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alloying and granulation

Abstract. Numerical methods are used to model two kinds of sintenng processes, by Surface

Diffusion (SD)
or

by Viscous Flow (VF), and
are

applied to deterministic and random two-

dimensional "mass fractals" with various fractal dimensions. In the SD case the relevant partial
differential equation is discretized and the evolution of the contour is numerically studied. In

the case
of viscous flow,

a
recently introduced approximate "dressing" method is used. In both

cases it is shown that the geometrical characteristics which
are

the perimeter length L, the
size

( and the lower cut-off a, vary as some powers of time t (L
r~

t~", (
r~

t~P,
a r~

t~). The

exponents o, fl, ~, and their dependence on the fractal dimension D, are estimated from scaling
arguments and

are
found to be different in the SD and VF cases.

The SD case is
particular in

the sense
that fl ci 0 (no shrinkage) and that, if the initial fractal is too large, it breaks into

separate pieces.

1. Introduction

Sintering is an important technological process with applications in many industries (met-
allurgy, ceramics etc.. ). It is generally devoted to strengthen a material initially made of

a disordered assembly of many components and proceeds by applying temperature and/or

pressure [1]. The precise underlying physical mechanisms of sintenng depend on the type of

materials considered. Here we will focus on materials initially made of aggregated particles,
such as silica aerogels, which are highly porous materials of very low density with a huge inter-

face area as revealed by small angle neutron scattering experiments [2-4]. Their structure has

been shown to be well described by a random array of fractal aggregates connected together [5].
When such a material is heated during a given time at a temperature smaller than its melting

temperature, one observes a net shrinkage and a gradual elimination of the pores as a result of

the reduction of the total interface area [6]. On an atomic scale, several physical mechanisms

might intervene: i) Evaporation /Deposition (ED), ii) Surface Diffusion (SD), iii) Viscous Flow

(VF), but in the case of silica aerogels the two last mechanisms are more likely present with a

predominance of VF at higher temperatures [6]. It is only recently that the fractal character

© Les #ditions de Physique 1996



558 JOURNAL DE PHYSIQUE I N°4

of silica aerogels has been taken into account in a modelization of their sintering process [7-9].

In this paper, our aim is to strengthen the differences between surface diffusion and viscous

flow sintering in fractal matter by considering simple examples of two-dimensional fractal

shapes. We will consider the regular two-dimensional Vicsek fractal [10] as well as some

disordered fractals built with a recently developed method which allows to obtain aggregates of

tunable fractal dimension [11]. These are "mass fractals" [12,13] which are here characterized

by a given contour (boundary). Our purpose is to study how this contour evolves during
sintering. Some characteristics, such as the perimeter length L, the size (, and the lower

cut-off a are numerically estimated and studied as a function of time t. In both SD and VF

cases the total area is constant (due to matter conservation) and all motions of matter are

governed by the pressure inhomogeneities due to the changes of curvature along the contour.

In both cases the sintenng process should end when a circular shape (constant curvature) is

reached. The differences come from the nature of the matter transport which is governed by

a Fick equation (diffusive transport along the surface) in the SD case [14-16] and a Stokes

equation (hydrodynamical transport within the bulk) in the VF case [17-19]. In the SD case

the problem reduces to a local partial differential equation for the contour evolution that we

solve here numerically using a standard time-space discretization [14]. In the VF case, the

problem is much more harder and, except for some two dimensional systems, such as two

discs in contact, which can be solved exactly [18], more complex numerical procedures are

necessary [19]. Unfortunately they cannot be simply applied to large systems such as the mass

fractals considered here. Therefore we have used an approximate "dressing method", which has

been introduced recently [8,9] that we have extended by including the time m an approximate

way which is justified a posteriori. Therefore, the present treatment of the VF case can be

considered as an extension of recent studies [7-9] of the sintering of fractal matter. However,
in contrast with these works, we consider here a single fractal shape rather than a collection

of connected fractals (which is better suited to model a gel structure).

As a result of the scale invariant properties of the considered fractal shapes, we find that the

characteristic lengths, which are the perimeter length L, the size (, and the lower cut-off a,

vary with time t as power laws, L
r~

t~", (
r~

t~~,
a r~

t~, with exponents a, fl, ~, which only
depend on the fractal dimension D and that ~ve estimate from scaling arguments in both SD

and VF cases. We discuss the special case of surface diffusion for which there is no shrinkage
(fl m 0) and for which the material breaks into different pieces if it is originally too large. In

Section 2, we present the numerical methods, in Section 3, we give the results and the scaling

arguments and in Section 4, we conclude.

2. Principles of the Methods

2.I. GENERATION oF THE INITIAL FRACTAL SHAPES. Any initial (I.e. non sintered)
fractal shape considered here is defined as a contour which is a continuous line drawn around

an aggregate built on a square lattice. As a simple example of regular (deterministic) fractal

shape, we have considered a Vicsek fractal aggregate [10], which is generated iteratively from

a seed particle 1n.hich is here a square of unit edge length. At the first iteration, four identical

squares are stuck to it at distance unity in the four directions (1,0), (0,1), (-1,0), (0,-1) so that

we get a cross. At the second iteration, four identical crosses are stuck to it at distance 3

in the same four directions, etc.. (see Fig. 1a). At iteration m, four objects identical to the

one obtained at iteration m 1, are stuck at distances 3~~~,
so that the Vicsek fractal of the

m~~ iteration contains M
=

5~ particles and has a diameter length of (o
=

3~ Therefore

the fractal dimension is D
=

log 5/ log 3
=

1.4649... Moreover it can be easily shown that its



N°4 SINTERING OF MASS FRACTALS IN d
=

2 559

j~~~

m=0 m=1 ~-2a)

~-~
~---~

~) 6 6/2ml

Fig. 1. Sketch of the procedure used to build the contour of
a Vicsek fractal a) and of a

disordered

fractal b).

perimeter length is Lo
"

2(5~ +1) and its area A is equal to the number of particles, I-e-

A
=

M.

We have also considered random fractal aggregates built with a hierarchical method detailed

elsewhere [11]. This method allows to build aggregates on a square lattice with a fractal

dimension D given in advance. The idea is to build a new aggregate of 2~ particles by sticking
together two aggregates (built independently) of 2~~~ particles so that the ratio between their

mean quadratic radius of gyration R and the distance between their center of mass r fits at

best the relation:

r~
=

4(4~/~ 1)R~ + b~ (1)

where b is the lattice parameter length. We have considered the version of the algorithm
m

which only one bond is created when the two clusters are stuck together, so that at iteration m,

the aggregate contains M
=

2~ particles and M -1 bonds. After that, we have considered a

new "decorated" aggregate, in which we have added one particle per bond center and we have

defined the initial contour as if all the particles were squares of edge length b/2, conventionally
taken equal to unity in the following (see in Fig. 1b an example with M

=
8). Therefore the

area (=number of particles) of an aggregate of iteration m is A
=

2M -1
=

2/~+~ -1 and

its perimeter length is Lo
=

2A + 2
=

4M but the precise value of the size to depend on the

generated configuration. The advantage of decorating in such a way the initial aggregate is

that we are sure that there are no loops: the whole contour is unique. This is only a technical

point which allows to simplify the numerical method to model the sintenng process, especially
in the SD case (to avoid multiple connected contours).
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2.2. SINTERING BY SURFACE DIFFUSION. In that case, by combining the Fick's law, the

linear relation between pressure, curvature and mass conservation, one can obtain the following
well-known partial differential equation for the normal displacement

z at a given point of the

contour defined by its curvilinear abscissa s at time t [14] :

where K =
1/R

is the
s-dependent local

and
~4

In this expression I is a typical length (of atomic scale) proportional to the diffusion step
length and to is a typical time related to the diffusion constant D, the surface tension ~ and

the temperature T by:

to
=

)
(4)

~

By integrating equation (2) over the contour, it can be shown that the mass(=area)
conserva-

tion is insured. In the following, the time unit is chosen such that B
=

1.

The equation (2) is here numerically solved by standard discretisation. Let us assume that

at a given time t~, the contour is represented by a set of N points M(, n =
1, 2,. .N, and let

us define by b(
=

M(M(~i (with N +1
=

1) the distances between two successive points.
Omitting the time index I, the curvature at point M~ is approximated by:

K~
= ~

~~
Is)

where h is the length of the segment M~H perpendicular to M~-iM~+i (see Fig. 2a). Then,
the first and second derivative of the curvature are approximated by:

~ " b~
~~~

0K~ 0K~-1
~~~

~ ~)~-i
+

~) ~~~

This second derivative is used to calculate the new positions M(+~ at time t~+i, according to:

t~+i
= t~ + T

(8)

h'
=

h + T~~ fi
(9)

The new position M]+~ is chosen at a distance h' from M]_iM]~i and at equal distances from

M]_i and M]~i (see Fig. 2a). Note that this procedure insures an automatic homogeneisation
of the point distribution over the contour.
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Fig. 2. Sketch of the discretisation method used for surface diffusion sintering a) and of the dressing
method used for viscous flow sintermg b).

In order to maintain the error due to time discretisation independent on the length L and

the number of points N, we have taken:

~ 4

T =
c- (10)

where C is a dimensionless constant which controls the errors. The smaller is C, the better

is the precision but the longer is the computing time. In the calculations presented below

we have taken C
=

10~~. Note that, correlatively, the larger is the number of points N

the smaller are the errors due to space discretisation. Moreover we have checked that the

area A (approximated by the surface area of the polygon MiM2...MN) is constant within the

uncertainties. In practice, to accelerate the calculation, we reduce N by a factor 2 (by missing

one point over 2) when the length L is divided by a factor 2. This trick is very efficient in the

cases of fractal shapes for which the initial perimeter length Lo is very large.
The numerical method has been first checked on an initial contour made of two contacting

discs. Starting from a set of a
few thousands of points equally distributed over the whole circle,

we were able to recover a power-law behavior t" of the "neck" width with a very low exponent
(a

r~

1/6)
as previously reported (but for two spheres) in the literature [14, 20]. When applied

to the initial fractal shapes defined above, we were starting with a set of points spaced by
unity so that, initially, N

=
Lo- This makes that the initial discretisation is not very smooth.

Therefore there may be some errors m the early stage of sintering but, as soon as time goes

on, the contour becomes smoother and smoother and these errors disappear.
During sintering, the shape is characterized by its larger and lower cut-off ( and a. The

larger cut-off, which is simply the size, is here approximated by the mean between the height
and width of the contour. A natural way to define the lower cut-off a is to relate it to the
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inverse of the maximum curvature along the contour at a given time, as it is the typical length
associated with the shortest details:

a =

)
(11)

Note that with this definition, the approximation of formula is) gives a =

vi, instead of1,
for the non-sintered structure which contains 90° corners. At the end, for a circular shape, (
and a become equal to each other (circle diameter). Except at the last stage of sintenng, the

mean curvature k
over the contour, which is given by:

I
=

j /
Kds

=

)
(12)

(if one assumes no crossing) should be considerably smaller than Km since L » a. This is

due to the quasi-compensation between tips and depths. Note that the mean curvature would

be strictly zero for an open line.

2.3. SINTERING BY Viscous FLow. In the case of sintering by viscous flow, the entire

bulk of the system is generally assumed to be an homogeneous fluid of very high viscosity to

which the classical laws of hydrodynamics are applied [21]. For the kind of glassy systems that

we are considering, it can be assumed that the convective and gravity forces can be neglected
compared to the viscous forces so that the continuity and Navier-Stokes equations reduce to

the so-called "Stokes creeping flow" equations [21].

17.v=0 (13)

~Av
=

VP (14)

In these equation v is the velocity field describing the motions of matter, p is the excess of

pressure compared to outside, which, as in the preceding section, must be equal to -~K on

the boundary, and ~ is the dynamical viscosity coefficient.

These equation are in general very difficult to handle. In the two-dimensional case that we

consider here, Hopper [18] has introduced an exact mathematical treatment based on the use

of adequate transformations m the complex plane. He applied his method to the case of two

tangent discs but he could not solve more complicated shapes. ifan de Vorst et al. [19] have

introduced some numerical methods able to treat, m principle, any two dimensional contour.

However their method becomes time consuming in the case of fractal sh~pes corresponding

to aggregates ~vith many particles as those considered here. More simple approaches, due to

Scherer [6j, are based on the use of the energy balance of Frenkel [17j (which traduces the

fact that the viscous energy loosed by the internal stresses is compensated by the interface

energy gained by the reduction of contour perimeter) in combination with some reasonable

approximation for the shape evolution. We will use the same kind of method here by considering
the approximate dressing procedure which can be considered as an extension of the Scherer's

approximate procedure to fractal geometry [8].
Let us assume that the non-sintered aggregate is made of unit squares, as it is the case of all

aggregates considered in Section A. The dressing method consists in replacing, at time t, all

original squares by larger homotetical ones at the same locations, but with edge length ad > 1 so

that some of them may overlap. The area Ad of the dressed structure is calculated numerically
and the final sintered shape is obtained after applying an adequate length contraction m order
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to insure the mass conservation. Therefore the actual edge length a, which plays the role of

the lower cut-off, as in reference [9], becomes:

a =

~~ (15)
/

where f is the length rescaling factor given by:

~ i/2

f
#

~j) l16)

Also, if one knows the perimeter length of the dressed aggregate Ld, one can calculate the one

of the sintered one by:

L
=

~~
(li)

f

To simplify the numerical calculation of Ad and Ld, we have limited the ad values to integers,
1, 2... n,.. so that the dressed aggregate can be put on a grid of unit spacing in order to count

the occupied cells and the border unit segments. In Figure 2b, the procedure is sketched on

the aggregate of Figure 1b for
n =

2.

We recall that the physical justification of such a procedure is that the dressing realizes a

simple practical way to erase details of small lengths, as in the coarse-graming methods used

m the renormalization-group for critical phenomena [22]. Obviously, this is the main effect of

the viscous flow which, locally driven by pressure (due to surface tension) tries to erase tips

to fill depths. But a non-trivial problem is how to estimate the physical time t. Here we will

make the approximation that the actual lower cut-off varies linearly with time according to:

a =

C'~t (18)
i1

where C is a dimension-less constant. In the following we will choose the time units such

that C~
= ~ and therefore we will have t

= a. Note that, with this choice, the non-sintered

case correspond to t
=

1 (and not t
=

0). It is worth noticing that the constant C identifies

with the so called capillary number which has also been introduced in the context of viscous

fingering [23] and which traduces the competition between surface tension and viscous forces.

Formula (18) is supported by the fact that equations (13-14) involve lengths of order a and

pressures of order ~ la. Therefore our choice is a direct consequence of a simple scaling analysis
of the equations. Obviously, such an approximation is only valid if the scaling holds, I-e- if the

sintering process involves several orders of magnitudes. In Section 3.4, this approximation will

be justified a posteriori by checking the Frenkel's balance. As in all scaling approaches, some

details might be forgotten. The precise distribution of the velocity field is ignored. In particular,

since we are dressing squares, the final stage of smtering is a square and not a circle and

therefore the last stages of sintenng will not be well described. In a recent work [24], the two-

dimensional Stokes equations have been solved numerically for small disordered chains made of

tangent discs and it has been shown that, depending on the initial configuration, some angles
between parts of the chain may vary differently during sintering. Also, for multiconnected

domain, I-e- objects containing holes, the big holes vanish faster than the small holes [24j. All

these effects cannot be reproduced here. However, note that our procedure insures vanishing
holes, which is a fundamental aspect of VF sintering compared to SD sintering.

It may be worth noticing that when the dressing method is applied to a couple of tangent
discs (by dressing circles and not squares), it gives the well-kno1&;n vi behavior of the neck

width, first found by Frenkel [17], which is only an approximation of the exact singular behavior

(which contains logarithmic terms) [18].
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i~fi ~

Fig. 3. Evolution of the contour of a Vicsek fractal containing M
=

3125 particles m the SD case

(top) and in the VF
case

(bottom).

3~ Numerical Results and Scaling Arguments

3.I. GENERAL FEATURES. To emphasize the qualitative differences between SD and VF

cases we first present some pictures for aggregates of modest sizes. In Figure 3, we show how a

Vicsek fractal of the fourth generation (containing 5~=625 unit squares) is transformed within

the two different procedures. One clearly sees that, while there is a gradual shrinkage in the

VF case, there is no apparent shrinkage m the SD case
(the shrinkage only occurs m

the last

stage of sintenng). As a consequence, while an intermediate shape can be roughly considered

as a rescaled version of the original shape in the VF case, this is not true m the SD case:

the intermediate shape appears as if the Vicsek fractal would have been made of deformed

particles with mean diameters smaller than their nearest neighbor center-to-center distances.

Therefore, in the SD case, an intermediate shape cannot be approximated as a self-similar

fractal, as there is no longer a unique lowest cut-off- Note that the quantity a, which has been

defined by formula (12), corresponds here to the diameter of these pseudo-circular particles.
The differences between the VF and SD cases can also be seen m Figures 4, 5 and 6 where

we have shown the evolutions of disordered fractals containing M
=

512 particles with fractal

dimensions D
=

1.25,1.465 and 1.75, respectively.

The quantitative results as log-log plots of L, ( and a versus t are presented in Figures 7,
8 and 9 for disordered fractals of fractal dimensions D

=
1.25, 1.465, 1.75, respectively. In all

cases, we have considered large disordered fractals with M
=

2048 and the results have been

averaged over 7 configurations. In Figure 8, the numerical results for the Vicsek fractal of

Figure 3, which has the same fractal dimension, have been superimposed. In the case of the

Vicsek fractal one observes some characteristic oscillations with a well-defined period in log-
log. These oscillations are due to the so-called lacunanty property of this regular deterministic

fractal. The successive abrupt changes
m

the a values occur when at a given time groups of five

pseudo-circles simultaneously merge into a single pseudo-circles of larger radius. Such effects

are washed out by randomness m the case of disordered fractals.
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Fig. 4. Evolution of the contour of
a

disordered fractal of fractal dimension D
=

1.25 containing
M

=
512 particles m the SD case

(top) and in the VF case
(bottom). The times corresponding to the

different figures are t
=

0, 5.25,14180 in the SD case and t
=

1, 2.46, 36.6 in the VF
case.

Fig. 5. Evolution of the contour of
a disordered fractal of fractal dimension D

=
1.465 containing

M
=

512 particles
in

the SD case
(top) and in the VF case

(bottom). The times are the same as in

Figure 4.
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Fig. 6. Evolution of the contour of
a

disordered fractal of fractal dimension D
=

1.75 containing
M

=
512 particles in the SD case

(top) and in the VF case
(bottom). The times are the same as in

Figure 4.

Even if sometimes the linear regimes in log-log are not very well defined, in all the cases we

have tried to describe the numerical results by power laws:

L
r~

t~" (19)

(
r~

t~~ (20)

a r~
t~ (21)

The values of a, ,8 and j can be estimated from scaling arguments.

3.2. SCALING ARGUMENTS. In the SD case, the exponent ~ can be obtained from a trivial

scaling analysis of equation (2), assuming that distances of order a and curvatures of order
a

are involved. This gives:

~sD =
(22)

Our estimation of the other exponents is based on the observation of the behavior in the case

of a Vicsek fractal (Fig. 3). Let us make the approximation that a Vicsek fractal containing
initially ~t" (~t =

5 here) tangent discs of unit diameter is transformed, after p steps of sintenng,

into a
figure containing ~t"~P pseudo-discs of diameter a r~

~tP/~ linked by thin arms of length
I

r~

~P (1
=

3 here) and zero width. The scaling of the perimeter length is dominated

by the contributions of these arms since 1
=

3 is larger than ~~/~
=

v$ (in other words

D
=

log ~t/ log1 < 2). Since the number of arms scales as ~~P the perimeter should scale as

(~) ~
Using a r~

~tP/~
r~

t~/~ and D
=

log ~t flog I, this gives:
I

osD =

~~ (23)
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Fig. 7. Log-log plots of L (top), ( (middle) and
a

(bottom)
versus t in the case of disordered

fractals of fractal dimension D
=

1.25 containing M
=

2048 particles in the SD a) and VF b)
cases.

In both
cases

the curves result from an average over 7 aggregates and the straight lines correspond to

the theoretical slopes expected from scaling arguments.

In this reasoning, the size should decrease with time more slowly than any power law, therefore

one should have:

flsD
=

0 (24)

The slopes corresponding to the theoretical values of a, fl and ~ have been indicated in Figures
7a, 8a and 9a. One generally observes a quite good agreement with the numerical results.
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Fig. 8. Log-log plots of L (top), ( (middle) and
a

(bottom)
versus t in the case of disordered

fractals of fractal dimension D
=

1.465 containing M
=

2048 particles
m

the SD a) and VF b)
cases.

In both cases the curves result from an average over 7 aggregates and the straight lines correspond to

the theoretical slopes expected from scaling arguments. The numerical results for
a

Vicsek fractal of

3125 particles have been reported on the same
figure (dashed curves) with

an
arbitrary shift in the

vertical direction.

In the VF case, we recall that we have postulated, from a scaling analysis of the Stokes

equations:

~vF =
(25)
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Fig. 9. Log-log plots of L (top), ( (middle) and
a

(bottom)
versus t in the

case
of disordered

fractals of fractal dimension D
=

1.75 containing M
=

2048 particles
in

the SD a) and VF b)
cases.

In both
cases

the
curves

result from
an average over 7 aggregates and the straight lines correspond to

the theoretical slopes expected from scaling arguments.

To obtain the other exponents, we follow (in two dimensions) the scaling reasoning already
developed earlier iii. Here the situation is simpler since, one can assume that, at each stage of

sintenng, the object remains a mass fractal characterized by the two cut-off ( and a, the latter

being well defined here. Since, from the definition of the Hausdorf fractal dimension [25], the
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j

Fig. 10. Comparison between the SD sintering shapes of Vickek fractals of the fourth generation
at time t m 400 and fifth generation at time t m 20 000.

minimum number of discs of diameter a necessary to cover the object is of order
,

the

~

a~ ~

mass conservation implies a~
=

const., and since a =
t here, one gets:

a

flvf
=

~ ~~ (26)

To estimate the exponent a, the above SD reasoning, with now I
= a, gives L

r~

a~~, I-e-

avf =
1 (27)

This is m agreement with the hypothesis that the object remains a ramified mass fractal, with

well defined arms of thickness a, for which, neglecting vertices and tips, the mass conservation

can be simply written La= const. The slopes corresponding to these theoretical values of a,

fl and ~ have been indicated in Figures 7b, 8b and 9b. Here one observes that the predicted
scaling is only verified in the intermediate time regime. There are strong deviations to scaling
in the early and last stages of sintering as already observed in previous studies based on the

use of dressing method [9]. In particular for large fractal dimensions the L
r~

t~~ relation is

only verified in a very small range of t values as the ramified structure more quickly disappear
than for lower fractal dimensions. Also, at small t, the slope of the log (/ log t curves are close

to 1, which is the flvf value corresponding to D
=

1. This is due to our decoration method

used to build the initial contour which emphasizes a local linear structure.

3.3. SPLITTING EFFECT IN THE SURFACE DiffusioN CASE. We would like to come back

to the SD case where some special behavior occurs. In contrast with the VF case, the scaling
arguments were developed within very rough assumptions. In particular, m our reasoning based

on the analysis of the Vicsek fractal evolution, we approximated the structure by pseudo-discs
linked by zero-width arms. In reality these arms become thinner and thinner as the iterations

goes on so that eventually their thickness changes of sign, I-e- some self-crossings occur, before

the end of sintenng. This is what happens if one considers the Vicsek fractal of the fifth

generation (M
=

3125) at time t m 20 000 as seen in Figure 10. These crossings should be

considered as artifacts of our method. Physically, when the contour starts to meet itself, it
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should split into different separate contours which then evolve independently. Therefore if this

happens, the sintering process should end with a collection of circles rather than with a unique
circle. This fragmentation effect, typical of surface diffusion sintering, was already discussed in

the literiture for tip shapes with small cone angle [14]. Unfortunately, the self-crossing checks

would slow down our numerical procedure considerably and we have not taken care of them.

Here we would like to only develop semi-quantitative arguments.
As checked in Figure 10, for a Vicsek fractal of the fifth generation, the sintering process

ends with five circles, while for the one of the fourth generation (or any generation below) it

ends with only one circle. Therefore the self-crossing event only occurs for initial shapes of

sufficiently large mass. To try to get a more quantitative criterion, we have studied the evolution

of a dumbbell-like shape made of two circles of diameter d whose centers are separated by a

distance H, connected by a thin stick. We have found that a crossing occurs only H/d is larger
than a threshold value of order 2.5, almost independently on the stick thickness providing it

is sufficiently small. Applied to the Vicsek fractal of the ~~-th generation, the non-splitting
criterion writes (I/@)P~~

=
(3/v$)P~~ > 2.5, I-e- p > 5, as found here. This reasoning

cannot be straightforwardly extended to any fractal dimensions D
=

log p flog I as it involves

not only exponents but amplitudes. Anyway, in terms of the mass M (number of particles

of the original fractal), the non-splitting criterion implies that MM should be larger than a

non-universal quantity. This means that the fractal shape breaks more easily, I.e. for a lower

critical mass, if its fractal dimension is lower. This effect has been checked by our numerical

calculations.

It is worth noticing that many self-crossing certainly occurred during the calculations re-

ported in Figures 7a, 8a and 9a, which were performed with quite large initial fractal shapes.
We think that taking care of these crossings would have certainly affected the numerical results

for (, but not too much for L and a.

3.4. FRENKEL BALANCE IN THE Viscous FLow CASE. In our treatment of viscous flow

sintering, the time t does not enter naturally and we have postulated a c~ t from a simple scaling
analysis of the Stokes equations. Here we would like to give a justification of this hypothesis
by trying to check the Frenkel balance within the framework of the dressing method. In two

dimensions the Frenkel balance can be written as follo~vs [6,17, 21, 22] :

2~
/ j fiJd~

= -~t
II 128)

where the integral covers the whole area A of the object and where i~j are elements of the rate

of deformation tensor:

To make use of our numerical calculations, we express t as a function of a (using relation (18)
and we write the balance between two successive steps (assuming that they are infinitesimally
close):

where be~j is the deformation tensor giving the evolution of the element between the two steps.
We recall that C is an unknown dimensionless numerical constant. The main problem is how to
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- og-log plots of

the three
quantities bEvi solid

line),
bEv~ ashed), bEs

(long

as a function of time in the VF case for D = 1.25

estimate the viscous energy to the surface ntegral) within the ressing scheme.

Suppose
one deals with a

ramified mass
fractal for which

most
of

the bulk (except vertices
and

ips)
are arms that can be decomposed in

elements
of thickness a (= arm

length I and let us estimate he eformations of this
element

between two
sintenng steps.

Due to the overlaps
the

length
I stays mchanged after the

dressing

procedure and its

relative variation is

only

due

to
the length rescahng. herefore,

with an
adequate

choice of
xis,

eii =

I f a
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approximated by:

~ ~ j ~

~
1

1(3~)
~ ~~~

d~ ~3 ~
f ~~ ll~

bEvi
"

/
~

ba

However these approximations are certainly not valid for later stages of sintering when a1&~ell

defined bulk is formed. In that case the bulk should be rather decomposed in elements whose

lengths, m both directions, have a relative variation of
~~

and therefore the double integral
f

would be better approximated by:

bEv~
-

2A
Ii ~

(32>

We have calculated these two quantities and we have compared them with the right hand term

of equation (32) which is proportional to the surface tension energy:

bEs
"

)
(33)

The results (averaged over 7 samples) are reported as a function of time in Figure 11 for

disordered fractals of M
=

2048 particles with D
=

1.25 (a) and D
=

1.75 (b). Despite the

odd-even oscillations which are due to our discretisation, the Es curve follows remarkably the

Evi curve
(and scales as

t~~
as

predicted) during most of the sintenng process, except at

a given stage where it starts to pass below it and reach the Ev~ curve. For D
=

1.75, the

crossover occurs earlier than for D
=

1.25. This is reasonable since for larger fractal dimensions

the ramified structure is loosed much more quickly. This check gives a strong support to our

hypothesis t c~ a. Moreover it allows to estimate C m 0.5. Note however that the coincidence

between the Es and Ev~ curries is not permanent and Es becomes quantitatively different from

Ev~ at the very end of the sintering process. But it was clear from the beginning that the

dressing method could not model reasonably this regime. It is obvious that a precise knowledge
of the velocity field is necessary to know how an object looses the iiiemory of its original shape

to finally reach a perfect circle.

4. Conclusion

We have found that the time evolution of a two-dimensional fractal shape under sintering is

completely different if the sintering is due to surface diffusion or to viscous flow. In particular
the shrinkage is considerably lower m

the SD case as the size ( decreases more slowly than

any power law of time. Moreover, if the initial fractal is too large it breaks into separate

pieces. At this stage, our calculations are restricted to two dimensions and it is difficult to

make any quantitative comparison with experiments. However the scaling reasonings can be

simply extended to three dimensions and the expressions for the exponents can be translated

by straightforwardly replacing the space dimension 2 by 3 in their expressions as a function

of D. When extending to three dimensions and comparing with experiments, it should be

remembered that L becomes the internal surface area, which is available m many experiments,
such as gas adsorption, and ( and a are the limits of the fractal scaling, as they can be seen m

Small Angle Neutron Scattering (SANS) experiments. Also, if the structure made of connected

fractals is preserved, the density p should scale as
(~3. In the case of the viscous sintering

of silica aerogels, many quantitative comparisons between experiments and theoretical results
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based on the dressing methods have already been done ii, 9j. It would be interesting to perform
the same kind of comparisons in the case of sintering by surface diffusion. Recently some

sintering experiments have been done by the Montpelllier's group on silica aerogels at much

smaller temperatures than before [26j. Therefore,
m that case, one can hope that sintering

by surface diffusion occurs in a larger range of time allowing a possibility to test the scaling
laws obtained here. We hope to have SANS data soon available to perform some quantitative
comparisons m a forthcoming publication.
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