square fits of our numerical results to equation (8) are shown in Figure 7, and the

extrapolated collinear magnetization mo(Qi) is shown in Figure 8. For J2 > 0.8 equation (8)

provides a satisfactory fit to our data, even though not quite as good as in the region J2 < 0 in

the staggered case, as shown by the spread of different fits in Figure 8 (compare Fig. 5 in the
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region J2 < 0). For smaller J2 there is a wide spread in the extrapolated results, depending

on the clusters used. We notice however that for the majority of clusters used, there is a

common feature: .mo(Qi) remains finite down to J2
=

o.65, and then suddenly drops to zero

at J2
"

0.6. This would indicate a first order transition to the collinear state somewhere in

the interval 0.6 < J2c < 0.65. This interpretation also seems consistent with the raw data

of Figure 3: the increase of M((Qi) around J2
"

0.6 is much steeper than the growth of
M((Qo) with decreasing J2. From the N

=
16, 20,32,36 extrapolation one then obtains a

collinear magnetization which is roughly constant above J2c at mo(Qi)
QS 0.6. Notice that

the first-order character of the transition is not due to the level crossings occurring in the

N
=

20 and N
=

36 clusters: if these clusters are omitted from the extrapolation, the first

order character is in fact strongest (cf. Fig. 8).
On the other hand, inclusion or not of the N

=
16 cluster plays~an important role because

this cluster shows again anomalous behavior in the region of intermediate J21 for J2 < 0.7
M((Qi) increases when N increases from 16 to 20,'contrary to what equation (8) suggests.
Indeed, an error analysis analogous to the one performed for the NAel order parameter again
shows a much better quality of the N

=
20, 32, 36 fit. If one therefore omits the N

=
16 cluster

from the extrapolation, results quite consistent with a second order transition in the interval

0.64 < J2/Ji < 0.72 are obtained, with a best estimate for the critical coupling J2c/Ji
* 0.68.

It appears that the collinear order parameter tends for large J2 to a value very close or

identical to that of the antiferromagnetic order parameter at J2
"

0. This is in fact not

difficult to understand: for J2 > Ji our model represents two very weakly coupled sublattices,
with a strong antiferromagnetic coupling J2 within each sublattice. Consequently, the ground
state wave function is to lowest order in Ji /J2

a product of the wavefunctions of unfrustrated

Heisenberg antiferromagnets
on the two sublattices. We then obtain M((Qi, J2

"
co)

=
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fiI(~~(Qo, J2
"

0)/2, and thus from equations (7) and (8) we have the exact result

rim mo(Qi)
=

mo(Qo)ll~)
J~ /J~-m

J~=o

Our numerical results do satisfy this relation within the expected (and rather small) uncer-
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tainties. To obtain this agreement it was however crucial to use the normalization of M((Q)
shown in equation (5). Using a factor 1/N~ instead we obtain for large J2 mo(Qi * 0.4, JA~hich

is far too low. The reason for this is that our extrapolation with N
=

16, 20, 32, 36 corresponds,
for large J2, to a calculation on two nearly uncoupled and unfrustrated sublattices, each with

N
=

8,10,16,18. On such small lattices, short-range effects are obviously rather large, and

therefore the proper normalization of M( is particularly important.
Beyond quantitative results, the most important conclusion of this analysis is the existence

of a finite interval without magnetic long range order: if all available clusters are included in

the analysis, this interval is 0.48 £ J2 $ 0.6, if, because of the anomalies discussed above one

omits the N
=

16 cluster, the nonmagnetic interval is increased to 0.34 £ J2 £ 0.68. The

study of the ground state symmetry in this region requires a detailed analysis of a number of

different non-magnetic order parameters and will be reported in a subsequent paper. However,

at this stage, the magnetic structure factor S(Q)
=

(N + 2).lf( IQ) already gives some valuable

information: in fact, as shown in Figure 9, with increasing J2 the collinear peak at the X point

grows and the N4el peak at the M point shrinks, however there never is a maximum at other

points. There is thus no evidence for incommensurate magnetic order.

3.2. GROUND STATE ENERGY, SPIN-WAVE VELOCITY, AND STIFFNESS CONSTANT, The

ground state energy per site in the thermodynamic limit can be obtained from the finite-size

formula for an antiferromagnet [4,24j

Eo(N) IN
= eo

1.4372~ +
,

(10)

where c is the spin-wave velocity. Again, in the collinear state, an analogous formula holds,

but with c replaced by some anisotropy-averaged value. Fits of our numerical results are
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Fig. 10. Finite size results for the ground state energy per site for different values of J2. The
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20, 32, 36.

shown in Figure 10. Away from the "critical" intermediate region, I-e- for J2 < 0.2 and

J2 > 0.8, equation (10) provides a rather satisfying description of the results, in particular if

the N
=

16 cluster is disregarded. The fit is even considerably better than that for the order

parameters (compare Fig. 4). This is certainly in large part due to the much weaker finite
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In the intermediate region 0A < J2 < 0.65 the extrapolation
can not be used reliably, and

no
results

are
shown. Results obtained using different clusters are undistinguishable on the scale of this figure.

The dash-dotted line is the spin-wave result, equations (16) and (Ii).

size correction to the ground state energy, as compared to those for the order parameters. On

the other hand, in the intermediate region 0.4 < J2 < 0.7, the fits are not very good. In

this region the ground state energy per site is rather irregular, for example there is generally

a decrease from N
=

32 to N
=

36 contrary to what equation (10) suggests. The failure

of equation (10) in the interniediate region is of course not surprising, as the analysis of the

previous section showed the absence of magnetic order, which implies the non-existence of
an

effective nonlinear sigma model and therefore the invalidity of the extrapolation formula (10).
The result of our extrapolations is shown in Figure II. Over most of the region shown, results

from extrapolations using different clusters are indistinguishable on the scale of the figure. Only
close to the critical region is there a spread of about 2 percent in the results. In particular, at

J2
=

0 we find values between eo =
-0.668 and eo =

-0.670, very close to the probably best

currently available estimate, obtained front large-scale quantum Monte Carlo calculations, of

eo =
-0.66934 [25, 31].

The amplitude of the leading correction term in equation (10) allows for a determination

of the spin-wave velocity c. Results are shown in Figure 12. In this case, there is a wider

spread in results. This is certainly not surprising, given that this quantity is derived from the

correction term in equation (10). Nevertheless, the agreement between different extrapolations
is reasonable for J2 < 0. At J2

"
0 and using all clusters we find

c =
1.44Ji, close to but

somewhat lower than the best spin-wave result csw "
1.65Ji. A smaller value is found from

the N
=

20, 32, 36 extrapolation: c =
1.28. For positive J2 the extrapolations give different

answers, according to whether the N
=

16 cluster is included or not. This of course is due to

the-anomalous behavior of this cluster in the energy extrapolations (see Fig. 10). An important
point should however be noticed: independently of the inclusion of the N

=
16 cluster, at the
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=
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critical value J2c for the disappearance of the antiferromagnetic order the spin-wave velocity
remains finite.

In principle, better estimates for c might be expected including the known next order correc-

tion to equation (10), of order N~~ [4]. However, this term predicts a curvature of Eo IN) IN
opposite to that obtained in our calculations, and we thus feel use of this higher order term to

be inappropriate.
The final parameter in the nonlinear sigma model is the spin stiffness constant ps. It can be

found from our finite size results [24]

~~(Q~)2~
~~ 8~( '

~~~~

with ~i deterniined from equation (7) [32]. This relation determines the second form of equa-

tion (7) above. Results are shown in Figure 13. Again, for the same reasons as before, there

is some scatter in the results, because of the use of the correction terms in equations (7) and

(10). The results at J2
=

0 (ps
=

0.165 or 0.125 according to whether N
=

16 is included or

not) is lower than other estimates (ps m 0.18Ji) Ill, 29]. The fact that ps -
0 as J2

-
J2c is

again in agreenient with expectations from the nonlinear sigma model analysis, but is of course

a trivial consequence of equation ill). A much more reliable way to obtain the spin stiffness

is via a direct calculation of the effect of twisted boundary conditions [33].
In the collinear region, there is an additional anisotropy parameter in the effective nonlin-

ear sigma model, and the corresponding effective parameters therefore cannot been obtained

straightforwardly from the lowest finite size correction terms.
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3.3. SUSCEPTIBILITY AT q =
0. An independent test of the reliability of our results can

be obtained by calculating the susceptibility x: even in an
antiferromagnetically ordered state,

the q =
0 susceptibility is finite, whereas for unconventional states (e,g. dimer or chiral),

one

has a spin gap and therefore
a vanishing susceptibility. The vanishing of the susceptibility

can thus be associated with the vanishing of the magnetic order parameter. Moreover, in

an antiferromagnetic state one has x =
ps/c~, and we thus have a consistency check on our

calculated values for c and ps. At fixed cluster size one has ~(N)
=

I/(NAT), where AT
is the excitation energy of the lowest triplet state (which has momentum Q

=
(~r,~r) in an

antiferromagnetic state). An extrapolation of x(N) to the thermodynamic limit can be per-
formed using the finite-size formula [31, 34] x =

x(j~T) const. @, and results are shown in

Figure 14. Again, the N
=

16 cluster behaves anomalously in that x(N) increases going from

N
=

16 to N
=

20, whereas for bigger clusters there is the expected decrease. In the present

case, this anomaly occurs for nearly the whole range J2 > 0. Also, our result for J2
=

0 and

using N
=

20, 32, 36 is x =
0.0671, very close to both Monte Carlo estimates [31] and series

expansion results [26, 27, 29]. We therefore think that the N
=

20, 32, 36 extrapolation is the

most reliable one, and this is confirmed by an error analysis as described above for the NAel

order parameter. The vanishing of the susceptibility can be used as an independent estimate

for the boundary of the NAel region, and this gives a critical value for the disappearance of

gapless magnetic excitations and therefore of long-range antiferromagnetic order of J2c " o.42,
with a lower bound of approximately 0.37. These values are quite close to the e8timate we

found above by considering the NAel order parameter.

A quantitative comparison of results for the susceptibility obtained either from the excitation

gap or
from the previously calculated values of c and ps and using x = ps /c~ reveals considerable

discrepancies (see Fig. 14), even well away from the "critical region" J2 m 0A. The most likely
explanation for this is that our calculation of

c and ps is based on corrections to the leading
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finite-size behavior, whereas ~ is obtained directly from the gap. In particular, judging from

the case J2
"

o, we probably underestimate the spin wave velocity by quite a bit. The direct

estimate of x is thus expected to be more precise.
An analogous calculation of the susceptibility can be performed in the region of larger J2,

where the lowest excited triplet state is at Q
=

(~r,o). In this case, because of the double

degeneracy of this state, the susceptibility is given by x =
2/(NAT). Because of the lower

symmetry of the wavevector, the Hilbert space needed to determine the excited state roughly
double in size, and for N

=
36 has dimension 31561400. We use the same finite-size extrapo-

lation as before, and results obtained for different combinations of cluster sizes are shown in

Figure 15. The 16 site cluster again shows rather anomalous behavior and therefore we do not

take it into account in these extrapolations. The results then indicate a transition into a non-

magnetic (x
=

o) state at J2/Ji z o.6, in approximate agreement with what we obtained from

estimates of the order parameter above. The decrease of x with increasing J2 is not surprising,

as for large J2 the model consists of two nearly decoupled unfrustrated but interpenetrating
Heisenberg models, each with exchange constant J2, and consequently one has x oc

1/J2. What

is a bit more surprising is the sharpness of the maximum of X around J2/Ji
"

o.7.

3.4. COMPARISON WITH SPIN-WAVE THEORY. Linear spin-wave theory (LSWT) has

proven to be a surprisingly accurate description of the ordered state of quantum antiferro-

magnets even for spin one-half. We here compare our numerical results with that approach.
The lowest order spin-wave energies in the antiferromagnetic and collinear state are

UJAF(k)
=

2([1- a(1 qk))~ ~()~~~
,

(12)

~coll(k)
"

((2° +'f~)~ (2°4k +'fy)~)~~~
,

(l~)
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Fig. 15. The susceptibility in the collinear region
as

obtained from x "
2/(N6T) using different

extrapolations. As discussed in the text, the N
=

20, 32, 36 extrapolation is expected to be the most

reliable one.

where o =
J2/Ji, ~n #

cosk~, ~k "
(~~ + ~y)/2, and qk " ~~~y. In LSWT, the order

antiferromagnetic and collinear order parameters then are given by ill, 35]

where the integration is over the full first Brillouin zone. A comparison of our results with this

approach is shown in Figure 16. For the antiferromagnetic order parameter, we observe very
satisfying agreement. What is slightly disturbing here is that inclusion of the next order (I/S~)

correction to equation (14) ill] actually makes the agreement worse, even for negative J2 where

the next-nearest neighbor interaction stabilizes the order and spin-wave theory therefore should

be increasingly reliable. For example, for J2
"

-Ji these corrections lead to [36] mo(Qo)
=

o.775, whereas we find mo(Qo)
"

0.846. To which extent higher-order spin wave theory can

be used systematically even in this region thus seems unclear. For the more interesting case

of positive J2, higher corrections to spin-wave theory give more and more strongly diverging
results as J2

-
0.5, and it is not clear how any useful information can be obtained from these

higher order corrections in the frustrated case. We therefore limit our comparison here to linear

spin-wave theory.

For the collinear state at large J2, there is a similar good agreement between spin-wave
theory and our results, except for the inimediate vicinity of the transition to the nonmagnetic
state. We note that the spin-wave results (14) and (15) do satisfy the exact result (9).
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Fig, 16. Comparison of
our

finite size fits for the antiferromagnetic and collinear order parameters
(left and right curves, respectively) with linear spin wave theory.

The ground state energy per site is given in lowest order spin-wave theory by [36,37]

~~ ~

~~ ~

~
/

eo

= -~
l

~ (16)

for the antiferromagnetic and collinear state, respectively. As can be seen in Figure II, these

results are rather close to our finite-size extrapolations. Nevertheless, there is a significant
discrepancy: e-g- for J2

"
0 the spin-wave result is eo "

-0.6579, compared to the presumably
best estimate from large scale Monte Carlo calculations [25, 31], eo "

-0.66934. On the other

hand, as discussed above, our finite size extrapolation gives values very close to this. It would

thus seem that, as far as the ground state energy is concerned, finite-size extrapolation is more

precise than linear spin-wave theory.
Comparing our results for the spin-wave velocity and spin stiffness (Fig. 12 and 13) to

the LSWT results c =
2(1- 2J2/Ji)Ji and ps =

(Ji 2J2)/4,
one finds rather sizeable

discrepancies, both for ps and for c. Nevertheless, the functional form for large negative J2

seems to be correct. However, here a detailed comparison seems not particularly useful as

LSWT results themselves are rather imprecise (as shown e-g- by the large renormalization of

the susceptibility at J2
=

0).

4. Summary and Discussion

In this paper we have reported detailed finite-size calculations on the frustrated spin-1/2 anti-

ferromagnetic Heisenberg model
on

the square lattice. Using finite-size extrapolation formulae,
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Table IV. Comparison of our results at J2
=

0 obtained from the N
=

16,20,32,36 and

N
=

20, 32,36 extrapolations with preuioits estimates from series expansions and qitantum

Monte Carlo caicitiations. A more complete compilation of preuioits resitits can be foitnd in

remew articles f13,1$j.

eo motor) x

N
=

16, 20, 32, 36 -0.6688 0.649 0.0740

N
=

20, 32, 36 -0.6702 0.622 0.0671

series expansions (See Refs. [26] and [27] -0.6696 0.614 0.0659

quantum Monte Carlo (See Refs. [22], [31], and [25] -0.6693 0.615 0.0669

we derived results for a number of physical properties. The most important finding seems to be

the existence of a region of intermediate second nearest neighbor coupling J2 where no magnetic
order, antiferromagnetic, collinear or otherwise, exists. The location of the boundaries of this

nonmagnetic region depends on the cluster size involved in the estimate. For N
=

16, 20, 32, 36

we
find the interval 0.48 < J2/Ji < 0.6 to be nonmagnetic, whereas with N

=
20, 32,36 this

interval is larger: 0.34 < J2/Ji < 0.68. Given the irregular behavior of the N
=

16 cluster we

often found above, in particular in the region of intermediate J2, the second estimate would

appear to be the more reliable one. In any case, independently of which extrapolation one

prefers, there is a nonmagnetic interval.

Beyond the existence of a nonmagnetic region, we have also obtained quantitative estimates

for a number of fundamental physical parameters in the magnetically ordered states, antifer-

romagnetic for small or negative J2, collinear for large positive J2. The accuracy of these

estimates can best be assessed by comparing with the unfrustrated case J2
=

0, for which

case there are currently rather precise results available, mainly from large-scale Monte Carlo

calculations and series expansions. A summary of our results, together with other recent data,
is given in Table IV. Our results for the ground state energy, the antiferromagnetic order

parameter, and the susceptibility agree to within a percent or better, with the best currently
available numbers. Finally, our estimates for the spin-wave velocity and the spin stiffness are

rather imprecise. This is certainly mainly due to the fact that these quantities are obtained

from the amplitudes of the leading correction to the asymptotic large-size behavior of the

ground state energy and the order parameter susceptibility, and these corrections are almost

certainly estimated less precisely than the leading terms. A much improved and rather precise
estimate of the spin stiffness can be obtained directly calculating the effect of twisted boundary
conditions on the ground state energy [33].

We found it instructive to also investigate regions where magnetic order is well-established,
I-e- J2 < 0 for the antiferromagnetic case and J2 > Ji for the collinear case. In these regions

we find that the finite-size formulae like (7) and (10) provide an excellent fit to our numerical

results. The progressive worsening of the quality of the fits as the intermediate region is

approached certainly is consistent with the existence of a qualitatively different ground state

in that region. If on the contrary the transition between antiferromagnetic and collinear order

occurred via a strong first order transition (as suggested by some approximate theories, see

below), no such progressive worsening is expected. We also notice in this context that the

N
=

16 cluster is systematically the one exhibiting the largest deviations from the expected
behavior, probably due to its unusually high symmetry. We thus feel that estimates ignoring
this cluster may be more reliable.

Another way to assess the consistency of the finite-size extrapolations we are using is to
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Fig. Ii. Scaling plot of 4l(~)
=

~I((Qo)/mo(Qo)~
as a

function of the variable ~ =

c/(ps/k),
using the N

=
20,32, 36 (lower curve) and N

=
16, 20, 32, 36 (upper curve) extrapolations for

c
and

ps. For clarity, data for the N
=

16, 20, 32, 36 extrapolation
are

shifted upward by I unit. The straight
lines represent the spin wave result 4l(~)

=
(l + 0.6208~)/4

verify the underlying scaling hypothesis via a "scaling plot". The fundamental constants c

and ps of the nonlinear sigma model define
a length scale c/ps, and if finite size scaling is

verified one
therefore expects all finite size corrections to be universal functions of the variable

~ =

c/(ps@). In particular, for the order parameter susceptibility we expect

Mj(Qo)
=

mo(Qo)2»(z) (18)

Combining the second form of equation ii), equation ill), and this definition, the small-x

expansion of the scaling function is 4l(x)
=

ii + o.6208x) /4. Plots of our results for M((Qo)
as

a function of the scaling variable z are shown in Figure 17. One sees that for the N
=

20, 32, 36

extrapolation the plot is nearly perfect in that nearly all data points are collapsed onto a single

curve. The only points that show a significant deviation are those obtained for N
=

16 close to

the phase transition to the nonmagnetic state. This of course is nothing but a manifestation

of the anomalous behavior of this cluster already found previously. The behavior for the

N
=

16, 20, 32, 36 extrapolation is clearly less satisfying. A similar scaling plot for the ground

state energy produces even better results, due to the better convergence of the corresponding
finite-size formula (IQ).

A scaling plot like Figure Ii permits to assess the consistency of data obtained for clusters

of different sizes, however, the form of the scaling function itself is obviously less significant

as the coefficients c
and ps entering the definition of the scaling variable x are calculated

assuming finite-size formulae like (7) and (lo) to be valid, I-e- implicitly assitming the form

4l(x)
=

ii + o.6208z)/4. An independent estimate of 4l can in principle be obtained using

independent estimates for c and ps. We do not have currently such an estimate for ps, however

we can use our
independent results for the susceptibility (Fig. 14) to rewrite the scaling variable
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Fig, 18. Scaling plot of 4l(~)
=

M~(Qo)/mo(Qo)~
as a function of the variable ~ =

l/(xPsN)~/~,
using the N

=
20, 32, 36 results for y (see Fig. 14) and the N

=
20, 32, 36 extrapolation for p~. The

dashed line represents the spin wave result 4l(~)
=

(l + 0.6208~) /4

as x =
1/fiQ. The plot obtained using estimates for ps and x from N

=
20, 32, 36 is shown

in Figure 18. The collapse of data obtained for different sizes and values of J2 is not as

satisfactory
as in the previous case, however, this is certainly related to the fact that here we

use a second independently estiniated quantity, namely x. Still, for
x $ 5, the collapse is

rather good, showing the consistency of our analysis in this region. For the larger clusters,
this region corresponds to J2/Ji < o.25, I-e- it extends rather close to the transition which

occurs at J2/Ji
" o.34. For small x the calculated scaling function essentially agrees with the

spin-wave results shown by the dashed line in Figure 18. For x / 5, there are discrepancies

between results obtained from M((Qo) for different N. This probably indicates that at least

for the smaller clusters, finite size effects become so important that it is no more sufficient to

include the lowest order finite size corrections only. The fact that the numerically found scaling
function is larger than the spin-wave approximation is not entirely unexpected: in fact, for

large x, I-e- in the critical region, one would expect 4l(x)
oc

x~+~, where q is the correlation

exponent of the three-dimensional Heisenberg model. However, we doubt that what we observe

in Figure 18 is actually a critical effect. First, the numerical value [38] of q =
2 ii Iv) is very

small: q m o.03, and one thus expects an extremely smooth crossover. Moreover, in Figure 18

we have used the independently calculated susceptibility (see Fig. 14) which goes to zero only
at J2/Ji m o.42, rather than at J2/Ji

" 0.34 where our estimated staggered magnetization
vanishes. Consequently, the abscissae of the data points in Figure 18 are underestimated, I-e-

the data in Figure 18 overestimate the true 4i(x).
The Ji J2 model we have studied here has been investigated previously by number of

techniques. Previous finite-size studies 11?,18] found some indication of an intermediate phase
without magnetic order, however due to the limitation to N

=
16 and 20 only, it was impossible

to make extrapolations to the thermodynamic limit and to arrive at quantitative statements.
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Our own previous study [10], using N
=

16 and 36, produced results very similar to our

current best estimates. However, due to the larger number of clusters we now use (and due

to the possibility to ignore the anomalous N
=

16 cluster), we feel that our conclusions are

considerably more reliable.

Lowest order spin-wave theory [35] produces a phase diagram very similar to ours (see
Fig. 16). On the other hand, higher order (in I IS) calculations do not seem to be very useful,
due to increasingly strong singularities at J2

"
Ji /2. It has been attempted to include higher

order corrections using a selfconsistently modified spin-wave theory [7, 8]. These calculations

as well as the closely related Schwinger boson approach [9] produce a first order transition

between N4el and collinear state. Our results here seem to exclude this possibility: a first

order transition (unless it is very weakly first order) would mean that for example the finite-size

scaling law for the squared order parameter should be well satisfied all the way to the transition.

This is clearly not what is observed in the regions of intermediate J2 in Figures 4 and 7. A

combination of Schwinger boson results and a renormalization group calculation [12] gives on

the other hand a second order transition from the NAel state to a magnetically disordered state,

at J2c/Ji
=

0,15 [39]. However, the applicability of these approaches to an S
=

1/2 system is

hard to judge, mainly due to the absence of
a small parameter that would make a systematic

expansion possible.
Quantum Monte Carlo methods are plagued with the sign problem for frustrated spin .sys-

tems. Nevertheless, conclusions very similar to the modified spin wave calculations have been

reached recently using a quantum Monte Carlo method [40j. However, these results have rather

large error bars and in some cases, in particular in the region of intermediate J2, are in dis-

agreement with our present exact results. The validity of these results thus appears doubtful

to us.

Another approach has been via series expansion methods around a lattice covered by isolated

dimers [41j. Expanding around a columnar arrangement of dimers, these authors find a phase
diagram very similar to ours, at least as far

as magnetic order is concerned. However, these

results are not without ambiguity: expanding around a staggered dimer arrangement, there

appears to be a first order transition between NAel and collinear states. The results of this

method thus appear to be biased by the starting point of the expansion.
The most obvious question left open by the present study is the nature of the ground state in

the intermediate nonmagnetic region. Work extending our previous analysis [10j is in progress

and will be reported in a subsequent publication. It would also be interesting to investigate
dynamical correlations functions, in particular in the vicinity of the critical point of the N4el

state, J2c
=

o.34. One thus might gain additional insight into dynamical properties at a

quantum critical point [42, 43j. Finally, one might also try to extend the size of the available

clusters, in order to achieve better accuracy and reliability. The next useful cluster has 40

sites, and should be tractable in the near future. However, the next step then would be a

cluster of 52 sites which would require computational means both in memory size and speed
three or four orders of magnitude more powerful than what is currently available. A viable

alternative to increase the size of the tractable clusters might be to combine the exact solution

of moderately big clusters with Monte Carlo type approaches.
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