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Abstract. We show theoretically that it is possible to build dense periodic packings, with

quasi 6- fold symmetry, from any kind of identical regular
convex

polygons. In ail cases, each

polygon is in contact with
z =

6 other ones.
For an odd number of sides of the polygons, 4

contacts are side to side contacts and the 2 others
are side to vertex contacts. For an even

number of sides, the 6 contacts are
side to side contacts. The packing fraction of the assemblies

is of the order of 90%. The predicted patterns have also been obtained by numerical simulations

of annealing of packings of convex polygons.

l. Introduction

Many physical properties of granular media are related to their porosity or, altemately, to

their packing fraction. For example, some properties of the grain space such as electrical (for
conducting grains)

or mechanical behaviours are improved by compaction.
Generally, realizations of dense packings do not allow to go much beyond packing fractions of

the order of 80% in 2d or
60% in 3d. However, it is well knoi,>n that in the case of identical

grains (same shape, same size), provided they are not too exotic, higher packing fractions

may be reached. In 2d, regular triangles, squares and hexagons may fill the plane and the

densest configuration for identical discs (C
m 91%) is realized when their centers are the sites

of a regular triangular array, while it is lower than 82% in the disordered case
il,2];

a similar

behaviour is found for ellipses [3]. The situation is a httle less clear in 3d: the densest known

arrangement for identical spheres (C
=

74%) is the hexagonal close-packed structure, but this

is not the only solution and it has not yet been proved that it has the highest possible packing
fraction.

In ail these cases, the densest solution is penodic. Surprismgly, a similar result was obtained

in recent 2d compaction experiments on regular identical pentagons, although no long range

order should be a priori expected here. We reached a packing fraction of 92% ~Afith the follow-

ing characteristics: the arrangement is periodic, with a mirror symmetry and a quasi 6-fold

(*) URA CNRS 804.
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symmetry [4]. Though it is not yet proved, it seems that this is the densest possible packing
for regular pentagons. Actually, this configuration was predicted some years ago in the context

of quasicrystal theory [5].

The aim of the present paper is to show that similar pattems hold for any kind of (identical)

convex regular polygon assembly, 1e. that there exists a dense disposition of the grains which

is periodic and quasi 6-fold. For obvious reasons, we have not considered triangles, squares

and hexagons. For all other polygonal grains, the packing fraction is high and always close to

90$lo. In Section 2, we recall the pentagonal case and sketch briefly the experimental method

of compaction close to an annealing process [4]. In Section 3, we derive the possible 6-

fold periodic arrangement for any kind of polygonal assemblies, by generalizing the theoretical

calculation of reference [4]. Section 4 is devoted to numerical calculations for pentagons,
heptagons and octagons which provide the predicted disposition. A short discussion is given
in the conclusion.

2. Pentagonal Assemblies

It is known from some time that compaction of polygonal grains ,vhen friction forces are

important provides disordered packings with a maximum packing fraction ~vhich increases

~vitli the number of sides of the grains from approximately 78% for pentagons up to C
=

80$lo for ennagons and C
=

84% for discs [6]. A better compaction is obtained when friction

forces are suppressed, and this was realized for example on an air cushion table built in Rennes

University for that purpose. We recall here briefly the experiment performed with regular

pentagons [4].

The experimental device was described in detail in reference I?i a wind machinery generates
a,rertical air flux through an horizontal porous table (50 x 50 cm~). The strength of the flux

can be controlled and the table is adjusted to be perfectly horizontal when the voltage at the

ends of trie ventilation system is 150 V. Small polygonal grains (6 mm sidelength and 1 mm

thickness) made of polystyrene move above the table and rearrange permanently because of

the small heterogeneities of the air flux, and after a short thermalization time the assembly
reaches a stationary. state. ivhen the air flux is strong, a short range repulsion due to the air

expulsion is present and the effective size of the grains may be 10% larger than the real one

so that trie collective behaviour of pentagonal grains is not very different from that of discs.

~vhen one decreases trie voltage, trie grains slo,v down, trie effective radius decreases and trie

table bends do~A>n a little so that trie grains concentrate in a smaller zone near trie center of trie

table; compaction is thus trie combination of trie reduction of the air flux and the diminution

of the active region.

This technique, similar to an annealing process, was performed progressively. At each step,

~ve waited long enough so that trie system reached again the equilibrium. Snapshots were taken

at different times and we determmed the corresponding diffusion pattems for the centers of

the grains. For voltages less than 90 V, these pattems show the progressi,re setting of a quasi

6-fold symmetry; ~A.hen the voltage is definitely tumed off, the grains themselves are rearranged
densely,

m a penodic way, with a mirror symmetry. The theoretical lattice is shown m Figure 1,
the 3 translational directions a, b, c

la + c =
b) are mdicated. The 3 angles are respecti,>ely

59°3, 64°7, 56° and the 3 lengths a, b, c differ by less than 10% (Tab. I, first hne). The

unit cell is made of 2 pentagons plus 4 triangles
m

the void space. This configuration is quite
remarkable as no a priori long range order could be expected ~Arith pentagonal grains. Actually,

such a lattice was predicted using arguments related to quasi crystal theory [5]; some previous

expenmental evidence is referred to m [8].
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a

b

c

Fig. 1. Theoretical crystal with pentagons. The 3 translational
axes a, b,

c are shown. Angles
m

the triangles of the void space are
2x/5, 2~/5 and x/5; trie side to vertex contacts take place at the

middle of the pentagon side and the same is true for the side to side contacts. The grey rectangle is

the unit cell of the lattice.

Table I. Characteristics of the latttce when k is odd. The iengths are giuen in terms of the

radius R of the circumscribed circle.

kodd:zm=4

k n C a b c (a, b) (b, c) jc, a)

in tenus ofR

5 3 0.92131 1.8090 1.6583 1.7215 59°3 64°7 56°o [4], [5]

7 4 0.89269 1.9010 1.9609 2.0393 63°7 56°7 59°6

9 5 0.89745 1.9397 1.9705 1.8806 57°5 60°4 62°1

The average number of contacts per grain is 6 and 6 is also trie maximum possible number of

contacts locally: two of them are vertex to side contacts, trie other 4 ai-e side to side contacts

and we proved that 4 is the maximum average possible value for pentagons [4]. The packing
fraction C is high (C

=
0.921), slightly higher than for discs (C

=
o.90î), but we were trot able

to prove that it is trie highest possible packing fraction: large scale reorganizations may occur

which may yield
a densest-less ordered-packing (R. Mosseri, private comm.).

3. Theoretical Predictions

We recovered this structure theoretically, counting the lines and vertices m
the graph drawn

by grains and the polygonal holes m the void space [4]. These arguments can be generahzed to

any kind of regular convex polygon assembly. We show below that ~ve can get a dense periodic

pattem with a quasi 6-fold symmetry. The packmg fraction is high again and close to 90%.

3.1. BAsic EQUATIONS. The granular medium is made of regular convex polygons with k

sides. The polygons cannot overlap (steric exclusion) but may be in contact. These contacts

ai-e generically of 2 kmds: side to side and side to vertex, other possibilities may be considered

as limiting cases (Fig. 2). Let z~s and zsv be the average number of side to side and side to

vertex contacts pet polygon and let z = zss + zsv the total average coordination number.

The packing fraction may be estimated through the holes m the void (pore) space. The void

space is made of non convex polygons with an unkno,vn number n of sides (Fig. 3). Topological
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(a) (b) (a') (b') (c)

Fig. 2. Definition of side to side (a) and vertex to side contacts 16) and corresponding hmit cases

(a' and b'). For pentagons only (actually when k < 6), 3 grains may occur
exceptionally at the same

point but again, this case may be considered as a
hmit one (c).

Fig. 3. A polygonal hole m the void space (for k
=

5). Here,
il= 8, #(il)

=
3 and cv(il)

=
3. (See

Appendix for notations).

and metric relations connect the distribution number Pn and angle repartition of the n-sided

holes to the partial coordination numbers of the grains. They are derived in the Appendix
(Eqs. (A.I)-(A.3)). For example, the number of holes per grain depends only on the total

coordination number (Eq. (A. la)) and the average coordination number z is less than 6 (Eq.
(A.ld)). Actually, it may be shown that 6 is also the local maximum number of contacts.

3.2. MAXIMUM COORDINATION NUMBERS. The underlying assumption is that 6-fold com-

pact packings are realized when
z =

6 and zss is maximal.

i) z =
6. Then, equations (A.lb) and (A.lc)

are identical. The number #(n) of angles
corresponding to the corners of the polygonal grains is equal to n 3. This means that in

each hole only 3 grains are involved. Because of the metric relations (A.2), only 3 values

of n are allowed, which depend on
the parity of k, with a condition on the sum of the

measures of the 3 acute angles.
k even: k

=
2p and n = p, p + 1, p + 2

k odd: k
=

2p + 1 and n = p + 1, p + 2, p + 3.

ii) The further requirement that zs~ is maximum imphes that the number of side to side

contacts (< 3) in a hole polygon is maximum.

When k is even, 3 side to side contacts are possible if n = p.

When k is odd, the largest side to side contact number
m a hole polygon is 2 when

n = p + 1. The remammg angle has a measure
~.
k
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(a) (b)

Fig. 4. Periodic dense patterns with odd k. a) k
=

7; b) k
=

9. For k
=

9, a
few percent are

lacking for having 2 sides in contact on
their whole length. The packing fraction

is
C

=
0.8927 for

k
=

7 and C
=

0.8975 for k
=

9.

3.3. PERIODIC PATTERNS. Putting the above results ail together, we focus on the case

where only one species of hole is present in the void space 1-e-:

k=2p, n=p zss=z=6. (la)

k=2p+1, n=p+1 zss=4,z=6 (16)

Notice that all angles are then determmed, but trie lengths are not. We shall thus assume

further that, in the void space

all polygons are equal (same side lengths)

some symmetry must hold

so that periodicity may exist. These configurations are actually possible and explicit realiza-

tions for k
=

7, 9 and k
=

8, 10 are shown m Figures 4 and 5 respectively.
In the odd case (Fig. 4), the side to vertex contacts take place at the middle of the side and

the polygons are altematively up and clown with a minimum pattern involving 2 grains and 4

holes (mirror symmetry). The 3 directions a, b, c
(b

= a + c) are shown for k
=

7; the angles
and lengths (reported to the radius R of the circumscribed circle) are given in Table I, last

columns. There is a small distortion, less accentuated when the number of sides increases, as

compared to the pure hexagonal case.

In the even case, one first notes two opposite limit cases: either 2 contacting grains have

a common side or one of the contacts is restricted to a vertex to vertex contact. Both of

them yield periodic patterns, with 2 orthogonal mirror symmetries and a minimum pattern
involving 1 grain only. Two lengths and two angles are equal 16 = c and la, b)

=
la, c) m

our notations, see Tab. Il; for k
=

12, the 6-fold symmetry is exact, as expected). The first

possibility, shown in Figure 5a for k
=

8 and k
=

10, gives a packing fraction larger than the

second one. Between the two limit cases, there is a set of configurations which can be obtained

by continuons gliding of the grains but they have no longer the mirror symmetry. One of these

intermediate situations is shown
m

Figure 5b.

As there ai-e 2 holes for one grain (Eq. IA-la))
,

the packmg fraction C is

~
~

~ ~ ~~Î~~Î
ÎÎÎ

~~~
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Fig. 5. Periodic dense patterns,vith
even

k. a) hmit
case

with 2 full side to side contacts; b)
intermediate situation between the two possible limit

cases.
Left: k

=
8; right: k

=
10. In configu-

rations (a), the packing fraction is C
=

0.9062 for k
=

8 and C
=

0.9137 for k
=

10; it is smaller
m

configurations 16).

Table II. The same as Table I when k is eue». The 2 possible iimtt patterns are giuen. In the

jirst case, the polygons of the nord space are degenerated. Discs are indicated for comparison.

k even first case zss= 6

second case zm =
4 (+ 2 vertex to vertex contacts)

k n C a b (= c) (a, b)
=

(a, c) # (b, c)

m tenus ofR

8 4 (---> triangles) 0.90616 1. 8478 1.9254 61°3 57°4

4 0.89180 2. 1.8748 57°75 64°5

10 5 (--> quadrilateral) 0.91371 1.9021 1.9667 61°1 57°8

5 0.90450 2. 1.9077 58°4 63°2

12
a =

b
= c (a, b)

=
(b, c)

=
(a, c)

6 (--> triangles) 0. 92820 1.93 18 60° [1ii

6 o.86602 2 60° [1ii

[discs
oo

o.90689 2 60°]
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They are indicated in Tables I and II, column 3. In all cases, they are close to 90%. As
z

and

zss are both maximum, the question arises whether this is or not the densest possible packing.
This problem will be tackled in the last section.

4. Numerical Simulations

The above configurations may probably be recovered from densification
on the air table as

explained in Section 2; this will be clone in a later work. At the present time, we began
numerical simulations, first with the pentagonal case, then with hexagons, heptagons and

octagons. We use a program performed by Tillemans and Herrmann in Jiilich [9], which

handles the evolution of an assembly of convex polygons (the polygons must have more than

3 sides) using molecular dynamics. Two forces are apphed on each polygon of the system,

a central force oriented towards the center of the packing and a viscous friction between the

polygons and the floor. The trajectories are computed using a fifth order predictor corrector

method [10j. The polygons which colhde during their motion are allowed to have a small overlap
but the elastic modulus and the central force are adjusted in order that the overlapping area

remains very small compared to the area of a polygon. When two polygons overlap, two forces

act on them at trie point of contact (trie point of contact is defined as the middle of the contact

line built by taking the two points of intersection of the sides of the overlapping polygons),

a restoration force proportional to the overlapping area and normal to the contact line and a

normal dissipation proportional to trie normal component of trie relative velocity of the two

polygons. A shear friction may also have been used but, as explained below, ~ve set it to zero

m
the simulations.

We start with
a random packing of regular n-sided polygons with an initial packing fi-action

C
=

0.15. Trie central force is applied on trie packing and we let the sy.stem evolve towards a

steady configuration. Our aim is to find the configuration with the highest packing fraction.

So we adjust the parameters of the simulations as follows. First, it is necessary to have energy
dissipation to reach a steady state. But the energy dissipated during collision has to be as

low as possible, otherwise there will be some sticking of the particles which will oppose the

densification. In particular, the shear friction has to be zero in order to prevent arching. Thus

we only keep a small normal dissipation and a small friction with the floor. We set those

parameters in order to reach trie steady state after about 80 000 time iterations. With those

conditions, a lot of local rearrangements occurs before the stabilization (the final packing has

a kinetic energy close to 0). Another point is that the central force introduces a singulanty at

the center of the attraction. If the force center is not exactly situated at the center of inertia

of the packing, small oscillations of the packing around the force center appear, leading to

long range shearing m the packing. These oscillations contribute to increase the final packing
fraction.

In order to check the theoretical predictions of Section 3, we have made simulations with

pentagons, hexagons, heptagons and octagons. Each packing was made of 500 polygons. All

the simulations lead to ~n.ide well crystalhzed areas as predicted by the theory. An example of

the resulting packing is shown m Figure 6 for octagons. One can see that the agreement with

the theoretical packing of Figure 5a is very good. With hexagons, we get a perfect tiling of the

plane. For an odd number of sides, the crystallized zones are smaller; this was also the case

with pentagons m experiments on the air table, probably because trie 2 side to vertex contacts

are not very stable.
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Fig. 6. Packing of octagons obtained by numerical simulation.

5. Discussion

We have extended to any kind of regular identical convex polygons the method initiated for

pentagons. We found theoretically, then recovered numerically dense periodic configurations
~vhich

optimize the average number of side to side and of all contacts

are periodic with 2 orthogonal symmetries (even case) or a mirror symmetry (odd case)

are quasi 6-fold with a small distortion which decreases when the order of the polygon
increases

have a high packing fraction, close to 90$lo.

Most of these patterns are new, and are not to be found in the reference book by Grünbaum

and Shephard [11]. The odd case (k
=

7, 9, II is specially interesting as no long range order

from any kind seems to be a priori expected from such grains. The theoretical derivation is

quite simple and relies mainly on the topological equations (A.l but we were not able to find a

close formula for the packing fraction at any k. Other periodic pattems may be obtained from

theses relations, by imposing that all angles are 2x /k
or

xl k and for only a finite (small) number

of kind of holes are present. For example,
,ve recover the periodic structures for pentagons

shown m Figure 8 of reference [5]. Periodic pattems with 4 side to side contacts land no side

to vertex contacts) per grain exist for any k; some examples with odd k (k
=

5, 7 even k is

straightforward)
are shown in the Figure 7. To end off with these theoretical considerations,

let us note that equations IA-1) hold ~vith little change for any mixture of irregular different

convex polygonal grains; then,
z =

6 is a maximum average for any polydisperse assembly of

convex grains.
The main difficulty left is deciding whether

or not the pattems in Figures 4 and 5 are the

densest ones for regular grains. It is a difficult mathematical problem as we are not sure

that the simplest periodic arrangement yields the best packing fraction. It is probably true

when k is even as the number zss (= 6) of side to side contacts is also the absolute local
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(a) (b)

Fig. 7. Periodic patterns when k is odd with
a unique kind of hole and 4 contacts: a) k

=
5; b)

k
=

7; this possibility may be extended to all odd k.

maximum number of contacts. It is less clear in the odd case, as the existence of side to

vertex contacts is not a necessary ingredient for getting a higher packing fraction; nevertheless,
analogical and numerical simulations support this assumption for k

=
5 and 7. However, things

become different for k
=

9, II we have checked that some theoretical penodic patterns with

z = zss =
4, which are generalizations of Figure 7 provide a higher packing fraction than those

of Section 3. We are presently mvestigating
m more detail these latter configurations and

trying to recover them from the minimal energy requirement of our numerical program.

Finally, let us emphasize that only angles and orthogonal symmetries play a role in our

theoretical derivation. Then, lengths may be modified in order to get other periodic patterns.
A first possibility is provided by Apolloman fillings; in that case, z =

6 holds on the average
only, the holes all have the same number of sides and same angle measures at the different

stages of the building procedure, but they may be different in size and shape.

Another possibility consists m modifying differently the lengths of the edges of the grains, all

angles unchanged. Pentagons excepted, at least 2 independent relative lengths are available.

As true 6-fold symmetry implies no more than one (k even) or two (k odd) further condition (s),
it may be realized for k > 7 with identical but slightly irregular grains; actually, m most cases,

a continuous set of solutions exists and large packing fractions may be reached. For example,
octagons with 2 different side lengths si and s2 (s2

"

/fisi
"

1.224.. si rearrange more

densely (C
=

0.922.. than regular grains (C
=

0.906...) A crushing or stretching of the

polygons along the vertical symmetry axis angles modified but side lengths unchanged
should lead for some k to a similar result.
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Appendix A

We consider the figure made of P IF » 1) regular convex polygons (the grains) with k sides

with steric exclusion. In a dense configuration, they may be in contact but they cannot

overlap. The contacts dehmitate closed non convex polygons m the void (pore) space with an
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arbitrary. number n of sides (Fig. 3). Their
n angles have 3 origms:

angles corresponding to the corners of the polygonal grains, with measure

~ ~~x, let
k

#(n)(0 < #(n) < n 3) be their average number per polygon;

angles arising from side to side contacts, with measure 2x/k, average number a(n);

angles fl~,n(1 =
1,. n

#(n) a(n)), corresponding to side to vertex contacts.

Actually, some other kinds of contacts may occur but they may be considered as hmit cases

of the preceding ones: vertex to vertex, or side to side with the 2 sides in contact on their whole

length (Fig. 2). When k < 6, another kind of configuration can take place as 3 grains may

occur at the same place but this is exceptional. All those limit cases will not be considered

here.

Al. General Identities

By counting the number of sides and vertices in the whole graph and using Euler relation,

we get topological relations between the number Pn of concave polygons with n sides and the

average number zss and zsv of strie to side and strie to vertex contacts per grain

(~~ ~Î ~) ~ (A.la)

~j(n 3)Pn
= (k + 3 z

à)
P (A.lb)

n>4

~

~ ô(n)Pn
= (k

1-
~(~) P (A.ic)

n>4

~

~vhere
z = zss + zsv is the total coordination number; from çi(n) < n 3, we get

z § 6 (A.ld)

which is bath the average and local maximum value for the coordination number. Note that

the relations above are average ones i e. it means that these identities holà "almost always".
Actually, these topological relations are true for any assembly of polygonal grains (any size,

form and mixture...); then zmax =
6 appears as a generic property.

Equations (A.i) ai-e completed by metric properties for the angles of the concave polygons

in the porous space. For any polygon with n stries,

in 2)~r
=

~ )
~~r<in) + )~rain + ~ ô~,» iA.2a)

~

with

,0~
n

< )7r, =
1, n

lin) OIn) lA.2b)

Here, the numbers çi(n) and a(n) are integers and depend bath on n and on the pecuhar
polygon which is considered. For example, when k

=
7, çi(4)

=
is fixed but a(4)

=
0,1 or 2.

However, several values of çi(n) exist for large n; for instance, #(14)
=

8 or 9. As a further
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consequence, note that

no triangle exists in the pore space if k > 7, no quadrilateral if k > 9,.

the triangles excepted, ail the void polygons are not convex ii-e- #(n) > i, when n > 4).

setting ail acute angles equal to 27r/k, we get for #(n) a lower bound

#(n) >
~ ~n

2.
k

When taking the average over ail configurations and ail n, we get obviously

(fl~,n)~
~

=
(A.3a)

and

zssP
=

~j o(n)Pn, zsvP
=

~j in #(n) o(n)]Pn (A.3b)

n n

A2. Maximum Coordination Number Hypothesis

We go now to the maximum coordination number
z =

6. From (A.lb) (A.lc),
we get

#(n)
= n 3, 1e. 3 grains and 3 contacts only are involved in each hole. As the sum of the

3 remaining angles is at most ~~, the 3 possible values for n are n = p,p +1, p + 2 (k even,
k

k
=

2p) and n = p + 1, p + 2 or p + 3 (k odd, k
=

2p + 1).
If we assume that the number of strie to side contacts must be maximum too, then

1) If k
=

2p, trie reahzation with maximum zss consists in choosing n = p and ail 3 acute

angles equal to
~

All contacts are side to strie and zss = z =
6.

P

ii) If k
=

2p +1, the maximum possibility consists in 2 side to side contacts (angle
~~

2p +

and one side to vertex contact with an angle ~ Then a(p +1)
=

2 and zss =
4.

2p +1
This is precisely what happened in the pentagonal case.

Actually, these requirements are necessary conditions; it remains to prove that such config-
urations are possible. The configurations are sholl~n in Figures 4 and 5. For the even case, 2

possibilities are given, one of them the most compact corresponds to total side to strie

contacts; then, the polygons of the vola space are degenerated (their degree is lowered, llith an

angle which is
~~

instead of 2 angles ~ quadrilaterals become triangles, pentagons become
P P

quadrilateral.. Trie less compact possibility is a limiting case where trie strie to strie contact is

replaced by a vertex to vertex symmetric contact.
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