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Résumé. Dans des structures cellulaires 2D à sommets trivalents qui remplissent l'espace

et dans lesquelles une cellule partage au
plus un côté

avec toute autre cellule et aucun avec

elle-même, la proportion maximum admissible de cellules à trois côtés est obtenue par une

décoration de tous les sommets d'une structure initiale quelconque par des cellules à trois côtés.

Des structures cellulaires "fractales" 2D sont ainsi engendrées si le processus précédent est

répété à l'infini. D'autres méthodes de constructions de structures fractales sont également
décrites. La distribution de probabilité P(n) du nombre

n
de côtés des cellules ainsi que des

corrélations de paires sont étudiées pour une structure cellulaire fractale construite à partir du

tamis de Sierpinski. Au total, la répartition des cellules dans des structures cellulaires 2D avec

n > 3 et P(3) # 0 évolue de manière régulière lorsque le désordre topologique, commodément

représenté par la variance /~2 de P(n), s'accroit. Les fortes corrélations qui existent entre les

cellules, en particulier dans les structures naturelles (/~2 £ 5) diminuent progressivement quand

/~2 augmente, la répartition des cellules étant proche d'une répartition aléatoire pour /~2 +~12.

Enfin les structures évolueraient vers des structures fractales, pour lesquelles /~2 est infini, mais

cette dernière transition reste encore à caractériser.

Abstract. In space-filling 2D cellular structures with trivalent vertices and in which each

cell is constramed to share at most one
side with any cell and no side with itself, trie maximum

fraction of three-sided cells
is

produced by
a

decoration of vertices of any initial structure by
three-sided cells. Fractal cellular structures are

obtained if trie latter decoration process is

iterated indefinitely. Other methods of constructions of fractal structures are
also described.

The probability distribution P(n) of the number n of cell sides and some two-cell topological
properties of

a
2D fractal cellular structure constructed from the triangular Sierpmski gasket are

investigated. On the whole, the repartition of cells m 2D structures with n > 3 and P(3) # 0

evolve regularly when topological disorder, conveniently measured by the variance /~2 of P(n),

increases. The strong correlations which exist among cells
,

m particular in natural structures

(/~2 £ 5), decrease progressively when /~2 mcreases, a
cell repartition close to a

random one

being reached for /~2 +~
12. We argue that the structures finally evolve to fractal structures (for

which /~2 is
infinite) but we have not characterized the latter transition.
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1. Introduction

The ubiquity of space-filling random cellular pattems (2D or 3D) is one of their most fascinat-

ing charactenstic. They are indeed encountered in numerous scientific fields from atomic to

astronomic scale il, 2], for example in biology (epidermal tissues), materials science
(polycrys-

tals and their 2D sections), fluid mechanics (2D and 3D soap froths), geography (administrative
divisions) and even in astronomy (superduster of galaxies). Their omnipresence explains the

importance of a deep understanding of their scale independent properties and of their evolution

due for instance to coarsens or to fragmentation (mitosis, etc.. ). Recent thorough investiga-
tions have been devoted to the characterization of the topological properties of cellular pattems,

more particularly in 2D. Cells in natural disordered 2D structures have, m general, at least

three sides and a rather regular geometric shape with trivalent cell vertices which thus belong
to three cells.

The most evident topological one-cell characteristic is the probability distribution P(n) of

the number n
of edges of cells. The average number of sides < n ># 6 is a consequence

of Euler's relation in 2D for trivalent vertices il, 2]. Trie information conveyed in P(n) is

further condensed into some of its moments, first into its vanance, /t2 =< n2 > 36, which

is one of the most convenient measure of topological disorder in random structures. Two-cell

correlations are characterized by related quantities:

1) Mk(n) and Akni a n-sided cell (n-cell) has on average Mk(n) neighbours with k sides.

The two-cell correlation Akn, defined in equation (1) [3,4], is related to the probability
Pkn that a k-cell and a n-cell are neighbours:

~~"
ÎÎ~

~"~ P(ÎÎÎ(n) ~~~

Both Mk(n) [5] and Akn help to appreciate the deviations of the arrangement of cells

from that of uncorrelated cell distributions.

2) nm(n): the mean total number of edges of cells adjacent to n-cells:

m m

nm(n)
=

~j kmk(n)
=

£ k P(k) Akn
=

(k Akn) (2)

k=3 k=3

The Weaire sum rule establishes the identity of <nm(n)> and of < n~ >= /t2 + 36 [1, 4].
The variance /t2 plays a major rote in "universal" or "quasi-universal" laws which have

been found to holà in 2D structures:

a) The "quasi-universal" relation between /t2 and P(6) [6] which can be expressed as:

/t2P(6)~
=

0.150 + 0.014 for ù-1 £ P(6) $ 0.7 [4, 7].

b) The Aboav-Weaire law:

nm(n)
=

(6 a)n + 6a + /t2 (3)

which depends on a sole parameter "a" which is of the order of1 in natural struc-

tures.

c) A "quasi-universal" decrease of p =
al1~2 with /t2 has been recently reported for 2D

structures with overall homogeneous oeil sizes and P(3) # 0 [8]. Negative values of

p are obtained for large disorders with an asymptote p =
-1/6 which corresponds

to uncorrelated arrangements of cells.
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The variance /t2 varies from m 0 to at most m 5 in natural structures [8]. The studies of

structures with disorder much larger than 5 rely entirely upon mortel and computer simulations.

The largest disorder reached tilt now is /t2 "
12.847 [8]. It is observed for a 2D structure

produced by a random fragmentation process. Some of the aforementioned simulated structures

may even be considered as "pathological". Their unnatural characteristics are worth being
investigated because they help to look at natural structures from other angles. The question

of the existence of 2D structures still random with larger and larger topological disorder /t2

may in particular be asked. The latter question may be of interest in relation to 2D quantum
gravity [9-11] as numerical simulations of multiple Ising or Potts mortels on dynamical random

graphs with trivalent vertices yield structures with large /t2 (+~ 12 [9]) or with the largest
reported values of P(3) (m 1/3, [10]). It is trivial to exhibit distributions Pin) with infinite

variances but we require furthermore the definition of ways of constructing the associated

cellular structures. The purpose of the present paper is to describe methods to generate 2D

cellular structures with infinite variances and to investigate some topological properties of one

of them. A scheme of the evolution of 2D structures when /t2 increases is also discussed.

2. Two Construction Methods

In the followmg ail initial (Section 2.1) or "mother" (Section 2.2) structures on the one hand

and ail decorated (Section 2.1) or "daughter" (Section 2.2) structures on the other hand will

be named respectively as S and D followed by some symbols.

2,1. VERTEX DECORATION. We start from any structure So, although "usual" structures

with /t2 < 5 will in general be considered, characterized by a probability distribution P1°)(n)
and by two-cell correlations Af). We replace every vertex of So by a 3-sided cell. Ail vertices

of the transformed structure are in tum decorated with 3-sided cells and we keep on iterating
this vertex decoration process (Fig. l). After iterations, the edge distribution is P(~)(n) and

the correlations are
A(j and nml~)(n). The number of sides of the cells of the initial structure

are doubled and the cell weights are divided by 3 at every iteration. The distribution P(~+~) (ni
at iteration1+1 is deduced from Pl~) (ni by:

(z+1)(~)
=

j
plz+1)(2k)

=
lPlz)jk) k

=
3 co j4)

~lz+1) ~~
~~

~(z)

As proven in Section 4, the vertex decoration process, even when applied only once
ii

=
1),

yields the maximum admissible value of P(3) in space-filling cellular structures whose vertices

are trivalent if moreover each cell is constrained to share at most one side with any cell and

no side with itself. The variance /t2 steadily increases with the number of iterations. After one

iteration, it is already larger than the vanance /t2 =
12.847 [8] reported in the introduction. If a

"typical" random structure with /t2 < 5 is used as an initial structure, the product /ti~~Pl~) (6)~
will be much smaller than the quasi-universal value 0.150 + 0.014 as

P1°)(3) is much less than

0.24 in such structures. For the fragmented structure with stationary topological properties,

/t2 =
12.847 and P1°)(3)

=
0.19052, the product /t)~~Pl~)(6)2

=
0.142 (/t)~~

=
35.129) is

by accident still consistent with the quasi-umversal value. More generally, the value of the

product /t)~i"l~)(6)~ is much larger than 0.150, being even larger than 2 after two iterations

at most, whatever So. It reveals already trie pecuhar character of trie transformed structure.

Equation (4) shows that the memory of the initial structure is lost very rapidly. Every cell

of So is progressively transformed into a oeil with a larger and larger number of sides which



1420 JOURNAL DE PHYSIQUE I N°11

A)

Î

)



N°11 "FRACTAL" CELLULAR STRUCTURES 1421

~~~ )~
2~/

~ )
l 2

(b)

12

Fig. 2. a) The two possible stable configurations (states (1212) and (2121) obtained by adding a

side at a
tetravalent vertex; b) the 2D cellular structure Dsg (right part) associated with

a
Sierpinski

gasket (left part) when ail up-triangles (u) contain three state components equal to 1. Down-triangles
(d) contain k state components equal to 2, where k

=
3.2~ (q

=
0,..., cc~) depends on the iteration

at which the considered d-triangles have been generated. Three-sided cells (right part)
are therefore

associated with up-triangles while cells with n =

3.2~+~ sides are associated with all remaining down-

triangles (two down-triangles with k
=

6, 12 respectively are shown m the left part).

topological correlations were not investigated. Structure Dsg also plays an important rote m

some dynamical planar trivalent graphs considered in the problem of 2D quantum gravity il Ii.
It is finally of interest in a modem version of an old puzzle known as the tower of Hanoi

puzzle Ii?1.

2.2. REMOVAL OF TOPOLOGICAL INSTABILITIES OF "MOTHER" FRACTALS. The Dsg struc-

ture and other "fractal" cellular structures can also be constructed iteratively by a second

method already used to associate topological models of 2D cellular structures with "mother"

lattices with topologically unstable sites [18,19]. All vertices of a "mother" structure which

belong to more than three polygons are topologically unstable. Vertices which belong to four

polygons are of particular interest in the present problem and will be solely considered. The

splitting of any tetravalent vertex into two trivalent vertices when it is is replaced by a segment
reflects the unstable nature of such vertices (Fig. 2a). A general method for removing the latter

degeneracy for lattices with z-valent vertices (z > 4) and for constructing trivalent topological
models of 2D cellular structures has been described by Le Caër [18,19] (see also [3,4]) In the

case of tetravalent vertices, the replacement of a vertex by a segment produces two possible sta-

ble configurations (Fig. 2a), called states, which are characterized by two 4-dimensional vectors

Ck (k
=

1, 2), whose components Ckj (j
"

1,... 4) are either 1or 2, namely Ci
=

(1212) and

C2
=

(2121). As the rule which allows removal of the degeneracy at any vertex does not create
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at a tetravalent vertex as a state for which a component (rsp. 2) is found inside each of the

two up,triangles at trie considered vertex (Fig. 3A). States are distributed at random, with

a probability p of finding a "+" state, on all tetravalent vertices which have been created at

iteration k (nine at iteration k
=

2,..., 3k at iteration k). In that way, states are progressively
placed on all V

=
(3k+~ 3) /2 tetravalent vertices which exist at iteration k and a "daughter"

cellular structure with trivalent vertices Dk (right part of Fig. 3) can be associated with a

mother structure Sk (left part of Fig. 3). A different method, particularly useful if states are

distributed in a correlated way, consists m distributing states on all vertices and not only on

those just created at iteration k. There are
2V possible daughter structures associated with

all possible repartition of states on the vertices of Sk. In the case of a random distribution of

states, the statistical weight of a given structure is the same for the two previous methods. In

all cases, once states are distributed on trie vertices of Sk, a cell of trie "daughter" structure

is associated with every up-triangle and with every down-triangle: its number of sides is given
by the sum of all state components which are located inside the corresponding "mother" cell

(Fig. 3). The topological properties of Dk may therefore be obtained. A given down-triangle
contains a number of components m =

3.2~ where q (0,..., co) depends on the iteration at

which the considered d-triangle has been generated (Fig. 2b). Trie "older" trie d-triangle, trie

larger is m. The outer triangle contains (3k+~ l)/2
u- and d-triangles at generation k: 3k

u-triangles and 3k~~~~ d-triangles containing m =
3.2~ state components, q =

0,.. ,k -1.

For mfinite k, the relative populations are
2/3 for up-triangles and 2/3~+~ (q

=
0,..., co) for

down-triangles. The degeneracy removal at any vertex of the mother fractal is performed at

random. Trie perfect limiting 2D cellular structure Dsg, whose charactenstics are given by
equations (5) and (6) is generated for p =

1 (Fig. 2b). More generally, a unique distribution

Pin) is obtained for a given p when k increases indefinitely:

(3)
=

)p~ + )(1 p)~, P(4)
=

)p(1 p)(1 + 2p)
P(5)

=
)p(1 p)(3 2p)

n =
3.2~, q =

1,
., co (7)

Pin)
=

S lpn/2 + iii p)»1 + Iii p)36n~
P(n + k)

=

$C(pk(1 p)"~k 0 < k < n

The vanance of P(n) is infinite whatever p as it is also for any distribution of states, random

or not, on the vertices of the initial fractal. For p =
ù-à, the distribution Pin) is multimodal

(Fig. 4) with an infinite number of modes of decreasmg weights which are related to the

variation of Cl with k for a fixed value of n.

A third construction method (Appendix A of [19]) related to the second one is worth being
mentioned in connection with random triangulations and random surfaces [20]. A dual struc-

ture Si (Fig. SA for k
=

1) of the mother structure Sk of Figure 3 cari be constructed at every

iteration k by connecting a point (named here center) inside every u~triangle (rsp. d~) to ail

centers of the d~triangles (rsp. u-j which share one side with it. The centers of "boundary"
triangles which share one strie with one of trie three outer neighbouring cells defined by trie

largest triangle are ail connected to the corresponding cell center (Fig. 5A). In that way, the

dual structure S( consists only of quadrilaterals and of three triangles associated with the three

trivalent vertices of the largest triangle. The construction method is based on Euler's diagonal
triangulation (T) of every quadrilateral of the dual structure S( by one of the two diagonals
chosen at random with probability p. The structure S( is thus transformed into a random

triangulation TS( whose dual is a structure Dk constructed by the previous method (Fig. 58

for k
=

1).
The following generalizations of the two generation methods of fractal cellular structures

described previously can be proposed:
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3. Average Two-Cell Correlations in trie Dsg Structure

In trie Dsg structure (right part of Fig. 2b), a 3-cell bas no 3-cell as a neighbours: A33
=

0.

Consequently a n-cell bas no n-sided neighbouring cell (A»»
=

0): starting from 3-cells at

iteration1 and decorating ail vertices, we see that ail 6-cells at iteration 1+1 are generated
from trie 3-cells living at trie previous iteration and have thus no neighbouring 6-cells, etc..

Any n-sided cell in > 6) bas n/2 three-sided neighbouring cells. Consequently (Eq. il )):

Ai)
=

~~
(n 2 6) (8)

whatever1. Equations (2), (4) and (8) yield:

~~lz) ~à
3ml~)(3)

=

~ + (9)

Similarly a n-sided cell in
=

3.2~ q > 1) has M2k In) 2k-sided neighbouring cells with:

M)[~~~ in)
= M)~~ (~) for

n =
3.2~, q > 1 (10)

2

(11)

Thus (Eq. (~)~ ~~ ~ ~~

~~(i)j~)
=

nm~~ ~~ (Î~ ~
Î

It is immediately verified that equations (9) and (ii are consistent with trie Weaire sum rule

(<nm(~)(n) >= /tÎ~ + 36). We need to obtain nml~)(n) as a function of /t)~ to compare trie

two-cell correlations nm(n) with the Aboav-Weaire law (Eq. (3)). This is easily doue after

observing that n-cells, n =
3.2~, living at generation1 originate from 3-cells living at generation

1- q. TO derive trie desired relation, it sullices therefore to express /tj~~~~ as a function of /t)~.
From:

/t)~~~
=

(~)
~

(/t)~ + 54) 54 (12)
4

and:

nml~~(n)
=

nml~~~~(3) +
~~~

for n =
3.2~, q =

0,
,

i (13)

we finally obtain for > q;

~~~~~~~~ ~Îfl
~ ~~~

~
~Î

~ ~
Î~ÎÎÎÎ Î Î

'
~ ~'~~' ~ ~' '~ ~~~~

As < 3nq/2 >= 18, the average over n
of the right term of equation (14) (3nq/2 6n)

is -18 while the average of the left term is /t~~ + 54: the Weaire sum rule is verified as

required. Relation (14) bears some resemblance to the Aboav~weaire law as it is comprised
of a term which indudes /t2 and of a term almost linear in n with a slowly varying nLog(n)

term. Moreover, in usual non~fractal cellular structures, the fractal dimension is r =
i and

the left term would indeed become independent on n. The exponent of n m the left factor,

T -1, suggests that trie latter term shows a relation to sections of cell sides by lines thrown at

random on the structure.



1426 JOURNAL DE PHYSIQUE I N°11

4. Discussion and Conclusion

The variances /t2 of Pin)
are infinite for the aforementioned fractal cellular structures. It does

net mean that such fractal structures are necessarily more disordered that structures with

finite /t2. Trie randomness of D~m (Section 2.1) is indeed quite similar to the randomness of

the initial structure So even though So may have a finite /t2. As discussed previously, structure

D~m may be described as a structure So whose vertices are decorated by D~g structures. The

algorithmic information content or the complexity of an abject S is the amount of information

necessary to describe S sulliciently precisely for it to be constructed [22]. The complexities of

So and of D~m do net differ much as the algorithmic content of the perfect structure Dsg is

clearly small. The random fractal structures constructed by the method descnbed in Section

2.2 are in that sense more "complex" than Dsg. A convenient measure of topological disorder

m structures with infinite vanance remain still to be defined.

The Pin) distributions of cellular structures generated by computer simulations cannot have

infinite variances. Large P(3), /t2 and /t2P(6)~ values may constitute signs of an underlying
fractal structure. Probabilities of three-sided cells as large as

1/3
are for instance reported for

multiple Potts models on dynamical random graphs with trivalent vertices [10]. Supplementary
indications may be obtained from the variations of Pin) and of /t2 when all three-sided cells are

replaced by trivalent vertices and when the latter transformation of the structure is iteratively
applied.

Although fractal cellular structures form a new family of structures, we argue below that

they constitute an inevitable end for 2D structures when topological disorder becomes larger
and larger. The following question may finally be asked for the dass of homogeneous struc-

tures with finite variances: what is the most disordered structure still consistent with the

quasi-universal relation /t2P(6)~
=

constant of the order of 0. là which exhibits a smooth and

unimodal distribution Pin)
Although we bave net solved trie latter problem, we propose below a reasonable guess of trie

evolution of 2D structures when /t2 increases. A natural way of increasing /t2 more and more

m a structure with a smooth and unimodal P(n) and with P(3) # 0 is to keep on increasing
P(3). It is therefore important to determme the maximum acceptable value of P(3) for any

kind of space-filling structure whose vertices are trivalent if moreover each cell is constrained to

share at most one side with any cell and no side with itself. The maximum number of 3-cells m

a structure is obtained when every cell has a maximum number of three-sided neighbours. As

a 3-cell carnet share a side with another 3-cell, the maximum number of neighbouring 3-cells

of a n-cell with n > 3 is (~j for
n > 5 but only for n =

4, where [~] is the integer part of ~.
2

Relation (1) yields:

M3(3)
=

0, M3(4)
= =

A34P(3), M3(n)
= (~j =

A3»P(3)
n 2 5 (15)

As obviously < A3» >= 3 [2-5], the value of P(3) in such structures is obtained from:

~~~"~
"

~
"

ù
Î& l~~~~

~~~~~
~ ~~~~ ~ ~~

Î
~~~~

Finally:

P(3)
=

~
2P(4) +

f
P(2k + 1) (17)

~ ~
k=2

Relation (17) proves that the maximum value, P(3)
=

2/3, is only reached in structures with

P(4)
=

P(2k +1)
=

0 (k > 2) that is m the decorated structures described in Section 2.1.
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A)

~
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Fig. 6. A) The transformation of a 4-cell into a 4-4-4 -4 chain. B) The increase of the number of

5-cells by fragmentation of
an

initial 6-cell.

cc

We notice that a distribution which maximizes the entropy -£P(n) Log(P(n)) subject to

»=3

the sole constraints: < n >= 6 and < (n 6)~ >= /t2 is a discretized and truncated Gauss

distribution [2,5, 7] which exists only for /t2 < 12. In trie latter case, the maximum value,
P(3)

=
0.25, is reached for /t2 =

12. A smooth distribution P(n), which exhibits a mode at

n =
3 or at n =

4 and which decreases too rapidly with n cannot indeed reach large values of /t2
By a lever effect, trie constraint < n >= 6 prevents P(3) (and P(4)) from being toc large. This

explains the change from an exponential to a power law variation of P(n) which is observed

for large values of /t2 18]. Such a power law decrease also holds on the average as expected
(Eqs. (5) and (7)) for the fractal structures discussed here. The pre,,tous arguments already
suggest that 2D structures are unavoidably driven to fractal structures when /t2 increases

mdefinitely. Three- and four-sided cells play a major rote in the expected evolution because

of the constraints acting on cells. Simple drawmgs immediately show that the repartition of

3-cells and of 4-cells are correlated as the latter cells can form at best isolated 3-4 pairs. In

particular, any "molecular" chain 3-4-4- ..-3 is forbidden whatever its length [4].
Other scenarios, although somewhat "pathological", may be proposed to increase /t2 indef-

initely: the proportion of 4-cells or the proportion of 5-cells may be made as close to 1 as

desired by transforming 4-cells into chairs of 4-cells of any length (Fig. GA or by fragmenting
iteratively 6-cells mostly into 5-cells respectively (Fig. GB etc... In the latter structures, the

distributions Pin) do not exhibit the general characteristics of usual Pin) with finite variances:

they are neither smooth nor unimodal. Fractal structures are also produced from an initial

structure by various other transformations which involve for instance 5-cells.

A fruitful connection may be established between the problem raised in the present discussion

and the problem of site percolation on fully triangulated planar graphs [23-25]. The critical

percolation probability of fully triangulated graphs is pc =
1/2 according to a conjecture of

Sykes and Essam [23]. This conjecture does not holà for ail graphs (see for instance [24] but

it is valid for statistically homogeneous and isotropic fully triangulated graphs [25]. Counter

examples with pc =
1 were indeed constructed [24]. If trie sites of the dual triangulated

structure of a given cellular structure which belong to three triangles are colored, percolation
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will never occur as the constraints acting on cells would otherwise be violated. It would be

nevertheless possible to define a kind of measure of the doseness Dp of a given structure to

percolation by determining the extra concentration of randomly colored sites which results in

percolation (Dp is for instance 1/2 for /t2 =
0). We intuitively see that trie smaller is Dp or

trie larger is P(3), in particular trie doser P(3) is to 1/2, the more dillicult it will be to build

homogeneous repartition of cells. The transformation of homogeneous triangulated graphs into

triangulated graphs with much larger values of pc will allow to increase more easily the number

of 3-cells and of 4-cells of the dual structure. In this respect, it is worth observing that the

dual triangulations which are associated with chains of 4-4 4 cells (Fig. 6A) are precisely
the building blocks of one of the counterexample given by Wierman for which pc =

1 (Fig. 3

of Ref. [24] ).
The overall evolution of "usual" space-filling 2D cellular structures with n > 3 (and

P(3) # 0), which is driven in fine by the constraints that we have imposed on cells, may
finally be summarized in the following schematic way when /t2 increases. Correlations in the

repartition of cells (/t2 £ 5) tend first to decrease as shown by the ratio al1t2 which decreases

and becomes close to the ratio -1/6 (Sec. l) expected for an uncorrelated distribution of cells.

The evolution to a distribution as random as permitted by the constraints seems to be the

rule for values of J12 typically larger than about 10. If j12 steadily increases, a transformation

to more pathological structures with multimodal Pin) and fractal charactenstics is ultimately
unavoidable. The latter evolution, has not been characterized in detail although some possi-

ble transformation paths (for instance local bursts of nudeation of 3-cells at vertices, chains

of 4-cells,..) have been described. The problem of a transition from non-fractal to fractal

cellular structures, a question first asked by Rivier (personal communication), is worth being
investigated using the random vertex decoration method defined in the present paper.

Further studies are needed to know if equation (14) is a call for an extension of the Aboav-

Weaire law which would indude fractal cellular structures or if its form with terms m n
and

in n~-~ is only valid for the particular structure under consideration.
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