
HAL Id: jpa-00247176
https://hal.science/jpa-00247176

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Force Schemes in Simulations of Granular Materials
J. Shäfer, S. Dippel, D. Wolf

To cite this version:
J. Shäfer, S. Dippel, D. Wolf. Force Schemes in Simulations of Granular Materials. Journal de
Physique I, 1996, 6 (1), pp.5-20. �10.1051/jp1:1996129�. �jpa-00247176�

https://hal.science/jpa-00247176
https://hal.archives-ouvertes.fr


J. Phys. I France 6 (1996) 5-20 JANUARY1996, PAGE 5

Force Schemes in Simulations of Granular Materials

J. Schifer(*), S. Dippel and D. E. Wolf

H6chstleistungsrechenzentrum, Forschungszentrum Jiilich, D-52425 Jfilich, Germany

(Received 3 July1995, received in final form and accepted 12 October 1995)

Abstract. In computer simulations of granular flow, one widely used technique is classical

soft-sphere Molecular Dynamics, where the equations of motion of the particles
are

numerically
integrated. This requires specification of the forces acting between grains. In this paper, we sys-

tematically study the properties of the force laws most commonly used and compare them with

recent experiments on the impact of spheres. We point out possible problems and give criteria

for the right choice of parameters. Finally, two generic problems of soft-sphere simulations are

discussed.

PACS. 07.05Tp Computer modeling and simulation.

PACS. 46.30Pa Friction, wear, adherence, hardness, mechanical contacts, and tribology.
PACS. 83.70Fn Granular solids.

1. Introduction

Flows of granular materials are ubiquitous in industry and nature. Despite their technological
importance, their properties (among which are size segregation [1,2], sudden transitions from

flowing to sticking [3], density waves [4, 5] and "silo music" [6]) are far from well understood.

Computer simulations have turned out to be a powerful tool to investigate the physics of

granular flow, especially valuable as there is no generally accepted theory of granular flow so

far, and experimental difficulties are considerable. A very popular simulation scheme is an

adaptation of the classical Molecular Dynamics technique. It consists of integrating Newton's

equations of motion for a system of "soft" grains starting from a given initial configuration.
This requires giving an explicit expression for the forces that act between grains. In principle,

contact mechanics should provide such expressions, but the problem of two touching bodies

under general conditions is very complicated (see, e.g., [7] and references therein). )(any more

or less strongly simplified force schemes have thus been suggested and employed in simulations

(e.g., [8-20] ), often without a thorough discussion of their properties.
The aim of the present paper is three-fold: firstly, to give a brief account of theoretical

considerations and experimental results concerning the free impact of spheres; secondly, to

critically compare the properties of existing force schemes on these grounds, and to give hints

on their correct use; and thirdly, to discuss some generic problems that can occur in soft

sphere simulations independently of the force laws used. ~ie perform example simulations to

illustrate the properties of the force laws with a constant-timestep fifth order predictor-corrector
algorithm [21]. Although it is in principle desirable to work with non-dimensional units, they
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Fig. 1. Definition of the quantities used for description of the impact.

are not always practical; for example, non-linear force laws do not define a unique timescale, as

will be discussed later. Therefore, we decided to use SI units, and tuned all parameters such as

to mimic a specific granular material, namely the cellulose acetate spheres used in experiments
by Drake [22-24] and Foerster et al. [25], of radius R

=
3 mm and mass m =

1.48 x
10~~ kg.

Thus, we are able to compare our simulation results directly to experimental data [25].
We limit ourselves to the case of non-cohesive, dry, spherical grains which are restricted to

three degrees of freedom (two translational, one rotational),
as would be the case m a two-

dimensional setup. A general contact between two grains of radii R~, positions r~, velocities

v~, and angular velocities w~ ii
=

1, 2) is sketched in Figure I. The deformation of the grains

is parametrized by the "virtual overlap" (,

j
= max (0, Ri + R2 )r2 ri )).

Two unit vectors n
and s are used to decompose the forces and velocities into normal and

shear components:

n =

~~ ~~
=

(n~, n~
)r2 ri

s "
(ny, -n~).

Thus, the relative normal velocity ~n and relative shear velocity ~~ are given by

~n "
(V2 VI n

~~ =
(v2 vi s + WI RI + w2R2

If the shear velocity component ~~ is equal to zero at the beginning of a contact, the impact
is head on or normal, otherwise it is shearing or obliq~te. We begin our discussion in Section 2

with normal impacts introducing the normal force Fn, and proceed to oblique impacts and the

shear force F~ in Section 3.

2. Normal Impacts

In general, two colliding spheres undergo a deformation which will be somewhere between the

extremes of perfectly inelastic and perfectly elastic. Possible mechanisms for dissipation ii-e-,
transformation of kinetic energy into other forms of energy which ultimately transform into

heat) are [7] plastic deformation, viscoelasticity of the material, and also elastic waves excited
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by the impact. The latter are always present they make the noise but carry so little

energy that one can generally neglect them as source of dissipation. Phenomenologically, the

elasticity of the impact is described by the coefficient of normal restitution en,

en =

-~l/~l E lo, il.

Here and in the following, the superscript refers to pre-collisional (initial) and f to post-

collisional (final) quantities.
According to Johnson [7], the necessary critical yield velocity causing plastic deformation is

given by
~3 y5

~),~>~ G3
107tj Ii)

elf off

where m~a =
(mim2) /(mi +m2) and R~n

=
(RiR2 /(Ri +R2) are the reduced mass and radius,

Y is the yield strength of the softer of the spheres, and E~n is related to Young's modulus E and

Poisson's ratio v
of both spheres through I/E~,

=
ii VI) /Ei + ii v])/E2. If ~[ < ~~,~j~,

no plastic deformation may occur during the impact, and all energy loss should be due to

viscoelasticity. If ~[ > ~~,~,~, on the other hand, the energy loss due to plastic deformation

must dominate over the energy loss due to viscoelasticity. Most materials have a critical yield
velocity that is quite small (e.g. ~~,~,~ m 0.14 m/s for cellulose acetate, ~~,~,~ m 0.02 m/s for

steel).

For the case of plastic deformation, a simple theory [7] predicts en to fall off like ~[~~~~ with

increasing impact velocity. For the case of purely viscoelastic losses, Kuwabara and Kono [26j
obtain a coefficient of normal restitution en that also decreases ~N.ith increasing ~[; for en

close to one, ii en)
c~ ~[~~~ Experimental studies by Goldsmith and others [27], Bridges

et al. [28], Kuwabara and Kono [26] and Sondergaard et al. [29] for spheres made of a large
class of different materials all show a slight monotonic decrease of en with increasing ~[ which

is compatible with a ~[~~~~ power law over several orders of magnitude of ~[. On the other

hand, measurements by Drake and Shreve [22] and Foerster et al. [25] on cellulose acetate

spheres show no systematic dependence of en on
~[ for the range of impact velocities used,

which in both cases was rather narrow (Foerster et al. measured e,i m 0.87 in a velocity range

0.29 m/s < ~[ < l.2 m/s).
Modelling a force that leads to inelastic collisions requires at least two terms: repulsion

and some sort of dissipation. The simplest force with the desired properties is the damped
harmonic oscillator force

Fn
=

-kn( 'fn(, (2)

where ~yn is a damping constant and km is related to the stiffness of
a spring whose elongation

is (, the deformation of the grain. This model (also referred to as linear spring-dashpot) has

the advantage that its analytic solution (with initial conditions ((0)
=

0 and ((0)
=

~[) allows

the calculation of important quantities. For instance, the coefficient of normal restitution is

en =exp(- '~" tn), (3)
2111~ff

~~~~~

~" ~

i~~i
~2~ii~

~ ~~~

~~~

denotes the duration of the collision. The maximum overlap during a collision is

fmax < ~[t»/~, is)
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Fig. 2. Dependence of coefficient of normal restitution e~ on the impact velocity v[ for various

normal forces. lo) Linear spring-dashpot (2), In) Hertz law with linear damping (8), IO) Hertz-

Kuwabara-Kono force (9), IA) Walton-Braun force (10).

where the equality holds for elastic grains (en
=

I). An accurate simulation (reproducing the

analytic en with relative errors of the order 10~~) requires a constant time step At m tn /100.
In principle, force (2) has no free parameters, since km and ~yn can be set adjusting en and

tn to the corresponding experimental values exhibited by a given material in a velocity range

relevant for the simulations. Because of its advantages, it has been used in numerous works

[9-12, IS,16,30]. In Figure 2, its behaviour is illustrated for en =
0.87 and tn

=
I x

10~~
s

(w km
=

7.32 x
10~ N/m, ~yn =

2.06 kg/s).
In order to formulate a more refined force than (2),

one can use the results of the Hertz

theory of elastic contact [7, 31, 32], which predicts the following repulsive force for the case of

spheres:
Fn

=

-kn(~/~ (6)

Here, in is a non-linear stiffness connected to the elastic properties and to the radii of the

spheres through In
=

4/3/$E~n. For Drake's cellulose acetate spheres, km
=

9.0 x

10~ Nm~~/~. Note that with (6), the collision time tn is no longer independent of ~( [32]

tn
=

3.21 ~fi) ~[ ~~~ (7)
km

~~~

This means that there is no intrinsic timescale to collisions. The choice of the numerical time

step At must depend on the maximum relative velocities expected during the simulation to

ensure satisfactory numerical accuracy. In our simulations, we have a maximum impact velocity
of about 100 m/s, for which tn m 1.88 x

10~~ s, and we set At
=

tn /100.
In order to obtain a dissipative Hertz-type force, a viscous damping term was added to the

Hertz force
in an ad hoc fashion

m some studies [13,17,33]:

Fn
=

-kn(~/~ ~yn(. (8)

However, as Taguchi [34] pointed out, this force leads to collisions that become more elastic as

the impact velocity increases, contrary to the experimental evidence: ii en c~ ~(~~~~ [35].
For low impact velocities, where the Hertz results for elastic contacts should be regained, force
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(8) produces a coefficient of restitution that approaches zero. In Figure 2, we illustrate this

behaviour using ~yn =
0.35 kg/s, so that en m 0.87 in the velocity range covered by Foerster's

measurements [25].
Kuwabara and Kono [26] and Brilliantov et al. [36] extend the original Hertz approach

assuming the material to be viscoelastic instead of elastic. They derive

Fn
=

-(n(~/~ §n(~/~(, (9)

where In is identical to the In from Hertz theory and in is connected to the radii of the spheres
and the two coefficients of bulk viscosity. This force leads to a coefficient of normal restitution

en that decreases with increasing ~(, in agreement with experimental results: ii en)
c~ ~(~~~

[26, 35]. In Figure 2, we illustrate this using fin
=

190 kg m~~/~ s~~.

An approach guided by the picture of plastic deformation was presented by Walton and

Braun [37]. They assume that there are different spring constants, ki and k2, for the loading
and unloading part of the contact:

~
kit

,

j > 0 pleading)
~ k2 If (0)

,

( < 0 (Unloading) ~~~~

where to is the value of ( where the unloading curve intersects the abscissa under the given
circumstances, or the permanent plastic deformation. In this model, en =

fij. By making
k2 a function of the maximum force F~'*~ achieved during loading, k2

"
ki + sfj-~, en can

be made a decreasing function of the impact velocity ~(,
en =

(sv[(m~n/ki)~/~ + l)~~/~. In

Figure 2, we illustrate this behaviour with ki
"

7.32 x
10~ N/m and s =

2 x
10~ m~~.

As a final remark, we want to comment on the use of the reduced mass m~a in the forces

(omitted here for simplicity). In some studies, it is understood as an additional prefactor for the

damping term [10, II,13,14,17,18, 30], leading to a coefficient of restitution that decreases with

increasing m~n. Other authors put it as prefactor
in

both the elastic and the dissipative term

[IS,16,34], such that the coefficient of restitution becomes independent of m,.,. If neither of the

two terms is given a prefactor m~~~ [8, 9,12], en is an increasing function of m~n. Unfortunately,
there is no systematic experimental research on the mass dependence of en to our knowledge
except some work dating from 1864, cited by Goldsmith [27], which indicates a slight decrease

of en with increasing m~~~ for spheres of equal size. This result suggests that the first of the

possibilities described above might be most suited. It is definitely most desirable that more

experimental work be done
in

order to settle this point. However, when the granular flow

consists of particles without large mass differences, putting m~~~ into the forces merely amounts

to redefining the stiffness and for damping constant.

3. Oblique Impacts and Frictional Contacts

We now turn to impacts where ~( # 0, such that there is a non-vanishing tangential component
of the force, or shear force for short. In general, the shear force is connected to the normal

force by the Coulomb laws of friction, namely

F~ < ~1~Fn for static friction (~~ =
0), III

F~
=

~1dFn for dynamic friction (~~ # 0). (12)

Here
~1~

and ~ld are the coefficients of static and dynamic friction, respectively. The "<" sign in

ill) means that for the case of static friction, F~ compensates exactly the (unknown) external
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force Fz' applied to the contact, so that ~~ =
0 is maintained. If Fj~~ > ~1sFn, one enters the

dynamic friction regime and equation (12) applies. Normally, ~ls > ~ld and both are about 0.5.

In the contact area of two colliding convex bodies, a local version of equations ill and (12)
relates the normal and the shear stresses along the contact. For elastically similar bodies, the

shear stresses do not influence the normal stress distribution over the contact area [7], so that

the results of Hertz theory can still be used for the normal stresses. Then, in the outer regions
of the contact area, where the normal stresses are small because the strains are small, one

must in general expect the condition for dynamic friction to be fulfilled, whereas in the central

regions, where large normal strains and stresses are present, static friction may occur. This

leads to the development of an ann~tl~ts of microslip surrounding an inner region of sticking

in the contact area. Because the friction laws are strongly nonlinear, the size and form of

the annulus of microslip depend on the loading-unloading history of the contact, making the

prediction of tangential deformation and friction forces, in a given situation, complicated [38].
Mindlin and Deresiewicz [39] have discussed the tangential friction forces between two elastic

spheres for the case of several distinct loading-unloading histories and assuming the Hertz

theory to hold. Maw et al. [40, 41] and Walton [42] performed such an analysis for the case of

the oblique impact of spheres. An interesting result is that due to the ability of the sticking
contact to store and restore "tangential" kinetic energy, there may be a reversion of tangential

velocity ~~ under certain circumstances, a fact experimentally confirmed for discs [41] and

spheres [25, 2 7].
To illustrate the properties of the shear force laws discussed in the following, we implemented

them and carried out test simulations of free binary impacts with varying obliqueness. We

directly compare the results to the experimental results of [25]. The linear spring-dashpot force

(2) was used as normal force in all cases, because it is simple, robust and, most importantely,
makes the results of oblique impacts only dependent on the obliqueness, not on the absolute

value of the impact velocity ~[. We adopt the values en =
0.87 (~ km

=
7.32 x

10° N/m,

~yn =
2.06 kg Is) and ~1= 0.25 for all simulations except where explicitly stated otherwise.

There are various measures for the obliqueness of the impact, e-g- the impact angle

~
= arCCOS

~~~ ~~ .
~

,

~] (

or the dimensionless initial tangential velocity,

In all impacts shown in the following, the initial particle spins are zero, so that #'
=

tan ~.

We are going to measure two quantities as a function of the impact obliqueness, namely the

dimensionless final tangential velocity

~f f /~~s ~n

as a function of #' and the coefficient of total restitution

fi
measured in the center-of-mass system as a function of siniJ. Plotting #~ ~ers~ts #', the

coefficient of tangential restitution

e~ =

~l/~i
=

~f/~>
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Fig. 3. ~i~-~i' plots for various tangential forces combined with normal force (2). The circles denote

the experimental data for the impact of acetate speres [25]. The dotted, dashed and dot-dashed lines

denote respectively: a) Coulomb friction law (13) with y =
0.15, 0.25, 0.35; b)

viscous friction law

(14) with ~fs =1, 3, 20 kg/s; c) combination of la) and 16) according to (15) with ~fs =
1, 3, 20 kg/sj

d) linear tangential spring (16) with ks/kn
=

1, 2/7, 1/5; e) variable tangential spring (20) with

k$/kn
=

1, 2/3, 1/3j f) stick-slip model (22) with (o "10~~ (only dotted line).

can be read off for any #~ from the resulting curve. For perfectly non-frictional grains, e~

would be equal to one; in practice, e~ < I (frictional losses) or even -I < e~ < 0 (reversal
of tangential velocity due to tangential elasticity). Foerster et al. [25] used plots of #~ vs. #'

to characterize their cellulose acetate spheres; we are going to compare our results directly to

theirs in Figure 3. On the other hand, the form of e as a function of impact obliqueness plays

a decisive role for the dissipation of granular temperature in
the granular system. In Figure 4,

we plot e(sin ~) for the force laws presented in the following.
The simplest shear force [10,30] just applies the Coulomb law of dynamic friction, thus

Fs
= -/1. jfnj signjiJs). j13)

Obviously, this force cannot provide reversal of tangential velocity; it can only slow ~~ down

to zero. Note that (13) is discontinuous at ~~ =
0. When ~~ -

0 (rolling regime), numerically
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~. Forces,

corresponding parameters and linestyles
as in Figure 3.

one gets F~ jumping between positive and negative values instead of F~
=

0. However, this

has no effect on the final velocity ~(, as the time average of F~ vanishes as it should, and the

amplitude of the jumping goes to zero at the end of the contact. #~ vs. ~i~ as obtained with

(13) is shown in Figure 3a for
~1 =

0.15, 0.25,0.35. One distinguishes a regime of ~~ where,
during the impact ~~ was slowed down to zero (rolling) and a regime where v) was too large, so

that a finite ~( resulted. Both regimes are characterized by constant slope, and the transition

between them is governed by the value of /~: the higher ~1, the longer the rolling regime is

sustained. The corresponding e(sin~) diagram is displayed in Figure 4a. For normal impacts
(sin ~

=
0), e = en; for increasingly oblique impacts one sees a growing contribution of the

shear force to the total dissipation, and grazing impacts approach e =
I, as physical intuition

suggests.
Some authors [12, IS, 20, 33,35] use a viscous friction force of the form

F~
= -'f~~~, (14)

where
~y~ is a shear damping constant without physical interpretation. Because here the de-

celeration is a linear function of the initial velocity, one obtains a constant e~ > 0 for all #'
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(Fig. 3b) the rolling case is never reached. On the other hand, the coefficient of total resti-

tution e does not go smoothly to one for grazing impacts (Fig. 4b). This is due to the fact that

(14) is not governed by the normal force Fn and hence does not vanish for grazing impacts.
Thus, in the limits of nearly normal and nearly grazing impacts, force (14) yields unphysical
results.

The discontinuity in (13) can be avoided by combining (13) with (14) [II,13,17,19,43-45],

Fs
=

rnirlll~/s~sl,IJLF«I) Sigrll~s). (IS)

Here,
~y~ may be considered to be a technical parameter which should have a value high enough

for collisional properties not to differ substantially from those of force (13). #~ vs. #' for

this force is shown in Figure 3c. With increasing ~y~, force (IS) approaches the behaviour

of force (13). The same trend is observed for e(sin~) (Fig. 4c). Apparently, a small
~y~

changes mainly the properties of "moderately oblique" impacts, making them more elastic.

Considering that the form of e(sin~) is decisive for the dissipation of granular temperature in

an extended granular system, it seems very important that
~y~

is given a high enough value.

A simpler possibility is to use (13) instead of (IS), avoiding a parameter of unclear physical
interpretation.

All the force schemes presented so far do not account for tangential elasticity. Therefore, none

of them shows a negative e~ in any part of the #~ vs. #' diagram, contrary to the experimental
data. There is a further disadvantage to them which is important in static or quasi-static
systems: a pile made of particles which interact through the force laws (13)-(15) is not stable.

Stability would require that finite shear forces act between particles also at ~~ =
0 in order to

withstand gravitational force components in shear direction of the contacts.

Tangential elasticity was first introduced by Cundall and Strack [8] and used by many others

[9, 14, 16, 33, 46] writing
F~

=
min()ks(), )~1Fn)) sign((), (16)

where k~ is some tangential stiffness and ( denotes the displacement in the tangential direction

that took place since the time to, when the contact was first established, e.

(lt)
=

/~ ~slt')dt" II?)

It is essentially the ratio k~ /kn that determines the results of an oblique impact and not the

individual values of the stiffnesses. This can be understood considering that k~ determines a

half period of tangential oscillation [47],

~ -i/2

t~
= ~

(fill
+ mR~ II)) (18)

m~ii

just like km determines a half period of normal oscillation in II is the moment of inertia). Thus

the phase of the tangential oscillation at the moment when the contact ceases, is determined by
the ratio t~ /tn

c~
fi$ (this proportionality is valid strictly only for en =

I). For uniform

spheres,
1

=
2 IS mR~, (19)

and the periods of tangential and normal oscillation are equal when k~ /kn
=

2/7. The actual

value of ~( additionally depends on ~(. In Figure 3d, we present ~fi~ vs. #' as obtained using
force (16) for k~/kn

=
1, 2/7, 1IS. With k~/kn

=
2/7, one obtains a regime of constant

negative e~ for small to intermediate #', caused by the restoring of tangential kinetic energy
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by the tangential spring. For higher #', the Coulomb condition governs (16), and one enters

a regime of sliding friction. The region where reversal of initial tangential velocity is observed

extends from normal impacts to ~~ m 1.6 (~ m 58°), in good agreement with the experimental
results by Foerster et al. [25]. For k~/kn smaller or higher than 2/7, the extension of the

(e~ < 0) region is unchanged, but new subtleties arise. For k~/kn
=

I, there is a slight rise in

~~ before it falls below the abscissa; this behaviour has been predicted theoretically by lilaw

et al. [40] for perfectly elastic spheres, but is not observed in Foerster's data. For k~ /kn
=

I IS.
the simulation results match the experimental values quite well. The porresponding behaviour

of e(sin~) is shown in Figure 4d. Here, it does not seem to make much of a difference which

value of k~/kn
is chosen.

Another model that leads to very realistic impact behaviour was used by Walton and Braun

[37]. Their scheme is patterned after Mindlin's results for constant normal force and varying
tangential force [39], assuming that in each time step, the normal force changes only by a

small amount that will not significantly influence the tangential force. It introduces a force

dependent k~, such that for each time step

Fs~fl+ks'l(~l'l' 120)

where a prime refers to the respective values in the previous time step and

~~
~

~i)
~~~

if v~ in initial direction

ks (~~~
l/3

~0
i ~j

S ~1Fn + F)
if ~~ in opposite direction.

Here, k) denotes the initial tangential stiffness. F] is initially equal to 0 and set to the value

of F~ whenever ~~ reverses its direction. The change in the normal force that inevitably occurs

during impact is accounted for by using the instantaneous value of Fn
in

the evaluation of

k~. In Mindlin's elastic theory [39], the initial tangential stiffness k) is related to the normal

stiffness by kj
=

kn(I v) Ill v/2). The Poisson ratio v is
of order 1/3 for most materials.

such that kj/kn
m 2/3. Figure 3e and Figure 4e show #~ vs. #~ and e(sin~) obtained using

(20) with kj /kn =1, 2/3, 1/3. The results look quite similar to those of force (16), though
they seem to match the experimental values a bit better for k) /kn

=
2/3.

Brilliantov et al. [36] formulated a force assuming that the tangential moment transmission

(thus, the apparent tangential force) is mediated by microscopic asperities on the contacting
surfaces which yield if the local stress exceeds a certain threshold. With their model, they
derive

F~
=

-~1Fn (22)
(o (o~

where [J~j means the integer truncation of z, (o is a length connected to material constants

and surface roughness, and
~1 is expressed in terms of microscopic parameters. Force (22) is a

saw-tooth function in ( with period (o. Clearly, (o should be much smaller than (~, the final

tangential displacement immediately before the contact ends. (~ is in a range from about 10~~

to 10~~
m

(from nearly normal to nearly grazing) for the impact angles and normal stiffness

used in our simulations. The properties of force (22) are shown m Figure 3f and Figure 4f for

(o "10~~
m

(changing (o to 10~~
m

or10~~
m does not visibly alter the curve). One obtains
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Fig. 5. ~i~ vs.
~i' for combination of Hertz-Kuwabara-Kono normal force (9) with linear tangential

elasticity (16) for v]~, =
0.1 m

Is (dotted line), 1.0 m/s (dashed line), 10.0 m
Is (dot-dashed line). The

circles denote the experimental values for the impact of acetate spheres [25].

reversion of initial tangential velocity for small impact angles, but the extension of this region
is smaller than with forces (16) and (20). On the other hand, the coefficient of total restitution

e seems to be overestimated with regard to the forces (16) and (20) especially
in the region

sin ~ m o.7.

Finally, let us discuss the changes in collisional behaviour when normal force laws different

from (2) are applied. The coefficient of tangential restitution e~ and #~ vs. ~' depend on the

normal force indirectly through F~
=

f(Fn) and through tn, the normal oscillation half period:

~( ~[
=

A~ c~

/
F~ dt. (23)~~

Therefore, if one replaces force (2) by other normal forces, some changes in the behaviour of

oblique impacts must be expected. We discuss those changes for the dynamic friction force

(13) and the elastic tangential force (16).
The non-elastic force 11 3) is not likely to be very sensitive to the normal force chosen, because

it essentially leads either to rolling or slipping. Of course, choosing a non-linear normal force,

in becomes velocity-dependent, and the same must be true for A~. In practice, however, the

velocity dependence
in

(7) is so weak that for a large range of ~[, the changes in #~ vs. #~ are

too small to be represented here.

For the elastic tangential force (16), the situation is different. Here, as pointed out before,
the impact results depend on the ratio of the half period of tangential oscillation t~ and the

normal collision time tn. In order to get meaningful results, k~ must be set such that for

one particular impact velocity, t~/tn
= c m I. According to (18) and (19), this leads to the

condition
~

k~
=

2/7 m~~~
~ (24)

tnc

In Figure 5, we show #~ vs. #' for impacts obeying the Hertz-Kuwabara-Kono force (9) in

combination with the tangential force (16) with varying impact velocities ~]~, =
)v] v)). We

put k~
=

9.43 x
lo~ N/m m order to achieve t~ /tn

=
I for ~)~, =

l m Is. It is clearly seen how

the different impact velocities affect tn and therefore the collision behaviour. On the other



16 JOURNAL DE PHYSIQUE I N°1

.o

o-g

~~~-
~,,

~
w 0.8 '~, /

--,__
', i

~~-,
'

If
~,~j~_ _,/,

0.7
~'~'~

0.6
O-O 0.2 0A 0.6 0.8 1-O

sin 0
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forces and parameters as
Figure 5.

hand, the results of Figure 5 look very similar to those of Figure 3d (obtained with force (2)
and varying k~ /kn) and also fit the experimental results as long as the tangential spring

constant k~ is selected with care. Note that with force (9), the numerical value of k~ is nearly
1000 times smaller than that of km, whereas with the linear normal force (2), both spring

constants have to be of the same order of magnitude to achieve c m I.

Since the coefficient of total restitution is a direct function of both the normal and the

tangential dissipation, the normal force has a strong influence on the behaviour of the e(sin ~)

curve, especially for small impact angles. With non-linear normal forces that lead to a velocity-
dependent coefficient of normal restitution, e(sin~) becomes also velocity-dependent. This is

true for non-elastic and elastic tangential forces alike. Figure 6 shows how e(sin ~) is influenced

by the velocity dependence of en using the same forces and parameters as in Figure 5.

4. Generic Problems of Soft-Sphere Simulations

The common feature shared by all soft-sphere force models is that according to equations (4)
and (7), normal collisions have a finite duration tn that decreases with increasing stiffness. We

now describe two effects that are connected to the finite duration of contacts.

First consider a one-dimensional column of N grains of same size and material, all a distance

so apart and having a velocity ~o along the common ao~is. Let this column hit a wall, wait until

all grains move away from the wall and each other, and measure the restitution coefficient of

the whole column,

~ ~

£~
l

~~
~

f
~f

tat ~N ~; N~~ I

i=I i i=I

As Luding et al. discussed [35], e,~, depends on to /tn, where to
" so /~o is the time needed for

a grain to catch up with the grain in front of it when the latter is suddenly stopped (e.g. by
impact on a wall) In the limiting case to /tn » I, the column's hitting the wall leads to a

large number of binary collisions between the grains. The total restitution coefficient thus is

considerably smaller than the coefficient of restitution for a binary impact, en. On the other

hand, m the limiting case to/tn < I IN, the column's hitting the wall leads all grains into

mutual contact at the same time, and the grains interact with the wall as a chain of coupled
damped oscillators rather than as N distinct grains. The total restitution coefficient is close
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Fig. 7. Sketch to illustrate the brake failure effect.

to one in this case, the column disperses. Therefore, this regime was called the detachment

regime [35]. This example illustrates that it is very important to choose realistic collision times,

i-e- realistic stiffnesses, especially when dense systems are considered. Note also that in the

"inelastic collapse" observed by McNamara and Young in ID granular gases [48] instantaneous

contacts are of vital importance.

The second effect is related to contact times in oblique impact and was described by Schifer

and Wolf [30]. Consider two grains hitting each other with relative velocity ~'
= )v]~,) under

an impact angle ~ as sketched in Figure 7. We ask for the duration of the contact, t~~,,,.

Of course, for normal impacts (sin ~
=

0), t~~,,~ =
tn, but for an oblique impact this is not

necessarily so. One can distinguish two regimes: a hard-sphere regime, where the stiffness of

the grains is so high that t,~,,~
=

tn still holds, and a soft-sphere regime, where the stiffness

is so low that the grains essentially cross each other unhinderedly. In this case, t~~,,, =
~/~~,

where ~
=

2Rcos~ is the length of the chord between initial and final contact p$in.t as drawn

in Figure 7. Introducing a Cartesian coordinate system with the z-axis m
the direction of v]~~,

we now ask for the dependence of A~~
=

~[ ~[ on the initial velocity ~' in the two limiting
regimes. In the hard-sphere limit, the collision follows approximately the law of reflection, such

that A~~ c~ ~~. In the soft-sphere limit, one has

~~~
~

l/~(t) dt
~

l/~ t~,i~.
mn<

The mean ~ force during the impact, ll~, is independent of ~~ m this regime, while t~~,,~ c~ 1/~',

so that A~~ c~ 1/~~. The braking efficiency goes down with increasing ~~; therefore, this regime
has been called the brake fail~tre regime. It is clear that in a given impact it depends on ~',

km, and ~ which of the regimes applies. An estimate for the transition between the regimes

is provided by equating tn m
~fi

=
~/~'; solving for u~ gives the critical velocity for

brake failure

~w =

~~
cos ~ fi. (25)

~

This is illustrated in Figure 8 for the cellulose acetate parameters and ~
=

87.4° (sin ~
=

0.999).
In the log-log plot of Figure 8, the two regimes are clearly seen. The dotted curve corresponds

to the usual tn
=

I x
10~~ s; here, the transition between the regimes takes place at about

~w m 35 m/s, in good agreement with the value predicted by equation (25), ~w m 27 m/s.
Increasing tn by a factor of 10 Ii-e-, decreasing km by a factor of100) leads to a decrease of

~~~ by a factor of10 (dashed line in Fig. 8). The corresponding ~w m 3.5 m/s is a speed
typically obtained in experiments or simulations. The possible consequences of brake failure

for simulated granular flow have been discussed by Schifer and Wolf [30].
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=

87.4°. Dotted line:
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I x
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s, dashed line: tn
=

I x
10~~

s.

5. Conclusion

We have discussed specific and generic properties of force schemes used in the Molecular Dy-
namics simulation of granular materials. Some of the forces exhibit a quite realistic behaviour

in normal and oblique impacts, others less so. Which of the force schemes is the most appro-

priate for simulations cannot be answered in general; this depends very much on the specific

geometry, particle density, mean flow velocity, etc. In any case, we strongly recommend testing
out various force schemes, and paying special attention to the influence of the corresponding
free parameters on the flow properties. Complementary to our discussion for free impact
ii. e. applying to rapid granular flow), Sadd et al. [49] have conducted an investigation on the

properties of several contact laws for the case of dense systems with long-lasting contacts.

While the general merit of the soft-sphere approach to granular dynamics is its versatility
and ability to simulate also very dense and /or quasi-static systems la regime inaccessible to

hard-sphere simulations), there are also some generic problems which we shortly described in

the preceding section. Both the detachment effect and brake failure are especially predominant
when the stiffness kn of the grains is lower than in real systems (or, equivalently, when the

normal collision time tn is too large). Special care should therefore be taken in simulations to

rule out the presence of any of the two effects.
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