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Abstract. We analyze
a simple dynamical model of glasses, based

on
the idea that each

particle is trapped in
a

local potential well, which itself evolves due to hopping of neighbouring
particles. The glass transition is signalled by the fact that the equihbrium distribution ceases

to be normahsable and dynamics becomes non-stationary. We generically find stretching of the

coi-relation function at low temperatures and a Vogel-Fulcher hke behaviour of the terminal time.

Glasses bave a number of fascinatingly universal properties which are still not satisfactorily
accounted for theoretically [1, 2]. A common experimental feature is the 'shouldering' of trie

relaxation laws. More precisely, trie relaxation of say trie density fluctuations evolves

from a simple Debye exponential at high temperature (liquid) to a two-step process at lower

temperature, where the correlation function decays fast to a plateau value, from which it

subsequently decays on a much longer time scale. These two regimes are called, respectively,
the fl and a relaxations; the a decay is often described in terms of a 'stretched exponential'
with a characteristic time scale

r
diverging faster than exponentially with the temperature, and

controlling the transport properties such as the viscosity. The most popular description of this

divergence is the Vogel-Fulcher law:
T +~

roe+, where ro is a microscopic time scale [3]. One

has to note that despite its tremendous phenomenological success, this law predicts such an

abrupt divergence when T is lowered that it cannot be tested near TO Correspondingly, other

functional forms, such as r +~

roe(~/~')~, give reasonable lits of the data [4, 5]. Furthermore,
the Vogel-Fulcher law has only been justified on rather heuristic grounds [6].

Up to now, the most comprehensive theory of dynamical processes m glasses is the so-called

mode-coupling theory, developed by Gotze and others [5]. It is based on a family of schematic

equations coupling the density fluctuations m a non-hnear and retarded way. Generically, these

equations have a singularity which is associated to an 'ideal glass' transition temperature T~,
below which the correlation function does not decay to zero l'broken ergodicity'). This theory
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describes satisfactorily the overall shape of the relaxation function, at least for T > T~

m
particular the existence of the two regimes fl and a mentionned above, and a power-law

divergence of the 'terminal' time scale
r as (T T~)~~. However, comparison with experiments

I?i shows that the transition temperature T~, if it exists, is much higher than the Vogel-Fulcher
temperature, leaving a whole temperature interval [To,T~] where mode-coupling predicts a

'fluctuation arrest' Ii.e. the a regime disappears) while the experimental relaxation time is

still finite (and behaves à la Vogel-Fulcher). A way out of this contradiction is to argue that

the mode coupling theory leaves out 'activated processes' which are responsible for the long
time relaxation, and act to blur out the power-law divergence of

r near T~. Although not

unconceivable, this possibility requires the introduction of at least one extra free parameter

to fit the data, which would be zero m the ideal transition scenario and is not found to be

particularly small in the experiments. In other words, one major aspect of the mode-coupling
theory is the existence of a singular temperature which however does not manifest itself very

directly experimentally in particular, the terminal time
r

does not reveal any accident

around T~ I?i.
Another rather more subtle difficulty associated with the mode~couphng theory is that

the dynamical equations are formally identical [8, 9] to those describing exactly some mean

field mortels of spin-glasses [8,10], where the presence of quenched disorder is assumed from

the start. In glasses, however, this quenched disorder must be in some sense 'self-induced'.

Although some progress has recently been made to substantiate such a scenario Ill,12], it is

not yet clear whether the glassiness found in mode-coupling theories is or not an artefact of

the very approximation.
In this paper, we propose and solve a simple mortel of glasses. Although still rather abstract,

we believe that it captures at least part of the physics mvolved in the glass transition. The

shape of the correlation function evolves, as the temperature is decreased, precisely as in

experimental glasses in particular, the terminal time diverges according to the VogeLfulcher
law. The glass transition is signalled by the fact that the equilibrium distribution ceases to be

normahsable; correlatively, as argued in [9,13,14], aging elfects are present in the glass phase.
The progressive freezing of a liquid can be thought as follows: each particle is m a 'cage',

i-e- a potential well of depth
e created by its neighbours, from which it can escape through

thermal activation [15]. However, smce a priori all particles can move, the (random) potential
well trapping any one of them is in fact time dependent, further enhancing the probability of

moving. In order to understand the glass transition, one must describe how, m a self-consistent

way, all motion ceases. We thus introduce a density of local potential depth p(e), describing
trie fact that the efficiency of the 'traps' depend on the environment [15]. Now, the basic object

on which we shall focus is the probability P(e, t) that a given particle is m a trap of depth
e at

time t. This probability evolves because a given particle, with rate ro exp -e/T, leaves its trap
and chooses a ne,v one with ,veight p(e). Doing so, all the neighbounng 'traps' are alfected

by the motion which has taken place. In a mean field description, the resulting evolution of

Pie, t) is described by the following equation:

~~jl'~~ =
-roexP -()) Pif, t) + rit)Plf) + r(t)D) P(f)

~~jl'~~ P(f,
t))j

(i)

where r(t) e ro(exp -e/T) is the average hopping rate II...) means an average over P(e,t)
itself). The two first terms descnbe the direct elfect of leaving a trap, while the third one

expresses the fact that every 'hop' mduces a small change m all the neighbouring e's. Assummg
that the transition rate is proportional to the density of final states, the balance equation reads:

r(t) f de' T(e e')(P(e',t)p(e) Pie, t) pie') ). The fact that the change is small, justified in

a mean-field limit where the number of neighbours is large, allows one to write this term m
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a diffusion like fashion, with an effective diffusion constant D proportional to the width of T.

More general forms for this diffusion term can also be considered, and Will be discussed in [18].
With no incidence on the following results, we shall restrict e to be positive in line with

our trap picture. Equation (1) is then supplemented by the boundary condition:

p(e) ~j~'~~
Pie,

t)~)
=

0 for
e =

0 (2)

which means that e =
0 is a'reflecting' point. In fact, equations Il) and (2) can be taken

as a definition of our dynamical mortel for glasses, which must be supplemented by an initial

condition Pie, t
=

0).
Immediate properties of equations (1) and (2) are that:

+m

.
deP(e, t) is a conserved quantity, as it should.

Î

.
When T

- cc, exp -e/T
=

1 and the equilibrium distribution is simply given by P~q(e) e

p(e), as expected since there is no Boltzmann factor biasing the a priori weights.

Let us now study the equilibrium distribution at finite T. Setting
~~~~~~

=
0, one obtains

ôt

an inhomogeneous Schrodinger equation for P~q(e):

eXp -
()) ~

r~
Î~~ (3)

_ ~ô~ )j~~~ + v(f)Peq(~) ~ i ~~~~ ~ rP~~~

with the boundary
condition equation

(2). As long as this equation admits
a'bound

state', a

normalisable
Peq(e) exists and we hall call the resulting

state 'liquid'. However, as the temper-

ature ecreases, the
ffective potential V tends to push P~q(e) towards larger and

epending

on the hape of p(e), an 'extended', non state may appear - corresponding to a
glass phase. It is easy to show that if

p(e) ecreases
slower han

xponentially
for large e, the

bound state ceases to exist as oon
as

T < cc, while if p(e) decays faster than
xponentially,

the bound state remams clown to T = o (we shall come back

to this case elow).

thus focus on the case where p(e) is a simple xponential:
p(e) e )exp -e/To, here To

turns out to be the glass transition temperature. The reason for this il

temperature at which the Boltzmann
weighting factor exactly the

fact
that deep

potential wells are a priori extremely rare. uch a scenario is remmiscent of Derrida's
energy mortel

[16], where the ransition temperature is

exponential density of states with the
Boltzmann factor.

olving
quation

(3) for Peq(e) in

T
>

TO, which
reads Ii?i:

Peqlf)
= W

(Ilvlz)

vlzo) + lx)lZvlzo) - vlz)Kvlx)j 14)where = ~~ ,

T-To
~

vTo
/Ù VÎ'

of
rder v, and

~ u o u

malisation
of Peq(e)

and the
undary condition (2),
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One can check, using the properties of Bessel functions, that this last equation is identically
satisfied when T

- cc, where
v =

2 and r
=

ro. For T
-

To, on the other hand, we find that

the average hopping rate r vanishes linearly, as
ro~fi, which is numerically found to be a

very good approximation for all temperatures. More mterestingly, however, one finds that for

T TO, P~q(e) decays as Peq(e) ci
@

exp ~l~)°~ [19], which means that the charactenstic

energy scale is e"
=

@.
In order to make contact with experimental observables one must further define a (two-time)

correlation function. The simplest one to consider, corresponding to large wavevectors q. is

such that only particles which have not moved at all contribute to the correlation, 1-e-

Cjt, t')
=

j~ deP(e, t') exp -jfoexp -jj)(t t')j j6)

but other choices, corresponding e-g- to particles hopping on a d-dimensional lattice and finite

q, are possible [18,20]. Equation (6) assumes in particular that the'width' of the potential
wells is zero. In order to be more reahstic and take into account the fast vibration of the

particles in their 'cages', a simple modification is to multiply C(t, t') defined in equation (6)

by a 'Debye-Waller' factor Cp(t, t')
= exp ~~~~(~~~'~, where q is the probing wave vector. r(t)

describes the dilfusive motion in an harmonic potential well: r~(t)
=

(( il exp(-))]; (o can

be thought as the 'size' of the cage, and ((/ro of the order of the high temperatule (liquid)
diffusion constant [21]. One should however emphasize that this way of introducing the fl peak,
although physically motivated, is rather ad-hoc. An important success of the Mode-Coupling
Theory is that the fl regime appears naturally, and is furthermore predicted to be intimately

connected to the a relaxation [5].
For T > TO, 1e. when Peq(e) exists, the correlation function only depends on the dilference

t t'. One finds that C(t) (defined by Eq. (6)) behaves as

~~~~
Îro~

ÎÎÎ Î(T) ~~~

where r(T)
=

rp~ exp( fi) is the Vogel-Fulcher time, which very naturally appears within

the present mortel (althouôh
no divergmg length scale is involved). From equation (7). and

Figure 1, one sees that C(t)Co(t) has precisely the shape observed in most experimental sit-

uations, provided one takes into account the Debye-Waller factor Cp defined above. Note the

presence of two characteristic time scales, a short (microscopic) one To, corresponding to the

cage vibrations (fl peak), and a long one
T(T), corresponding to the a peak; these two time

scales separate extremely fast as the temperature is reduced.

When T < To, on the other hand, no normalisable Peq(e) can be found, which corresponds to

the weak ergodicity breaking situation described in [10,13,14]. In this situation, P(e, t) never

reaches a stationary hmit, but continuously drifts towards larger and larger energies. Time

translational invariance is spontaneously broken as
C(t, t')

never becomes a function of t t'

alone, a situation no,v referred to as 'agmg'. In fact, one can show [18] that C(tw + t, tw) e

r rC(t/tw), with 1- C(u)
c~ u ~G for u -

0 and C c~ u~N for
u - cc, precisely as m

the

'trap' mortel studied in [13]. This suggests that the dilference between the 'quenched' mortel

considered in [13] (corresponding to D e 0 in Eq. Il) and the 'annealed' mortel considered

here is, to some extent, irrelevant.

All the above results are still expected to hold if the density of states pie) is approximatively
exponential belo~v a certain cut-off e~, provided that T To > 2TTole~. If pie) decays faster

than exponentially, for example as p(e) c~ exp -(ele~)~, then strictly speaking the glass tem-

perature is pushed down to zero. This choice for p(e) is interesting smce it really corresponds
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Fig. l. Fig. 2.

Fig. l. Exponential density of states. Plot of C(t)Cà(t) versus
logi~(Pot) for q(o

"
o-à, ro "

5Pp~,
and )

=
2., I.I, 1.03.

Fig. 2. Gaussian density of states. Plot of C(t)Cà(t)
versus

logio(Fot) for q(o
"

o-à, To #

5Pj~,
and £

=
o-à, 0.25, 0,15. Note tllat tlle plateau observed for tlle lowest temperature eventually decays

to
zelo.

to a mean-field limit where trie local trap strength is obtained as a sum of contributions from

the (large) number of neighbours. The equilibrium distribution Peq(e) is then, for large e, given

by exp
if (£)~j, and the corresponding C(t) exhibits a considerable amount of stretchmg

r

at laiv. enough temperatures. C(t) is mdeed very well fitted by a stretched exponential at

intermediate times [22]. The long time fall off of C(t) is in this case given by C(t) c~
@)H

~ ~ ~2with
~1 =

(~) log rot. The terminal time T(T) diverges as exp j, 1e. much faster than an

activated latin, and, as mentioned in the introduction, also compatible with the experimental
data [4, 5]. The shape of C(t)Cp(t) is plotted in Figure 2 for dilferent Tle~. It is, again, very

similar to the expenmental data. In particular, the a relaxation for different temperatures can

be approximatively [23] rescaled onto a unique master curve when plotted as a function of fi,
as observed in experiments and numerical simulations [24], and predicted by the mode-coupling
theory [5].

In conclusion, we bave proposed a very idealized mortel for the glass transition, which we

have solved in the high temperature phase. The results are found to reproduce two important
observations: trie shouldering and stretching of the correlation and the Vogel-Fulcher hke

divergence of trie terminal time scale. Trie former feature is usually accounted for by the

mode-coupling theory on the basis of a 'phantom' smgularity ~Arhich is removed by exogeneous

processes, m turn responsible for the finiteness of the terminal time at low temperatures.
In line with previous analysis [4,15j, the present 'trap' mortel suggests thaf. the hypothesis
of a intermediate temperature transition might not be necessary, although a more detailed

comparison ~A>ith experimental data is obviously desirable, in particular the relation between

the (aging) a and fl regime deep in the glass phase [9].
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