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Abstract. In this paper we
develop further

a
metl~od recently introduced by one of

us

to study metastable states in spm glasses. We consider
a

'potential function', defined as the

free energy of a system at a given temperature T constrained to have
a

fixed overlap with
a

reference configuration of equilibrium ai temperature T'. We apply the method to the spl~encal
p-spin glass, and to some generahzation, ofthis model m the range of temperatures between the

dynamic and the static transition. The analysis suggests a
correspondence among local minima

of the potential and metastable states. Tl~is correspondence is confirmed studying the relaxation

dynamics at temperature T of
a system starting from an initial configuration equilibrated at a

diiferent temperature T'-

1. Introduction

The off-eqmlibrium dynamics of glassy system is a fascinating subject. Experimental [ii and

numerical [2] evidence show tl~at ont of equilibrium pl~enomena persist in glasses for tl~e largest
reacl~able observation times.

Recently a partial comprehension of these phenomena in mean field has been achieved [3-5].
The phenomenon of aging is described in the mean field theory as an asymptotic stationary

state, where time translation invanance and the fluctuation dissipation relation do not hold.

This regime turns ont to be dosely related to the nature of the static glassy transition. The

models studied up to now can be divided into two classes according to their pattem of replica

symmetry breaking IRSB) [6]. If the RSB is "continuons", i e. if the Parisi order parameter
function qi~) is continuous, then tl~e static and the dynamic transitions occur at the same

temperature. The asymptotic state is sucl~ tl~at expected values of quantities which depend
only on tl~e configuration of tl~e system at a smgle time ie.g. the energy or tl~e distribution

of tl~e magnetizations) tend to their Boltzmal~n-Gibbs values. If instead tl~e Pansi function

is discontinuous, e-g- a single step function, the dynamic transition occurs at a temperature
higher than the static one, and the quantities mentioned above tend to limits different from

their canonical averages. However, a careful analysis m the spherical p-spin mortel [3] has shown

how this hmiting values can be related to the values of the same observable m a particular
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dass of metastable solutions of the TAP equations, with free energy l~igher than tl~e ones

dominating the partition function. It tl~en taises spontaneously the question whether it is

m general possible to relate tl~e properties of tl~e asymptotic dynamic state to some static

properties of tl~e systems.
Tl~is paper constitute a step forward in tl~is direction. Ouf basic tool of investigation will be

a "potential function" introduced in [7], defined as tl~e minimal work needed to keep a system
at temperature T at a fixed overlap witl~ a typical equilibrium configuration of tl~e same system

at a different temperature T'. Tl~e models
we cl~oose to study are a family of spl~erical spin

glass models which present a one step RSB. Tl~e most studied representative of tl~is dass is

the spherical p-spin model. This model has tl~e remarkable land atypical) property tl~at tl~e

order in free energy of tl~e solutions of thé TAP equations do not vary witl~ tl~e temperature.
It is interesting to consider more general models where the order of the solution depends of T,
and in tl~e spin glass phase tl~e low-lying states at different temperatures are not correlated.

The basic tl~ese of this paper is that tl~e minima of tl~e potential are related to imeta)stable
states- To confirm tl~is point we study tl~e dynamics at temperatiire T starting from a config-
uration that is perfectly tl~ermalized at a different temperature T' at the initial time.

Work on subjects related to the ones treated in this paper has been very recently achieved

by R. Monasson [8]. We thank him to make us aware of some of his results prior to publication.
Applications of'potential' mortel to Ising spm has also been done by [9].

The organization of the paper is the following: in Section 2 we present a short summary

of the static and dynamic properties of the model. This section is part review, and part new

elaboration. Tl~en in Section 3 we introduce and discuss some basic properties of tl~e potential
function. Section 4 is devoted to tl~e study of the potential for the spl~encal model. In Section 5

we present tl~e dynamic tl~eory of tl~e evolution of a system at temperature T starting from an

equilibrium configuration at temperature T'. We finally sketch our conclusions.

2. Trie Model

Tl~e spl~erical p-spin model [loi is defined by tl~e Hamiltonian

Hplsl
=

£ J~i,..,~,,szi -si,, (i)

~i<i~<...<~,,

wl~ere tl~e "spms" s~, =
1,

.,

N are real variables subjected to tl~e constraint il IN) £~ s)
=

1,

and tl~e couplings J~,
~

are mdependent Gaussian variables witl~ variance: (~
=

~~

" i>. .>~» 2NP~
It can be observed tl~at sucl~ model is

idynamically and statically) equivalent to a model in

wl~icl~ tl~e functional form of tl~e Hamiltonian is not specified exphcitly, but ratl~er assumed to

be a random Gaussian function of tl~e spin configuration witl~ correlation function given by

HiSlHiS'l
= N)qi~> 12)

+,~> = s
s' IN

=
il IN) £~ s~s[ is tl~e overlap among tl~e two configurations s and s'. One

can tl~en easily generalize tl~e spl~erical model to a random Hamiltonian [11,12] witl~ arbitrary
correlation functions:

HiSlHiS'l
=

Nflq~,si 13)

Polynomial functions fiq) with positive coefficients correspond to Hamiltonians represented as

a sums of independent monomials of the kind il). Depending on the function f the model can

undergo either 'continuons rephca symmetry breaking' or 'discontinuous' one. If the function
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g(q)
=

f"iq))~~/~ f"'iq) is monotonically increasing with q in thé mterval [0,1], we are in the

first case and we find a low temperature phase characterized by a continuons Parisi function

qi~)il). If otherwise g is monotomcally decreasing one finds qix) to be a single step function

in the spin glass phase. Throughout this paper, if not stated otherwise, we will consider this

second case; we will also always consider functions f such that f'10)
=

0. Here the asymptotic
off-equilibrium dynamics and tl~e statics lead to different results as far as tl~e expected values

mentioned in tl~e introduction are concemed. Notably it is found for tl~e energy at temperatures
less tl~an a dynamical critical temperature TD° lim EDyn(t) > EGibbs, wl~ere EDyn(t) is tl~e

i-m

energy computed in the infinite volume limit starting from a random initial configuration
For further reference we give l~ere the result of standard static and dynamic analysis for tl~e

generalized spl~erical model.

2.1. STATICS. From the standard study of tl~e eqmlibrium measure of the model by means

of tl~e replica metl~od it is found a free energy functional given (in standard notations) by tl~e

one step RSB form

F
=

-)
log Z

~~~~~~
~~ ~~~~~~~ ~ ~~°~~~ ~~

~Î ~°~
l
-Îl ~)q)

~~~

wl~ere q and ~ are variational parameters witl~ respect to wl~icl~ F is to be maximized. In

tl~e l~igl~ temperature phase q is equal to zero, and it is discontinuous at tl~e transition point
T

=
Ts, wl~ere ~ =

l and are verified tl~e equations:

àlfiq) + iogji q) + q =
o pjf'jq) fi

=
o. 15)

2.2. OFF-EQUILIBRIUM DYNAMICS. One studies l~ere the Langevm dynamics with random

initial condition. Tl~e system is analyzed supposing tl~at tl~e tl~ermodynamic limit is taken

be fore tl~e infinite time limit, so as to prevent fuit equilibration m presence of a phase transition.

Tl~e relevant objects of investigation (order parameters) tutu ont to be tl~e correlation func-

tion Cit, t'
=

1IN £ s~ it)s~ it'), and its associated response function Git, t'
=

1IN £ ~~~ ~~~

~ ~ ôh~it')
il~ere and in wl~at follows t > t'). One finds tl~en the set of coupled equations:

ôGjl'~') m
-vjt)Gjt, ti) + j~ ds fi'jcjt, s))Gjt, s)Gjs, t')

,

j6)

ô~jl'~') m
-vcjt, t') + /~' ds fi jc(t, s)) Gjti, s)

+ )~dS f"lait,S))Glt,S) GIS, t')
,

vit)
= j~ ds f'jcjt,s)) G(t, s)

+ /~ ds f"(c(t, s))Gjt, s) Gis, t) + T. (7)

(~) It has been observed in [12] that tl~e model with f(q)
=

(1/2)(q~ + q~) has the same critical

bel~aviour the SK spin-glass.
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Following tl~e analysis of [3] for the p-spin model, one finds tl~at for large times, two regimes

are important: a first one m wl~icl~ one takes tl~e hmit t,t'
- cc fixing to a finite value tl~e

difference r =
t t' and a second one wl~ere tl~e limit is taken fixing tl~e ratio à

=
h(t')/h(t).

h is a function tl~at at present tl~e tl~eory is not able to specify.

.
In tl~e first regime tl~e correlation function decays witl~

r
from tl~e value one to a finite

value q idynamic Edward-Anderson parameter) and tl~e fluctuation dissipation relation

~~"~~~~ ~ÎÎ~ ~ ~~~~~~~'

.
In tl~e second regime one finds a non time l~omogeneous form Cit,t')

=
Cih(t')/hit)),

witl~ C(à) monotonically increasing witl~ à and C(1)
= q and C10)

=
0. In this regime

the response function is equal to TGit, t')
=

~~~~~'~~~. The constant ~ is found to be
ôt'

a number between zero and one m the low temperature phase. Tl~e parameters q and x

are solution of tl~e equations:

~ =

~
l~l'lll~ il fl~f"i~)11 ~)~

-
i 18)

Tl~e dynamic transition is marked by tl~e condition ~ =
l at T

=
TD, and one can cl~eck

tl~at TD > Ts. The first of equation 18) is equivalent to tl~e variational equation ôF/ôq
=

0

in statics, wl~ile tl~e second one coincides witl~ tl~e condition tl~at the 'replicon eigenvalue' of

the fluctuation matrix m replica space is equal to zero. We will refer to this as tl~e marginality
condition.

2.3. TAP APPROACH. For completeness we mention a third approach that is useful to

investigate the system. This is the one of the TAP equations, in which one writes mean field

equations for the magnetizations for fixed disorder. Using the diagrammatic approach of [13],
based on the skeleton expansion introduced in [14], one easily finds the TAP free energy

function:

FTApim, qi =
jHimi iog(i q) (i/(i) /(q) (i q)/~(q)1 (9)

where the variables m~ represent the average magnetizations and the self-overlap q is given by
1IN £~ m). The physical states are solutions of variational equations bath with respect tu the

m's and q.

In the p-spin model it was found useful [15] tu rescale the variables tu

m~ -
fis~

j ~j s)
=

1. (10)

It then follows tram il that

H[m]
=

qP/~H[s] iii

The points of extreme of FTAP with respect to the s~, as well as their order in free energy do

not depend on temperature ils]. Let us stress here that this is a highly non generic property
which depends critically on the homogeneity of the Hamiltonian il ). In general we can expect
the order of the solutions to depend on temperature. The situation in which this happens for

trie lowest states is usually called chaotic
m the hterature [16], and has been recently fully

demonstrated in the SK model Ii?i A complete analysis of the TAP equations is at present

missmg. In Section 4 we will find evidence for chaos with respect to temperature in sphencal
models with the method we propose m the next section.
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3. Trie Method

We now introduce the "potential", Dur basic trot of analysis in this paper.

We consider an arbitrary configuration of the spins s, drawn as a typical realization of the

canonical probability distribution at temperature T', Pcan [si =
exp(-fl'H[s])/Z(T'). We cari

then compute the cost in free energy at a temperature T (in general different from T') ta keep
the system at a fixed overlap fi

= q~,a with s; namely

V
=

~
log Z[s; ji] FIT]; (12)

Z là fi] =
du exp (-flH[a] à (fi qs,a (13)

where FIT] is the free energy without constraint. As Z in (13) is a sum of positive terms, V in

il 2) is a positive quantity. It is reasonable ta suppose that V in addition ta being self~averagmg
with respect ta the quenched disorder in the Hamiltonian, is also self~averaging with respect

ta the probability distribution of the reference configuration s. In this problem the spins s~

are quenched variables on the same fort as the random Hamiltonian itself. In this respect the

present method allows us tu extend and improve the analysis of reference [18], where different

'real replicas' coupled in a symmetric way were considered.

We need then, in order ta compute V, tu perform the average over the Hamiltoman and the

reference configuration s.

NV
-

ù /
dS exP (-fl'H [Si iT1°~ zis. Pi FIT)) i14)

This average can be dune with the aid of the replica method. We found two strategies which

consistently lead tu the same results. The first une is based on the formula

~~ ~ÎÎà ÎÎÎÎ ÎR ~~ ~~~ ~'~~~~ ~~~~~~ ~ ~~~~

~

One then evaluates the average for integer R and n and obtains V by analytic continuation.

The starting point of the second strategy is the formula

NV
=

-T lim lim ~j
exp (- fl'H[s] Z[fl']"-1 ~~~'~~

(16)
n-o m-o

În

and again one performs an analytic continuation from integer n and m. The use of one

procedure instead of the other is mamly a matter of taste. We will sketch the first stages of

the formai manipulations for bath the procedures, and we will treat Dur model with the second

one.

Let us start with the first procedure. The replicated partition function is:

zÎ"'~~
=

/
dS~,~ exp

fil É
HIS~>~l + fl

É IS~,~lj à (~ SÎ'~SÎ'~
fij

Ii 7)

a=1 a=1 r=2 a=1r=2
z

One can then perform the average over the distribution of the Hamiltonian, and introduce the

order parameters:

Qla,r),16,s) " fi
~j SÎ'~SÎ'~ (18)
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The logarithm of Zl'~ divided by N is then found ta be equal ta the saddle point over the Q's
of

~ ~$j f
fl~fl~ f(Q(a r) 16 s) + Tl log Q (19)

2
~

' ' ' 2

where fl~
=

fl' for
r =

1, fl~
=

fl for
r =

2,..
,

n.
As usual one needs a scheme ta perform the

analytic continuation in the number of replicas.
With the second procedure, one has

Zj"'~~
=

/
dsa

/
da° exp

fl' £ H[sa] + fl ~j H[a°] fl à £ s)a/ Njl (20)
~ ~ ~

a=1 OE=1 a=1
z

After the average over the distribution of the Hamiltonian is performed, one introduce the

order parameter matrix:

Qab
=

j Lsisi 121)

~

~aÙ fi OEz
~z (~~)~

~
~

z

Pan
"

j £SÎ~I 123)

z

with a, =
1,.

,
n and o, fl

=
1,.

.,
m. Combining the order parameters m the single (n + m) x

in + m) matrix

Q=( jÎT j~) 124)

one finds

i,n i,n i,n

log Z)"'~~
=

~j fl'~ f(Qa b) +
~j fl~ f(Rn p) + 2 £ flfl' f(P~

n
+ Tr log Q. (25)

~ ~
a,b OE,p

~

a,a

~

Observing that the constraint implies Pi,«
"

fi for any a =
1,..,m, a sensible ansatz is

to assume that the matrix P has elements P~,n e P~ independent of o for any a.
A simple

computation based on the formula Tr log(Q)
~

log f dx exp(-xox)) reveals the identity:

Tr log[Q]
=

Tr log[QÎ + Tr log[R Ai (26)

where A is a m x m matrix with ail the elements equal to An,p
=

£~
~

P~(Q-1)~bPb.
Note that with this ansatz for P, Trlog[QÎ is of order n, while Trlôg[R Ai is of order m.

Su, neglecting terms of order m one finds that trie equation specifying the matrix Q is just

fl'~/~ioabj + iQ~~)ab
"

° 127j

which is independent of P and R and is just the saddle point equation for a system at equilib-
rium at temperature T'. This is a good consistency check for the ansatz: the

s system, which

is at equilibrium, should not be affected by the a system. The variational equations for P and

R are respectively wntten as

-2fl
~~

=
flfl' f'(P~) + ~j(Q~~ )abPb +

~j ((R A)~~)
~ =

0 (28)
~~~

b n,p
"

-2fl
~~

=
flfl' f'(Rap) + ((R A)~~)

~ =
0 (29)

ôRaP "
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For a =
1 the I.h-s. of equation (28) represents the derivative of V with respect to ji and has

not to be equated to zem. We note that for jl
=

0 the solution to (28) is simply P~
=

0 for

any a. Une has then ôV/ôji
=

0 and the potential takes its minimal value V
=

0.

To solve the equations (28,29) for n, m -
0, it is of course needed a continuation scheme for

the various order parameter matrices. For Q the usual hierarchical ansatz [6] has to be em~

ployed. A sensible choice is to take also the matrix R of the hierarchical form (with associated

Parisi function r(~)), and the vector with components P~, as the first fine of a hierarchical

matrix Pm~ associated to the diagonal element ji and to a function p(~). Although this general
form cari be of interest for many problems, notably whenever RSB is necessary to find the

free energy, we will see later that a rephca symmetric ansatz will be enough for the problem
addressed in this paper, at least for the dass of models we consider.

In the next section we will devote a lot of attention to the points of minimum of the po-

tential V(ji). The basic theses of this paper is that the minima of the potential correspond to

metastable states.

Before leaving this section we just comment on the fact that in the case of continuons RSB

transition where the probability distribution P(q) is different from zero m a whole interval

qm;n < q < qm~~, we checked that as it has to be expected, the potential is flat and equal to

zero in the whole interval [qm;n, qmax].

4. Trie potential in trie Intermediate Regime

In this section we study the properties of the potential when the system s is in the high tempera-

ture phase, and the order parameter matrix is replica symmetric and given by

Q~,b
" ô~,b. According to the picture proposed in [13, là,19] for TD < T this replica symmetric

phase does trot descnbe an ergodic phase, but a situation m
which there are an exponentially

large number of states, with zero overlap among each other [19]. The triviality of the Parisi

probability function P(q)
=

à(q), implied by the replica symmetric solution, is due to entropic

reasons. It is then natural to suppose for P and R a replica symmetric structure with

~a
"

ôa,lP

Ra,b
" ôa,b + Il ôa,b)T. (3Ù)

The insertion in (25) grues for the potential

~
fl

~~~'~~~'~ ~~~~~~ ~ ~°~~~ ~~ ~
Î -Î

~~~~

where r is the only parameter with respect tu which the potential has tu be maximized. The

maximization equations (28,29) reduce to the single equation

~~~'~~~ (Î
)~

~~~~

It tums ont that for any concrete form of the function f that we have analyzed that this

equation admits a unique solution in the range of fl' where the rephca symmetry is trot broken.

As we stressed in the previous sections the points of extremum of V with respect to ji are of

particular importance in our analysis, the minima correspond to stable or metastable states m

which the system can be trapped. Let us then wnte the equation that specifies the points of

extremum:
~

~~'~'~~'~
l r

~~~~
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Fig. 1. The potential function m
the p =

3-spin model for T
=

T' and various temperatures.
From top to bottom fl

=
1.59, fl

=
flD

#
1.63, fl

=
1.66, fl

=
fis

"
1.70. Observe that

a minimum is

first present ai the dynamic temperature and the value of the minimum of potential ai the statical

temperature is zero.

We stress agam that trie point r =
ji

=
0 is always a solution of (33,32) and is always an

absolute minimum with V
=

0.

Let us start our analysis considering trie case of equal temperatures T'
=

T. In this case

trie qualitative features of trie potential are largely model independent. In Figure 1 we show

trie picture of trie potential for four different temperatures in trie case f(q)
=

q~/2, similar

plots are obtained for arbitrary functions. From top to bottom, they represent trie potential at

temperature higher thon TD, equal to TD between TD and Ts, and right at Ts We can see from

the figure that for T > TD the potential is monotonically increasing and the only extremum of

the potential is the minimum at jl
=

0. At the temperature TD where the dynamic transition

happens, the potential develops for the first time a minimum with ji
= r. It is interesting to

observe that the energy in this flex point (2) is equal to the asymptotic value of the energy

m the off equilibrium dynamics. The same is true for the parameter r which tums ont to be

equal to the dynamic Edward~Anderson parameter.

The condition for the potential of having a flex coincides with the marginality condition.

Indeed the flex imphes a zero eigenvalue m the longitudinal sector and at ~ =
l the rephcon

and the longitudinal eigenvalues are degenerate (see for example the formulae m reference [20] ).
This marginality condition is well known tu give exact results for the transition temperatures

in p-spin spherical models. It aise give accurate results, compared with the Monte Carlo, in

the case of the Ising model with random orthogonal matrix [20] (ROM model).
We have observed that in general more than one minimum can be present in the potential.

In the p-spin model it happens that two minima develop at the same point. The rightmost

one, that we will call primary is the one with ji
= r, while the other, secondary, has ji < r. For

temperatures smaller than TD the minima have a finite depth, 1-e- are separated by extensive

barners from the absolute minimum.

The pnmary minimum is easily interpreted. There the system denoted by s is in the same

pure state as the system a. In the region Ts < T < TD the number of pure states is expo-

(~) See the followmg for the definition.
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nentially large in N: tif
=

e~~(°~) Consequently the probability of finding two systems in

the same state is exponentially small and proportional to e~~~(°~). Trie free energy cost to

constrain two systems to be in the same state is then proportional to the logarithm of this

probability, namely we have

Vpr;m~ry =
TZ(T). (34)

Coherently at the statical transition temperature T
=

Ts one finds Vpr;mary =
0. The quantity

L bas been computed for the p-spin model in reference il 3] as the number of solution of the TAP

equation with given free energy and coincides with our calculation. The secondary minima,
could also be associated with metastable states, but at present we do trot have an interpretation
for them. This conclusion on the equivalence of the potential with the number of solution of

the TAP equation hold also in the ROM [21] and it has been argued by in reference [8] on

general grounds.
The study of the poteniial for temperatures smaller than Ts would require to take into

account RSB effects, which would complicate the analysis. However it is physically dear that

the shape of the potential in that region it is net different qualitatively from the une at T
=

Ts
It has a minimum where r =

ji are equal tu the Edwards Anderson parameter and the value of

potential is zero.

In the case of different temperatures T # T' the properties of the potential depend on the

presence or absence of chaos with respect to temperature changes. The primary minimum

of the potential, if it exists, reflects the properties of the states which are of equilibrium at

temperature T' when they are followed at temperature T. In the p-spin model, where the order

of the levels do trot depend on the temperature and each level has temperature mdependent
complexity, the value of the potential in the primary minimum can be related to the properties

of the solutions tu the TAP equations when they are followed in temperature. Denoting by
FTAP(T, E') the free energy of the TAP states that dominate at temperature T' when they are

followed at temperature T, we find:

Vpr;mary =

-TZ(T') + FTAP(T, E') F(T) (35)

where F(T) is the free energy at temperature T and FTAP(T, E') is the TAP free energy at

temperature T of the states which are of equilibrium at temperature T'. We also note that

q is equal to the EA parameter of the aforementioned TAP solution. Of particular interest is

the case
T'

=
TD where the primary minimum is marginally stable for any value of T and has

energy, defined as Epr,mary
= ~(fl[Vpr;mary F(T)]) and EA parameter equal to the these

fl
of the off-equilibrium asymptotic state. In Figure 2 we show the potential for p =

3 at fixed

fl
=

(flD + fis )/2 and various values fl'. For a given T' the minimum exists in the range of

temperatures for which the corresponding solutions to the TAP equations exist.

In the case of mortels with an inhomogeneous Hamiltoman, the situation for T # T' is

different. We dia trot try a systematic study of this case and we concentrated on the case of

a 3 + 4 spin mortel with f(q)
=

il /2)(q~ + eq~). The first thing that we note m
this case is

that the horizontal flex present for T
=

T'
=

TD disappears as soon as, for T'
=

TD we take

T # TD. For T' < TD it exists an interval of values of T around T' in which the minimum

exists. In Figure 3 we display the potential of the 3+4 mortel for fixed T' < TD and various

values of T.

Une might wonder if the point of horizontal flex of the potential are associated with the

dynamic state as it happens m the p-spm model. Tu do that we have looked at values of T

and T' such that the marginality condition fl~ il r)2 f"(r)
=

0 was verified in the minimum

of the potential. In that points we found that the minimum has a finite depth, and the energy
dues net coincide with that of the dynamic states.
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Do,

rocs

o

0 Dl 02 03 04 05 06 07

Fig. 2. The potential for the p =
3-spm model and different temperature. The

curves are
drown

for fl
=

fis and, from top to bottom, fl'
=

1.59, fl'
=

flD #1.63, fl'
=

1.66, fl'
=

fis
#

1.70.

0 Dl 02 03 04 05 06 07 08

Fig. 3. Trie potential for f(q)
=

1/2(q~ + q~) for fl'
=

(flD + fis)/2
=

1.27 and fl
=

1.21 (dots)
p

=
1.31 (fuit fine) and p

=
lAl (dashes).

It is tempting tu interpret trie minima of trie potential as trie properties of equilibrium TAP

solutions at temperature T' when followed at temperature T, we are however very cautions

on this point due to the possibility of crossing of the solutions in free-energy. Let us just
mention that this should be valid below the static transition (T' < Ts) where the lowest TAP

states dommates the partition sum and where there can not be crossing. Chaos with respect to

temperature implies that the free energy of these solutions at temperature T will be typically
higher than that of the equihbrium solution. One could expect that the minimum of the

potential has a value higher than zero for any T # T'. We expect then that Vpr;mary(T, T')
m

(T T')~~, with integer k.
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5. Dynamics

We study now the relaxation dynamics at temperature T of a system starting its evolution

at time zero from an equilibrium configuration at temperature T'. We start from the usual

Langevin equation for the mortel

()~~
=

-/t(t)s~(t) (~ + i~~(t)

(~~(tj~~jt'jj
=

2Tô~~ôjt t'j (36j

As usual the time dependence of /t(t) is chosen to enforce the spherical constraint (s(2
=

N

at any time. The dynamic generator of the correlation function [22], averaged over the initial

condition is

exp

j~
dt/ ~ii~it/)is~it') +

([
+ ~tit)s~it') +

ii~it/)ij
137)

~

The term 1/Z(T') obliges us to introduce rephcas to perform the quenched average. Une

possible way is to start from the average of the logarithm of ZDyn and rephcate the system

at each time [23]. We follow here a different route, usmg the relation 1/Z
=

lim Z"~~ and
n-o

replicating only the system at time zero. So, "replica number 1" will be present at ail times,
while replicas 2 to n

will only be present at time zero. We will denote as
s](0) the spins of the

a~th rephca at time zero. Coherence would require the notation s)(t) for the value of the spins

at time t; we will use instead s~(t). Using standard manipulations to average over the disorder

we find

zDyn
#

/
DSD@ exP l~ fl'~fisa10) sb10)/N) ~ i10)~j

~

a,z

exp l~ dt' ~j [ (t' [ib~(t') + Ti[(t')]

zlt
exp dt'dt" f'(s(t') s(t" )IN) ~j i[(t')i[(t" +

~

Î
~

f"isit') Sir")/N)Sit') iÉit")/N ~ ôzit')Szit")j

eXP

l~ ~j /~ dt'l'(S(t') Sa (Ù) /N) ~ ôz(t')S~(Ù)j (38)

a
°

z

Introducing the coi-relation function C(t',t")
=

s(t') s(t")/N, the response G(t',t")
=

s(t') i§(t") IN (t' > t") and the correlation with the initial condition C~(t')
=

s(t') s~(0) IN,
and observing that they are non-fluctuating quantities for N

- co, we recognize in (38) the

dynamic generator functional of a system of N independent. spms subject to the Langevin
equation

()~~
=

-/1(t)Sz(t) + /~ dt'f"(C(t, t'))G(t, t')Szlt') + fl'
f

f'(Ca(t))SÎ(°) + Bz(t)
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jB~jt)B~ jt')j
=

2Tô~~ôjt t') + ô~,~
l'jcjt, t')) (39j

satisfying the self consistency equations:

cjt, t')
=

s(tj sjt'j IN

G(t, t')
=

s(tj iàjt') IN t > t'

c~jt)
=

sjt) s~jo) /N. j40)

It is easy to check that the "equilibrium part" in the action, involving the parameters Q~b
=

s~(0) sb(0) IN is not affected by the dynamics and, as it should, describes correctly the equi~
librium at temperature T'. From the Langevin equation one derives the dosed system:

~~jl'~'~ =
-~(tjG(t, t' + j~ às Ill (c(t, s)jGjt,

s
)Gis, t'

,

~cj(>
~'~

=
-~jtjcjt, t'j + /~' às /ijcjt, sj) Gjt', sj

+ /~ às /i'(c(t, sjjGjt,sj cjs,t'j + fil ~ l'jc~jtjjc~jt'j,

~j)~~
"

~~i~)~ai~) + /~ d~ /~'i~(~> ~))Gi~, ~)~a18j +
fl'L l'i~bi~))Qa,b

~jtj
=

/~ às 1'(c(t, sjj Gjt, sj + /~ às /"(c(t, s)jGjt, sj cjs, t)

T + fl' fl Il jc~ jtj jc~ jtl, j41)

with the conditions:

Cll~)
"

Cl~, o) Calo)
"

QI,a (42)

These equations ailler from the usual off-equilibrium equations by the presence of terms which

couple with the configuration at time zero. The matrix Q~,b has the usual hierarchical form,
and C~(0) is its first row. It is then natural to assume that C~(t) continues at any time to

have the structure of the first row of a hierarchical matrix. Once this ansatz is plugged in (41)

we get a system of equations which admits for any time a unique solution.

The basic question that can be answered with the aid of these equations is whether starting
from equilibrium at temperature T' the system equihbrates m a metastable state, or it ends

up in an aging state. In this paper we will Orly consider non-aging solutions tu the equations
(41). We leave to future work the investigation of possible aging solutions.

We look then for solution where no aging appears, the correlation functions C(t, t') tends

for infinite times to the homogeneous function C~~(t t'), and the response function is related

to C~~ via the fluctuation dissipation relation: G~~(T)
=

-fl~~~~~~~ In the high temperature
àT

regime C~(0)
=

0 and the equations comcide with the off equihbrium ones. Interesting phe~

nomena appear for temperature T' < TD. Let us study the case Ts < T' < TD. Here we have

Q~,b
= ô~,b, a bit of reflection on the equation for C~(t) reveals that the replica structure of

C~(t) is at any time of the kind

C~(t)
=

ôi,aC(t, 0). (43)

Using then the notations:

ji
=

lim C(t, 0)
t-m



N°11 RECIPES FOR METASTABLE STATES IN SPIN GLASSES 1413

T "
Îim Cas(T)

T-m

/tm =
lim /t(t) (44)

one finds for C~~(T) the equation

~~j)~~ "
~oecasi~) + flil'i~)~asiTj l'i~)~i

fl /~ dT1'(Cas iT + T'jj ~~jj~'~ + fl'> l'j>j. (45j

While jl, r, /tm are solution of the following system

-J~m# + flflJ~mfl'f'lfl)
=

o

~/LoeT + fl~lf'll) f'lT)1 + flll Tj l'jTj + fl'> l'j>j
#

~/Loe + T + fllf'(1) f'(TlTl + fl'>f'(fl)
"

o. (46)

Eliminating /tm we find the remarkable result that the equations specifying r coincide with the

equations (32,33) of Section 4 for the points of extremum of the potential.
We have seen in Section 4 that depending on the form of f and on the temperatures T, T'

solutions to (46) can exist or not. In the case in which such solutions do not exist, we easily
condude that for long times an asymptotic aging regime sets in the system. To understand if

this regime is correlated with the initial condition would require a more complete ansatz than

the one we are using here and we leave it for future work. In the case solutions with jl # 0

exist, we need to show that the solution to (41) converge to one of the solution of (46) and to

know to which one. The problem is easily solved for equal temperatures T
=

T'. If we start at

equilibrium we stay there. We explicitly venfied that the solution to the equations (41) is time

translation invariant from the start. We beheve that in general the dynamics tends toward

the primary minimum of the potential. To verify that, we performed the numerical integration
of the system (41) for f(q)

=
1/2(q~ + q~) with the method employed in [4]. Figure 4 shows

the approach of C(t, 0) to ji
=

.646 in the case T
=

0.673, T'
=

0.804. In the same way it is

possible to see that the energy tends to the value predicted by the potential theory.

6. Conclusions

In this paper we have investigated the free~energy landscape of a spherical spin-glass model,
in the vicinity of equilibrium states.

The model is chosen in a way to have a low~temperature glassy phase characterized by a

single step Parisi function q(~). The study is performed introducing the 'potential function'

defined as the minimal work needed to keep a system to a given distance from an eqmlibrium
configuration. In this way we could identify the dynamic transition temperature as the point
where first appear a minimum in the potential function at equal temperatures.

In the p-spin model, where the Hamiltonian is an homogeneous function and there is not

chaos with respect to temperature changes, the dynamic states for T < TD can be associated

to the points where the potential has a flex. This property is trot true any longer whenever

chaos is present in the model. In that case, we do not have a recipe to associate properties
of the dynamic asymptotic state to some particular point in the phase space of our coupled

system.
The minima of the potential have been associated to metastable states. The life of the

metastable states can be estimated arguing that the free-energy barrer is just given by the
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coi

Fig. 4. The convergence of C(t, 0) ta ji for the 3+4 model in the case T
=

0.673, T'
=

0.804. We

plot C(t,0) ji as a
function of t in a log-log scale, for ji we take the value

m
the pnmary minimum

of the potential jJ
=

.646. C(t, 0) ji seems to approach
zero as a power law. A similar plot is found

for trie energy as a
function of lime.

maximum to minimum difference in the potential I?i, which is then proportional to the size of

the system N. It is interesting to remind here the result of the analysis in I?i in finite dimension.

In that case the order parameter is space dependent. The free energy barrier cari be estimated

with instantonic techniques (see e-g- Ref. [24] ), introduced in the contest of spin glass models

m [25]. It tums ont that in three dimensions the relaxation time nf the inetastable states scales

as Tma~ +~

exp[@fi], to be compared with the Vogel-Fulcher law Tma~ +~

exp[ j)pf~ ~],
often

used to fit the temperature dependence of trie viscosity near trie glassy transition in structural

glasses.

Let us condude trie paper noting that simple generalizations of trie potential method would

allow to gain further insight on the free-energy landscape of spin-glass models. For example

one can consider the free energy cost of a situation where there is a first replica at eqmlibrium
at a given temperature, a second one, at another temperature, is kept at a fixed distance from

the first one, and a third replica, at a third temperature kept at fixed distances from the first

two.

Aise, it would be very interesting to generalize our calculation to models with continuons

RSB, to study the property of chaos with respect to temperature changes in that case.
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