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PACS.05.30.-d — Quantum statistical mechanics
PACS.05.40.4j — Fluctuations phenomena, random processes, and Brownian motion
PACS.11.10.-z - Field theory

Abstract. — One considers the effect of disorder on the 2-dimensional density of states of an
electron of charge e in a constant magnetic field superposed onto a Poissonnian random distri-
bution of point vortices carrying a flux ¢ (o = e¢/27 is the dimensionless coupling constant). If
the electron Hilbert space is restricted to the Lowest Landau Level (LLL) of the total average
magnetic field, the random magnetic impurity problem is mapped onto a contact & impurity
problem. Particular features of the average density of states are then interpreted in terms of the
microscopic eigenstates of the NV impurity Hamiltonian. The deformation of the density of states
with respect to the density of impurities manifests itself by the progressive depopulation of the
LLL. A Brownian motion analysis of the model, based on Brownian probability distributions for
arithmetic area winding sectors, is also proposed. In the case o = 41/2, the depletion of states
at the bottom of the spectrum is materialized by a Lifschitz tail in the average density of states.

1. Introduction

One considers a 2-dimensional model for an electron of electric charge e and of mass m sub-
ject to a constant external magnetic field B superposed onto a random distribution r;, ¢ =
1,2,...., N of fixed infinitely thin vortices carrying a flux ¢, modeling magnetic_impurities,
and characterized by the dimensionless Aharonov-Bohm (A-B) coupling o = eg/27 = ¢/¢g.
Particular interest will be paid to the effect of disorder on the energy level density p(E) of
the test particle averaged over the random position of the vortices [1]. In the thermodynamic
limit N — 00,V — oo for a distribution of vortices of density p = N/V, the average magnetic
field, < B >= apey, becomes meaningful in the limit p — 0o, — 0, with'pa kept finite.
However, as soon as p is finite, and & non vanishing, corrections due to disorder should exhibit
non trivial magnetic impurity signatures, like broadening of Landau levels and localization.
In a first approach to this problem, a Brownian motion analysis partially relying on lattice
numerical simulations, will exhibit a global shift J%ﬁl[ =< w, > in the Landau spectrum
of the average magnetic field. In the case @ = £1/2, on the other hand, where the disorder
is clearly non perturbative, a depletion of states at the bottom of the spectrum will manifest
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itself by a Lifschitz tail in the average density of states. Secondly, a quantum mechanical
formulation will be used, where short range singular A-B interactions are properly taken into
account by a wave function redefinition, allowing for an analytical averaging on the disorder. If
one assumes that the total average magnetic field B+ < B > is strong enough so that one can
neglect the coupling between the Lowest Landau Level (LLL) and the excited Landau levels
by the random component of the vortex distribution, the system will be best described when
projected in the LLL. Since one has in view a sufficiently dilute gas of electrons compared to
the available quantum states in the LLL — the fractional Quantum Hall regime —, such a re-
striction is licit. It will be explicitly mapped on an equivalent problem of random §é impurities,
from which additional information on Landau levels broadening will be extracted.

2. Brownian Motion

One starts from a square lattice of A squares of size a2, in which point magnetic impurities
are randomly dropped. Let N, be the number of vortices dropped on square i. A random
configuration {N;} will be realized with the probability

pa?

B N! N (pa?)Niem
P“M”"iMNﬁﬁrmz — I} A (1)

g

with N/N = Zf\il N;/N = pa?. In order to compute the average level density < p(E) >, one
focuses, in the thermodynamic limit A~ — oo, on the one-electron partition function

R N
7 = Z(] < ez 21:1 2rn, Nia

>(c,N.} (2)
where {C'} is the set of L steps closed random walks, and n; is the number of times the square
i has been wound around by a given random walk in {C}, i.e. its winding number. Z, = %

is the free partition function, with # the length of the curve (2t = La%,e = m = 1). (2) is
invariant when o is shifted by an integer, so one can always restrict to ja| < 1. To get a
continuous path integral formulation for Brownian paths in the plane, one simply considers
the limit ¢ — 0,L — oo, with ¢ finite. Averaging Z with (1) one gets

Z=2Z < L ST 5 (3)

where S,, stands for the arithmetic area of the n-winding sector of a given Brownian path in
{C}. Consider the limit of no disorder, & — 0,p — 00, and < B > finite. One expects that

Z — Zy < ei<B>Zn 75 >(cy, the partition function of one electron in an uniform magnetic
field < B >. However, possible corrections coming from the exponent exp(i27na) — 1 might
alter this result. Due to the non-differentiability of Brownian paths, n2S,, is not defined for
a typical Brownian curve where < 5, >= 57 [2]. It has been shown [3] that S, is strongly
peaked when n — co, namely the probability distribution of the variable z = n2S,, tends to
&(x — t/2x), with a variance smaller than a constant times n=7,7 = 18. Also, S, and S, are
very weakly correlated when n and n’ become large. Since one wants to compare the partition
function Z of the electron to its partition function in the average magnetic field < B >, one
can as well consider the partition function Zz of the electron not only subject to the random
vortices, but also to an uniform magnetic field B,

Zp = Zo < e 2<B>S cos(< B > A) >0y (4)
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where the variables § and A are defined as

2m Zs sin?(ran); <8 >= '—,4(1 —la)) (5)
A= Z Sy (sin(2ran) + 2ran B ); <A>=0 (6)
27ra <B>"
and, in the case B = — < B >, compare Z_.p> to Zy. For averaging (4) in {C}, the

probability distributions of S and A are needed. If one splits 37 = 37,1 < + 22 |njsnes With
n' sufficiently large so that the  probability distribution can be used when |n| > n’, one gets
at

P(S) —— (S 75 PA —— A (M)

a—0 [O[‘ 4 a—0

—t|<B>{/2

One deduces that, in the limit o — 0, Z_<ps ——— Zge , implying that the system
—0

of random vortices is equivalent to an uniform r?lagnetic field < B >, but with an additional
positive shift | < B > |/2 =< w, > in the Landau spectrum. The origin of this shift can
be traced back to the S,, Brownian law: when one counts probability of winding around fixed
points via A-B path integral technics [2], the quantum A-B particle is forbidden to coincide with
the vortex location, via.contact repulsive interactions. This procedure [4] has deep implications,
both in the A-B and in the anyon contexts (many-body A-B problem), in particular for Bose-
based perturbative computations. One will come back to this point in the sequel.

So far, one has considered the average magnetic field limit o« — 0. Clearly, the analysis for
intermediate values of o becomes quite ifivolved. In the @ = +1/2 case, one can explicitly
test the effect of the random distribution of vortices. (3) now reads Z = Zy < e”2<5>% >
where § = Y .4 Sn/7 is a well-behaved random variable which, because of the probability
distribution law for the S,’s, scales like i. Thus the y = 7S/t probability distribution P(y =
7S /t) can be obtained by simulations on a lattice, where a number of steps ranging from 2000
to 32000 has been used. The average level density, obtained by inverse Laplace transform of
Z, is found to be a function of E/p only,

< p(B) >= po(E) /0 ¥ P(y = 15/t))dy (8)

More generally, it is easy to convince oneself that the inverse Laplace transform of the partition
function Zp given in (4) is necessarily a function of E/p, B/p and . In Figure 1, < p(E) >
displays a Lifschitz tail at the bottom of the spectrum, around F ~ 2p < y >= wp/4, where a
behavior < p(FE) >~ exp(—p/E) is expected. The energy level depletion at the bottom of the
spectrum is coherent with the positive shift in the Landau spectrum of the average magnetic
field. It is also reminiscent of the singular A-B density of states depletion p(E) — po(E) =
ﬂ32—_—12[5(]5’) [5] (0 < @ < 1 is understood). Since, the average density of state happens to
depend only on the scaling variable E/p, for a given impurity density, a transition from a
Lifschitz tail density of states to a Landau density of states is expected when o becomes
sufficiently small (c. =~ 0.3 — 0.4) [6]. Finally, (3) generalizes to the case of m species of vortex
a; with density p;, Z = Zy < H:Zl e’ 22, Sa(e®Tin ) >(cy- In the limit a; — 0, with p;a;
finite, when 3., pia; = 0, no average magnetic field materializes, and only disorder effects
are expected. Similarly, a mixture of Lo vortices with same density exhibits only a Lifschitz
tail density of states.
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<p(E)>
po(B) }Z

Fig. 1. — The average level density of states < p(E) > as a function of the variable E/(2p) (o = 1/2,
no external field) exhibits a Lifshitz tail at the bottom of the spectrum.

3. Operator Formalism

The Hamiltonian of an electron in a constant magnetic field B = Bk (k is the unit vector
perpendicular to the plane, |a| < 1, eB > 0 has been assumed without loss of generality),
superposed onto N vortices reads

N

2
Hzﬁ(p_za%;’_fzﬁer) +;%é2(r—m ©)

=1

In the presence of B, the sign of o becomes a physical observable, i.e. the interpolations
o:—1/2— 0and «:0 — 1/2 are not symmetric with respect to a = 0, or, in other terms, the
limits @ — 0" and @ — 0~ differ. In order to illustrate this statement, consider the degenerate
ground state (energy w. = eB/2m) (7]

o(r) = [[ Iz — s ™ oeimimelemslgmamecsz ;> q (10)

k3

The eigenstates (10) vanish when the electron coincide with a magnetic impurity. This restric-
tion means unpenetrable vortices, a hard-core boundary prescription that has already been
related, in the Brownian motion approach, to the positive shift in the Landau spectrum. In
the Hamiltonian formulation {9), it is given a precise meaning by adding to the pure Aharonov-
Bohm Hamiltonian the contact repulsive interactions. Of course, once the Hilbert space (10)
has been defined, the § functions trivially vanish on this space. They amount to couple the spin
1/2 degree of freedom [8] of the test particle, endowed with a magnetic moment p = —32-a/|a|
(thus an electron with gyromagnetic factor ¢ = 2), to the infinite magnetic field inside the
flux-tubes. An important consequence is that the ground state basis (10) is complete when
a < 0, since one obtains the complete LLL basis of the B field in the limit o — 0~ (m; > 0).
On the contrary, when o — 0% (m; > 0), N excited states, which are not analytically known,
merge in the ground state to yield a complete LLL basis [7]. Clearly, when « — 1, these excited
states have to become usual excited Landau levels, simply because the system is periodic. This
pattern for the excited states is crucial for the analysis that follows.
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Note that in the 1-vortex case, which is entirely solvable, the spectrum is composed of an in-
finitely degenerate Landau spectrum (2n + 1)w. and a n + 1 degenerate spectrum
(2n 4+ 1 + 2a)w,, which interpolates between the Landau levels. This structure will be shown
to remain valid in the low density impurity system, at least at the bottom of the spectrum.

To proceed further, one takes into account the behavior of the ground state near the magnetic
impurities, quite analogously to what is done in the A-B and anyon perturbative analysis [4].
In the present situation, however, one is rather interested by averaging over the disorder, and
by testing the average magnetic field contribution to the Landau spectrum of the electron. One
performs the nonunitary transformation

Tn,<n).;>'l‘2 H lr _ rilto‘lr‘;(r) (11)

1

$(r) = e

to obtain an Hamiltonian H acting on ¢(r) where the impurity potential reads

N oa 8 ol
Vie<0) =) ——= . 12
(e <0) i=1m2_21+;(w+<wc>)a - (12)
N oq 9 N z
Via>0)=-Y =2 . 1
(a>0) ;mz—zﬁ;(‘”ﬁ“’ >Jas—— (13)

The average magnetic field pre-exponential factor in (11) has to be understood in the infi-

N 2. U
. . _ . —r; d -
nite density limit as compensating for [[, |r — r;|!*! = edoim lallnle—ril _ golal [ drinjr—s'| _

edm<w:>r*  Short range singular interactions a2/|z — z;|? present in H, as well as the § in-
teractions, have been traded off for the regular interactions |a|dz/(z — z;) in H. Moreover,
interactions involving two magnetic impurities have disappeared from H, which will greatly
simplify the average on the disorder. The Hamiltonians H’ and H are equivalent, and can be
indifferently used for computing the partition function or the density of states. More rigorously,
consider instead of (11)

v = [T =) (14)

- p <|r—ri||°‘|> ’
where the average <> is done in a finite volume V = N/p. If the redefinition (14) affects the
short distance behavior of the Hilbert space, it does not modify its long distance behavior,
and thus the normalisation of the wave functions. It leads to a redefined Hamiltonian which is
appropriate for estimating < p(E) > in a functional approach [9].
If one now extracts the mean-value of V{(a), one obtains

H=<w.>+Hpycps +V(@)— <V(a) > (15)
where Hp<p> = —%azaz + %wtzzz - @;;—bz(z@ — Z0z) is the Landau Hamiltonian for

the B+ < B > field. One has added for convenience to H a long distance harmonic regulator
mw?r? /2, which partially lifts the degeneracy of the spectrum -one has w? = (ﬂﬂéfn—BZl)2 +w?,
the thermodynamic limit is obtained by letting w — 0.

The global shift < w. > appears explicitly in (15). It is the only remnant effect of disorder
in the average field limit @ — 0,p — oo, where V(a)~ < V(a) >— 0. If a < 0, H should
be trivially diagonal when restricted to the LLL of the B+ < B > field, since the redefined
ground state basis 1, derived from (11) is identical (the excited states play no role at all) to
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the LLL basis < u|z >= u(z) exp(—mw,2Z/2), with u(z) holomorphic (*). One respectively
finds, when a < 0 and o > 0

N

<v|V(a)— < V{a) > |u >=< v|(we — wt)az(z —Z—_L;— —7mpZ)|u > (16)
i=1 :
N 27ra
<olV(a)- < V(a) > Ju>=< v|(we — w)oz(D —— —2) (Za (z —2) — p)|u >
i=1 *

(17)
In the thermodynamic limit w — 0, (16) vanishes, so that H = w. is indeed diagonal on the
LLL basis. More interesting is the case a > 0, since then

2
H=<w.>+Hpycp> + ﬂ Zé(z - zi) = p) (18)

Thus, the magnetic impurity problem, when projected on the LLL of B+ < B >, is mapped on
a § impurity problem (?), which encodes the effect of the V excited states that leave the ground
state when o« — 01. The contact interactions pattern happens to be valid for vortex systems
in general, as soon as the excited states which join the Landau ground state are properly taken
into account. It holds in particular for the N-anyon Hamlltonlan Hpy which, when projected
on the LLL of an external B field, becomes Hy = S°1v ; Hp(r;) + 42 Dici O(ri ~15).

Projecting on the LLL of a Landau basis is meaningful if one > has a magnetic field at
disposal, which builds a well separated Landau spectrum for the test particle. When the
external magnetic field is strong compared to the average magnetic field, pr >> p|al, the
V(a)— < V(a) > contribution is small compared to the cyclotron gap. On the other hand,
in the regime p;, ~ pla|, a physical average magnetic field is needed, namely p — oo, — 0,
with pa finite. In a semi-classical point of view, the number f = p/(pr, + pa) of magnetic
impurities enclosed by the classical electronic orbit in the magnetic field B+ < B > has to
be big (pr, = eB/2r is the Landau degeneracy). If this is the case, V(a)— < V(a) > does
not couple different Landau levels of B+ < B >. What is the effect of disorder? One is
interested by the average density of states, a local quantity, which can be directly computed in
the thermodynamic limit w = 0. If @ < 0, the impurity potential vanishes, and disorder has no
effect. On the other hand, when o > 0, one has to average on § contact interactions, a problem
already studied by Brezin et al. [9], motivated by an original study of Wegner [10]. They con-
sidered a Poisson distribution (it is nothing but (1) in the thermodynamic limit) of uniformly
distributed ¢ impurities in the LLL of a B field, with Hamiltonian H = Hg + A Zfil &(r —r;).
If one now sets A = 2ra/m, B= B+ < B >, v = {;(E — we), one finds [9] for the average
density of states of (18)

< p(E) >= —XIm a, ln/ dtexp(wt——et—f/ dtl(l — et )) (19)

where ¢ — 0 is understood. < p(E) > is clearly a function of o, B/p and E/p.

(*) One assumes w, larger than < w, >. If not, an antiholomorphic basis has to be used. However, one
can as well consider the opposite situation with e < B > positive, and eB negative,i.e. < B> +B > 0,
which is in fact described by (17).

(?) The 6 interactions in (18) act non trivially on the Hilbert space of the LLL of B+ < B >. They
should clearly not be confused with the hard-core boundary § functions introduced in (9), which do
vanish on the groundstate Hilbert space (10).
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4. Discussion and Conclusion

If o < 0, one trivially gets that for < p(E) > a § peak centered at E = w,, with degeneracy
pL, + pa. A direct computation, based on (16), of the partition function of the test particle
in the presence of a harmonic regulator, leads to the same result, once the thermodynamic
limit is taken. For o > 0, interesting effects due to disorder are expected. In the regime
where the external magnetic field is dominant, where typically f < 1, the results read off [9]
give a 6 peak also centered at £ = w., with the same (by periodicity) degeneracy (pr +
pa)(1 — f) = pr + p{a — 1) and p additional states (per unit volume) broadening the LLL
as (E —w.)™/ These states exactly correspond in the thermodynamic limit to the N = pV
excited states leaving the groundstate. f = 1 is critical because the LLL is then entirely
depleted by the excited states (the degeneracy of the LLL grows as p«, but the depletion
grows as p). One understands the bump in the density of states observed at v = 1, i.e. at
energy E = we+ 222 (pp +pa) = we(1+2a+2a%p/p1) = we(1+2a) at low impurity density (see
the 1-vortex case described above), as the excited states contribution to the density of states.
When a — 1, where a usual Landau spectrum has to be recovered, one indeed finds E = 3w,
to a correction of order p/pr, a manifestation of the approximation made when projecting on
the LLL (note that one necessary has pr >> pa ~ p, thus p/pr, >~ 0). So, most of the p excited
states join the first excited Landau level of the B field when o = 1 (the others excited states
join the Landau spectrum at higher levels).

In the average magnetic field regime, where f has to be big, the shift in the spectrum can
be directly understood from (19). One has v — oo, therefore only small values of ¢ contribute
to the oscillating term, implying that the integral [ dt'(1 — e~ ®)/t' ~ it. One gets a Landau
density of states for the average magnetic field with the shift v — v — f, that is to say the
desired £ - E — 2 x e—émﬁ In the particular case B = 0, the magnetic field is entirely due
to the magnetic impurities. Then, the parameter f = 1/a depends only on the A-B coupling
constant.

In conclusion, an open question concerns the conductivity [11] properties of an electron in the
presence of magnetic impurities. In the Quantum Hall regime, information about localisation
properties of the eigenstates would be of great interest. Moreover, the test particle has been
shown to satisfy a kind of exclusion principle with the magnetic impurities, via contact repulsive
interactions. It would be more satisfactory if statistical effects could be also encoded in the
distribution of the impurities themselves. Concerning the Brownian motion approach, the
random magnetic field problem (windings) and the § impurity problem (excursions) are, a
priori, very different. The fact that they coincide when one considers their projection on a
LLL certainly deserves further explanations.
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