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Abstract. We apply the formalism of Ursell operators, introduced in a previous article, to

the calculation of reduced density operators (one and two-body density operators) in
a

dilute

quantum gas; the calculation is not a
fugacity expansion and is therefore not limited to low

degrees of degeneracy. We obtain quantum corrections for the one-partiale density operator

as a function of the second Ursell operator. For the two-body density operator, we examine

how statistics and interactions combine their elfects on the correlations between partiales; in

particular we discuss in detail how hard cores potentials affect the short range correlations,
a

non-perturbative elfect.

1. Introduction

In a previous article [Ii (see also [2]), we introduced a method for obtaining the partition
function of a degenerate gas which combines the use of cluster operators Ui, associated with

an auxiliary system of distinguishable partiales, with exchange cycles for an exact treatment of

statistics. The basic motivation of this technique was to give a better treatment of correlations

between partides than in mean field approaches, especially at short relative distances for

strongly repulsive interaction potentials. In this article we show that the method is indeed

a useful tool for obtaining explicit expressions of partial density operators, in particular of

the two-partide density operators which, in principle, contain all two-body correlations. The

expressions remain vahd at short distances even in the presence of hard core potentials, which

means that they include physical effects occurring "in the middle of a collision" and not only
asymptotic effects occurring long before or after collision (phase shifts).

In transport theory, an important issue is the derivation of kinetic equations, which is usually
made by introducing appropriate approximations into the exact equations of motion of the

system. A traditional approach is to start from the first equations of the BBGKY hierarchy
and to use them to derive (or to guess)

an approximate expression for the two-body density
operator, which becomes a function of the one body density operator. The expression is then
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mserted into the first BBGYK equation in order to obtain the desired kinetic equation (see for

instance [3]). A well known example is the derivation given by Snider [4] of a quantum kinetic

equation bearing his trame for partides with or without intemal states. The detailed study
of the properties of reduced density operators may therefore be a useful point of comparison

m this domain; for instance, one may require that the ansatz made for the expression of the

two-body density operator (as a function of the one body operator) be valid at equilibrium,
which provides a useful guide.

2. Partial Density Operators

In classical physics, the one-partiale distribution function in a homogeneous system is indepen-
dent of the interaction potential; this is because the contribution of the potential factorizes out

of the distribution, which leaves in factor a Gaussian distribution function of the momentum.

In quantum statistical mechanics, smce the operators corresponding to kinetic and potential

energy do trot commute, this factorization does trot take place so that the momentum distribu-

tion is no longer a Gaussian. One sometimes uses the words "diffraction effects" to characterize

these changes (since they arise from the wave properties of partides),
as opposed to "quan-

tum statistics effects", which arise from the consequences of partide indistinguishability and

also modify the distribution function. Dur purpose m this section is to study how these two

effects combine m the expression of the one and two partiale density operators, m terms of the

second Ursell operator U2, of the temary operator U3, etc. We will use a technique based on

the partial derivative of the operators, already sketched in [2], which starts from the following
general expression of the canomcal partition function ZN (the notation is the same as in

iii ):

ZN"Tr(KN~~ Il)

where the symmetrizer S applies for bosons, the antisymmetrizer A for fermions, and where

KN is the exponential of the N partide Hamiltonian BN multiphed by the inverse temperature
fl

KN
"

e~~~N (2)

which cari be expanded as

KN
"

~jfl(.)~ll(.)...~ll(.)X~Î2(., .)~Î2(.>.)...~Î2(.>.)X~Î3(.> (~)

~~~
m~

flctors
m~

flctors

We recall the definitions of the lowest order Ursell operators:

UI(i)
"

~~~~~~~i
j~~U2(1, 2)

=

e~P~21~>~l Ui Il) x Ui(2)

By recurrence, higher orders are obtained in a similar way.

2.1. ONE-PARTICLE DENSITY OPERATOR. If we
set(1).

ui(1,2,. i)
=

ui(1,2,. i) jui(i) x ui(2) x x ui(i)j (5)

(~ With this definition, Ùi is non-Hermitian; we
could of course introduce only Hermitian operators

by symmetrizing (5), namely by putting square roots of Ui's on both stries of Ù2, but this is not

especially useful for our
calculations.
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we cari choose Ui and the Ut's, instead of the Ui's, to charactenze the cluster properties of

KNI by definition Ùi is equal to one. Assume now that we keep all Ut's constant and vary Ui

according to(~):
dUi

=
dz x Ui v7)(à (6)

What is then the variation of Z? Inserting this relation into (5), then into (3) and finally into

(1),
we get

~~N
"

d~ ~l,2,3,..
N

~KN ~Î
~ 9~)(~ ~ (i)

i=1

Since the canonical N partiale density operator is equal to

pfl~
=

lzNl~~ ~KN (81

expression (7) is nothing but the product of ZN by the average value of the one-partiale operator
£]])

q~) (1 à (. Therefore, in terms of the canonical one-partiale density operator(~) p[~~,

we obtain

)L°~ zN
"

T~ il V~)1° Pl~~l
"

1° Pl~~ V~)
(~)

(the derivative with respect to z is meant at the value z =
0). We can therefore obtain reduced

density matrices from this kind of operatorial variations.

If the grand canonical ensemble is used, the many-particle density operator is defined by

pg~ = [Zg~]
~~ ~j e~~~ KN (10)

J~

and a similar reasoning provides the following relation involving the grand canonical one-

particle density operator pI (for the sake of simplicity we now omit the index (gc))

)Log z~~
=

Tr jp~ v~jjo ii
=

jo p~ v~j iii)

This formula shows that pI is the "operatorial derivative" of Zg~.

2.2. Two-PARTICLE DENSITY OPERATOR. We now vary Ui according to (see note 2)

dur
=

ui dz v~~i(o~ +dy v~~i(o~
11

(12)

and we calculate the term, in the variation of Z, which is proportional to dz x dy (cross term).
This term is given by

XXdyX~l~2..NI~KN~jÎ~~9~~,).9~Y)(~.~~,l'~YÎ
(~~~

i#J

(~) As Ùi, the variation dUi
is non Hermitian m general. Note that the Ui's

are at the end of the

product in (5) while they
are at the beginnmg in (6);

m
fact, we could also choose the opposite

convention where the Ui's
are at the other end in both equations.

(~)Here
we

take the convention where the operator pi is
normalized to the number N of particles

(not to one).
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which is nothing but the product

dz x dY x zN x lô~,ôy 1plt~ 1v~~, v~yl I"1

containing the matrix element of the two partide density operator(~) p[(~ which is therefore

given by

(Ù~, Ùy 1plt~ 1v~~
,

v~y) =
lzNl~~

$zN.
(15)

Going over to the grand canonical ensemble leads to the relation

~2
(°~ >ôY PII 1V~~> V~Y) "

lzgcl~~ ~zgc (16)

(where the derivative is meant in x = y =
0 and, again, the index (gc) is not explicitly written

for the reduced operator). But since

à~°~
~~~ ~~~~~

~ ~ÎÎ
~~~~~

~ ~ÎÎ~ ~ ~ÎÎ~ ~~~~

we get, with the help ofrelatioil (II) (again, for simplification, we suppress the index (gc) from

the reduced operator)

1°~, °y PII v7~ v7y) = 1°~ PI v7~)1°y PI v7y) + $LOg Zgc. l18)

This is the starting point of our calculations below.

3. Application to a
Dilute Gas

In iii
we obtained expressions for Log Z that are valid for dilute gases. We now combine them

with the preceding formulas to obtain reduced density operators, starting from the simple
example of an ideal gas (no interactions).

3.1. IDEAL GAS. For an ideal gas we have

Log z
= -q ir jLog il azur] )

" 4
~j n~~ir j [azur]") (19)Îi

where q is equal to for bosons, -1 for fermions, and

z =

e~~ (20)

3.1.1. One-Particle Density Operator. When Ui varies according to (6) in the right hand

side of (19), we have to vary the n
factors of the product [qzUi]" But, in fact, all these

terms are equal since, in each of them, a permutation of the operators under the trace allows

us to bring the variation m front of all the other operators; the factor n~~ disappears in this

operation and the result is

ce

dLog Z
= q dz x

~j Tr (qzUi v7)(à [qzUi]"~~) (21)

(~) with
a

normalization to (N 1)N.
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~~))
~

=
n(°

É
Tr ilnzUii"1 1v7) =

1° PI 1v7). 122)

This provides the simple result

PI =
f 123)

where the operator f is defined as a function of the operator Ui as

f
=

1
~)lui 1241

or, more explicitly (in the case where the external potential is zero),
as

p
P~

_P

~ ~
2m

~~~~

l il~
~ ~~

~

(this is nothing but the operatorial version of the well known Fermi of Bose functions for an

ideal quantum gas). We therefore recover a dassical result.

3.1.2. Two Particle Density Operator. We now vary Ui in (19) according to (12) and look

for the cross terms in dz and dg. As in the preceding section, in every term of the sum over n

the replacement by dz q~~)(ô~ Ui can occur in n
different places, but can be brought back

to the front position by circular permutation under the trace, which suppresses the factor n~~

The cross term appearing in qn~~Tr([qzUi]") is therefore equal to

In-2
q dz dyTr qzUi v7~)(ô~ ~j [qzUi]~nzUi v7y)(ôy [qzUi)"~~~~ (26)

p=0

which, when summed over n, introduces the quantity:

n
~ ~lÙ~ lnzUil~~~ 1~JyllÙy 1lnzUil"~~~~ v~~l 127)

We can set p'
= n p 2 and replace the summations over n and p by summations over n and

p'; then, each of these summations introduces again the operator f defined in (24). Inserting
this into the right hand side of (18),

we get

1°~,°y 1PII v7~, v7y) =1°~ f 1~J~) x 1°y f 1v7y) + n1°~ f1v7y) x 1°y f1~J~) 128)

or

PIII~> 2)
"

iii~) ~9 ii~)i i~ + ~lPex.1 (~9)

where f(1) is the f operator with the momentum of the first partiale inside Ui~

zut(1)
fi~)

=

i nzuiji)
~°

while f(2) has the same definition for the other particle; P~x_ is the exchange operator between

partiales 1 and 2. Equation (29) is of course a known result for ideal gases.
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Remark: from (23) and (29), since the trace of the one-partiale density operator is equal to

the average number of partiales, we obtain

Tr2 lpII(1,2)1 =< N > pI(i) + n lpI(i)l~ (31)

which shows that the partial trace of the two-body density operator is not merely proportional
to the one-partiale density operator, but contains an additional term proportional to [pI(1)]~
This is a consequence of the use of the grand canonical ensemble where the number of partiales
N fluctuates, so that for instance the average of the product N(N 1) is not exactly equal to

< N >< N -1 >. In the thermodynamic limit, nevertheless, where the volume and < N >

tend simultaneously to infinity (while their ratio remains
constant), since the expression of

the operator pI itself does not depend on the volume, it is dear that the first term in (31) is

dominant, so that the usual trace relation of the canonical ensemble

Tr2 (Pil~(1, 2)) =< N 1 > p[~~(l) (32)

is recovered to a very good approximation. Physically, this happens because the exchange
term in (29) is significant at microscopic relative distances between the partides, but vanishes

when this distance becomes macroscopic; therefore, by average over all possible positions of

the second partide, the direct term becomes dominant.

3.2. INTERACTING DILUTE GAS: FIRST CORRECTION. Dur purpose now is to introduce

interactions and to examine how (23) and (29) are modified. We shall start from the simplest
generalization (~) of the Beth Uhlenbeck formula introduced in [Ii

Log z
=

jLog zj,~ + z2Tri,~ u~
+

j~ex x ii + njji)i x 11 + njj2)1)

=
iLog zj,~ + Tri,~ (u~

+

j~ex. x iii x jj2)
~~~~

where [Log Z];~ is trie value obtained in the absence of interactions, given in (19); according

to (5), the operator Ù2 is defined by

Ù2
=

U2 x
lui(1)Ui(2)l~~ 134)

3.2.1. Oue-Particle Density Operator. The product f(1)f(2) in the second liue of (33) cari

be expanded according to

f(1)f12)
=

É
inzUill)i"

x
lnzUil2)i~ 135)

(we use the fact that q~
=

1 for bosons and fermions) so that the variations of Ui defined in

(6) introduce a term equal to

l~ p ce n-i

Tri
2

Ù2 ~ ~
~~' ~ ~ [11zUi(1)]~ qzUi(1) 1 : çJ >< 1 :

à
2

~=~ ~~~
(36)

[~zUi (1)]"~~~~ q f(2) + id.(1
-

2)

(~) In the second hne of (33), the factor z~
appearmg m

the nght hand side of the first fine has

been combined with the Ui's introduced by the substitution of U2 for U2 m order to provide the two

operators f's.
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where id. (1
-

2) symbolizes the same expression with indices and 2 exchanged. The sum-

mation over n can be replaced by a summation over
n'

= n -1- k which introduces the

operator
ce

,~j [qzUi(1)]"
=

+ n f(1) (37)

~>_~

while the summation over k introduces

~~~~~~~~~~~~
l
~ÎÎÎI) ~~~~~' ~~~~

Now, since

fil)
=

zUi(1) il + q f(1)]

the factor q f(2) in trie right hand side of (36) and the iii1) from (38)
can be inserted into Ù2

to provide the result z~U2 Il + q f(1)] [1 + q f(2)], which leads to

2z~(à il + n f(111 Tr2 U2
~ ~~~'

Il + q fil )] [1 + q f(2)] çJ) (39)
2

(trie factor 2 anses from the term il
-

2]). Finally we obtain

pI "
f(1) + 2z~ il + q fil )] Tr2

U2 ~ ~~~'
Il + n f(2)] [l + q fil )] (40)

2

This equation is valid to first-order in U2.

The validity of (40) does not require that the degree of degeneracy of trie gas should be very
low, but of course it can be applied to this particular case: in the limit of a non-degenerate gas,
the correction to pI is simply obtained by replacing m (40) all factors [1 + iii by one. One cari

also expand these factors in powers of q f, which provides the quantum corrections introduced

by partiale indistinguishability, starting with trie term corresponding to a permutation between

two partiales, followed by trie term introduced by cycles of three partiales, etc.

Equation (40) is limited to interaction potentials with suliiciently small range b, a necessary

conditions for trie higher order corrections in [U2]~, (U2]~, etc. as well in any power of U3, U4,
etc. to be negligible(~);

on the other hard, it is trot a perturbative result with respect to the

intensity of the interaction potential, which cari take arbitrarily large values for small relative

distances between partiales (see for instance Section 4 for a discussion of hard core
potentials);

m other words, the equation contains the effects of local perturbations on thermal equilibrium,

even if they are strong.
Mathematically, U2 is the difference between two exponential operators and, as such, contains

all powers of the potential. In order to make contact with perturbation theones, it is of course

possible to retain only the first-order term from the V expansion of U2, that is to replace

U2 Il, 2) by

U2 t
/~ dfl'Uf~/(1)U/~~~ (2)V(1, 2)Ul'(1)Ul'(2) (41)

o

where

UP" i
=

~~P~~ [P~/2m+w.xt(rjj ~~~

(~) See Section 3.3 for
a

discussion of these terms.
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and where lÇxi(r) is the extemal potential. This yields

pI t
f(1) + 2 fil) /~ dfl'Ul'il) Tr2 (Vil, 2)

~ ~~~'
f(2)) Ul'il) [1+ qf(1)] (43)

o
2

an equation which now requires the potential to be sufliciently small. In the case of fermions

in
=

-1) the diagonal element of pI gets a non-zero correction only if the product fil [1 fil )]
is non zero, where il fil)]

can be interpreted as the distribution function of holes; as a

consequence, the correction occurs only near the surface of the Fermi sphere, within an energy

range of the order of kT, which is a familiar result(~). The fact that (43) contains integral

over the inverse temperature fl' is charactenstic of the results of perturbation theories là, fil
(second order terms would contain a double integration over

fl' and fl", etc.), as opposed to

our formalism where every U2 contains a resummation of an infinite perturbation serres which

suppresses these summations.

3.2.2. Two-Particle Density Operator. We now insert il 2) into (35) and look for the crossed

terms in dz and dy. Several possibilities may arise, depending on whether the variations affect

two Ui's corresponding to two different partiales, or to the same particle. This introduces

under the double sum over n and p the following expression

n-1~j [qzUi(1)]~ qzUi(1) 1: çJ~)(1: ô~ [qzUi(1)]"~~~~ x

k=0
p-1

, ,

x
~j [qzUi(2)]~ qzUi(2) 2 çJy)(2 ôy [qzUi(2)]P~~~~ +

~,_~
n-2 n-2-k

,

(44)

+ ~j [qZUl(1)]~ qZUl(1) 11 q7~)(1 1ô~ ~j [qZUl(1)]~

k=0 k'=0
,

IÎZUI(1) 11°
V~Yl

Ii '°Y lllZUllill~~~~~~~ llÎZUl(2)l~

+id.([l,n]
-

[2,p]) + id.(z
-

y)

where, in the last line, id.([l, ni
- [2, pi) onginates from two variations in Ui(2l's, which

introduce a term equal to that contained in the two preceding lines with the substitutions

indicated between brackets. Moreover, since the first operator which is varied cari contain a

variation in q~~)(ô~ as assumed explicitly m (44), or a variation in q~y)(ôy (, one should add

to all preceding results the same term with the substitution (z
-

y),
as indicated in the second

term of the last line. The rest of the calculation is similar to that of the preceding section:

when independent summation indices replace n, p, k and k', the summations introduce either

operators qf's (when the index runs from 1 to infinity)
or operators [1+ iii (when it runs

from 0 to infinity) so that (44) becomes

nfll) 1 . v7~) Il
.

°~ il + nfll)1nf12) 2 . v7y) (2 . °y il + nf12)1+
+nfll) 1. v7~)11 .

°~ nfll) 1. v7y)11 . °y il + nfll)1nf12) 145)
+id.Il

-
2) + id-lx

- Y)

According to (33), we now have to multiply this term by Ù2 and a symmetrization operator,
and to take the trace over the variables of two partides. As in the calculation of pI, it is

(~)This
remains true if the

more
general formula (40) is used, as con be

seen by replacing
U2 Il + ~ f(1)] il + ~ f(2)] by the product Ù2 f(1) f(2).
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convenient to move
qf(1) as well as

qf(2) towards Ù2, with which they combine to introduce

the product z~U2 Il + qf(1)] il + nf(2)]; doing this operation, for instance, in the term of the

first line of (45) provides the result

Z~Tri,2 (UÎ'~ Il + 4fll)1 1 v~~lll °~ Il + 4fll)1 X
j~fi~

X Il + 4f12)1 2 . V~Yl12 °Y Il + 4f12)11

which is simply equal to

z~ (ô~
,

ôy Ii + nflill Ii + nf1211 UÎ'~ Ii + nflill Ii + nf12)1 ~7~, v~y) 147)

where we have introduced the notation Ul'~ for the restriction of U2 to the symmetric lantisymmetric

space:

Ul'~
=

U2
~ ~~~'

(48)

(because the operator U2 itself is already symmetric by exchange of the partiales, in this

definition the symmetrization pro jector [1+ nP~x_] /2 may arbitranly be put on either side, or

on both). Similarly, the second line of (45) introduces a contribution

z~lÙ~ nfll) v~y)lÙy Il + nfll)1Tr2 (UÎ'~ J + nf12)1) J + nf(i)1 v~~) 149)

This can be written as a term containing a trace over a third partiale

z~(ô~
,

ôy il + qf(1)] il + qf(2)] Tr3 (Ul'~(2, 3) il + qf(3)] x j~ ~~
X Il + nf(2)] nPex.(1, 2) v7~,v7Y)

which, according to (40) and (18),is nothing but an exchange term associated with the product
of pI's appearing in (18). Finally,if we include the contributions ofthe permutations in the third

line of (45), our results concerning pI and pII can be summarized in the following equations,
where we use the notation 1 x U2 as a reminder that the present calculation is first-order in U2

PI(1)
"

fil) + ôPI(1)
j~~~pII(1, 2)

=
fil) @ f(2) il + nP~x_] + ôpII(1, 2)

with

ôpI
"

ôf e
2z~ il + n f(1)] Tr2 (Ul'~ [1+ q f(2)] il + n f(1)] (52)

and

ôPiI
"

2z~ il + q fil )] il + ~/
f(2)] uÎ'~(1, 2) Il + ~/fil)1 Il + ~/f12)1 j53)

+ Il + 4Pex.1 [Ill) 19 ôPil2)1 Il + 4Pex.1

The latter result includes two kinds of contributions to ôpu. In the second line, we get a correc-

tion as a direct consequence of the modification of pI under the effects of the interactions, but

which contains no correlation between the partiales, except of course the statistical correlation

introduced by the operators [1+ nP~x_] at each end. In the first line, we get a different kind

of correction which may contain strong short range correlations created by the interactions,
that is correlations that manifest themselves over a characteristic distance of the order of the

potential range b land not only of the order of the de Broglie wavelength). In Section 4 we

discuss these short range effects in more detail.

Otherwise, the remarks made after equation (40) apply without any change. For instance,
(53) is a non-perturbative result in terms of the intensity of the interactions, but is valid only
if trie potential range b is suiliciently small, The limit of non-degenerate gases is immediately

obtained by suppressing ail brackets il + q fi in (52) and (53).



1264 JOURNAL DE PHYSIQUE I N°la

3.3. SECOND-ORDER IN U2. We now include trie elfect of the terms in Log Z which are

second order in U2 and hâve been obtained in iii. Their contribution has been found to be

equal to the sum of two terms

ÉTri
2 (Ul'~(1, 2) [1+ q Ill)]

[1 + n f(2)]j
~

(54)
2 '

and

2qz~Tri,2,3 (Ul'~(1, 2) [1 + ~ fil )] il + ~ f(2)] Ul'~(1, 3) il + ~ fil )] il + ~ f(3)] (55)

Introducing the notation

~~~~~~' ~~ ~~~~' ~~
~ Î~~

'
~~~~

we can rewrite (54) as

jTri,2 (ÙÎ'~(1, 2)f(1) f(2)ÙÎ'~(1, 2) f(1) f(2)) (57)

From now on, we focus the calculation to the two partiale density operator, which contains

the correlations between the partiales and therefore the most interesting physical information.

The f's may be expanded in Ui's as m (35) when the Ui's are varied, several kinds of situations

may occur, depending on whether the variations occur in close f's or f's separated by a
ÙÎ'~,

and whether trie f's correspond to the same partiale or trot. Since all f's play the same role,

we cari assume that trie variation in dz takes place in the first fil ), and multiply the result by
4. There are now four possible cases, depending on where the second variation is placed.

1) If trie second variation occurs in trie same
fil ), trie term which appears is similar to that

calculated in the third and fourth litres of (44), and we have to make the substitution

f(il ~ nf(il v~~l(i . Ù~ 1iii) 1= v~ylli Ùy
J + nflill + id.(x

-
gl. (581

This leads to

2q(ô~ fil) q~y) x Tri,2 (UÎ'~(1, 2) fil) 1 q~~)(1: ôy x

x Il + 4f(1)] f(2)UÎ~~(1, 2)f(1)f(2))
~~~~

But we also have to add the symmetric term id-ix
-

g),
so that we get the following

contribution to the two partide operator

2z~ fil) il + ~f(2)] Tr3
(U)>~(2,

3) [1+ qf(2)] [1+ nf(3)]j qP~x(1, 2) + Il
-

2) (60)~Î

where trie term il
-

2) is simply obtained from the preceding term by moving the

exchange operator P~x(1,2) in front of trie other operators. The contribution (60) is

dearly an exchange term, which contains no dynamic correlation between trie partides,
but just correlations from statistics.

ii) If trie variation occurs in the f(2) which follows immediately trie varied fil), both f's
should be varied according to

f ~ f 1 . v~~,y)li . Ù~,y J + nfl (fil)
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so that we obtain

2Tri,2 (ÙÎ'~(1, 2) fil) 1 q~~)(1 : ô~ [1+ nf(1)] f(2)x

x 2 v7y)(2 °y Îl + 4f(2)1UÎ'~(1, 2)f(1)f(2))
~~~~

which leads to the following contribution

22~ Il + 4fll)1 Il + 4f12)1UÎ'~ll, 2) Il + 4f(1)1 X
~fi~~

x J + nf(2)1 UÎ'~(1, 2) J + nf(i)1 J + nf(2)1.

This is a second-order generahzation of the first line of (53), which contains no trace

over a third partide; we expect that it will contain short range correlations for strongly
repulsive potentials at short distances.

iii) If the second variation occurs in trie other f(1), equation (fil applies again and we obtain

2Tri,2 (ÙÎ'~(1, 2)f(1) 1 v~~)11 Ù~ J + nfll)1f(2)x
~~~~xPl'~(1, 2) iii) i q~~j(i ô~ ji + nJjijj j(2))

and trie following contribution to trie two partide density operator

2z~ Ii + nf(i)1 J + nf(2)1Tr3 (UÎ'~(1, 3) J + nf(i)1 J + nf(3)1 x

~~
xUl'~(2, 3) il + ~ f(2)] il + q f(3)] P~x(1, 2)

The cunous feature of this term is that it contains an exchange operator without a factor

q; we will see other similar cases below.

iv) Finally, the variation may occur m the second f(2), which from (fil) leads to:

2Tri,2 (ÙÎ'~(1, 2)f(11 v~~lll Ù~ Il + nf(Ill f(21x
~~~~xÙÎ'~(1, 2)f(1)f(2) 2 . v~y)12 Ùy J + nf(2)1)

which gives the same contribution to pII as the term (65).

Among all four terms that we have obtained, only (63) contains dynamical correlations

between the partides, and no trace over a third interaction partner. This term will play

an important role in the discussion of Section 4.

We now have to apply the same kind of calculation to (55). The general method is exactly
the same, but here we obtain 5 terms instead of 4: one term which contains a trace over

a third partide with, inside the trace, only one U2 operator; one term of the same kind

but with two U2's inside the trace; and finally three terms containing traces over two

extra partiales. As an example, we give one of these three terms, which is equal to

4z~ f(1) il + n f(2)] Tr3,4 (Ul'~(2, 3) il + q f(2)] il + n f(3)] x

x
UÎ'~(2, 4) [1+ n f(2)] il + q f(4)] P~x (1, 2) +

(67)

+id. [1- 2].

To save space, we do not wnte trie other terms explicitly.

Finally, one must not forget to mdude the second order modifications of the product of

pI @ pI according to (18). They combine with the terms m
qP~x(1,2) of (60) and the

analog contribution denved from (55)
m order to produce a

symmetrizerlantisymmetrizer
il + qP~x(1, 2)] /2 in the same manner as for the first-order calculation.
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3.4. FIRST-ORDER IN U3. In reference [1], we obtain the following term for the first-order

contribution of U3 to Log Z

z~Tri,2,3 (Ul'~(1, 2, 3) [1+ q f(1)] il + q f(2)] il + n f(3)] (68)

where Ul'~(1, 2, 3) is the properly symmetrized version of the three partiale operator U3

Ul'~(1, 2, 3)
=

U3(1, 2, 3)
~

(69)
3

It is convenient to rewrite (68) in the form

Tri,2,3 (ÙÎ'~(1, 2, 3) x f(1) x f(2) x f(3) (70)

and, as in (35), to expand each of the f's inside the product into a series of Ui's which will be

varied. If both variations occur in Ui's origmating from the same f, we use (58) and we are

led to the following contribution to pIIi

3 f(1) @ il + q f(2)] Tr3,4 (U3(2, 3, 4) [1+ q f(3)] il + q f(4)] ) il + q f(2)] qP~x_ + h-c- (71)

where (h.c.) symbolizes the Hermitian conjugate operator, with P~x_ in front of the product of

operators instead of at the end. This term is similar to (60) and reminiscent of the exchange
terms in pII for an ideal gas.

If the variations of the Ui occur in operators originating from two different f's, we use (61)
and we are led to the following contribution to the two partiale density operator

6z~ il + n f(1)] il + n f(2)] x Tr3 (U3(1, 2, 3) il + q f(3)] x il + n f(1)] [1 + q f(2)] (72)

which is a direct generalization of the first hne of the right hand side of (53) as this term, it

contains dynamical correlations at short distances.

Of course, as for U2, there are terms in pII that are second order in U3 third order, etc. as

well as ternis depending of the higher order Ursell operators Ui Nevertheless, for a gas, we will

see that the terms that we have already explicitly wntten are suilicient for a good description
of the correlations.

4» Effects of a Strong Repulsion with Short Range

We now study the properties of the partial density operator pII for a potential with a strong
repulsive core. For the sake of simplicity, we will often assume a hard sphere potential of spatial

extension b:

~/(~ ~
~ ~~~ ~ ~~~ ~~~ ~ (~~)

~' ~ 0 otherwise

but most of our calculations are in fact more general, b being defined as the distance between

partides at which the interaction potential becomes significantly larger than the thermal energy

kBT. We know that the two body density operator:

(ri, r2 1PII 1ri, ri) (74)

must necessanly vanish whenever either the distance ri r2 1, or
r( r(

(, (or both) becomes

inferior to b. This is because, if we call flfk > the eigenstates of the N partiale Hamiltonian

BN
HN flfk) =

Ek flfk) (75)
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and flfn(ri,r2,r3, ...rN) the associated wave functions, the matrix elements of p[t~ can be

expressed as:

(ri r2 PÎÎ~ ~Î> ~Î)
"

' ~~~~" ' ~~~~ ~°"
~~~~~~~ÎÎ(ÎÎ(ÎÎÎÎÎÎ~.~k) ~~~~

where the wave functions vanish exponentially in any region of configuration space where the

potential energy exceeds their energy (in the limit of infinite potential and hard cores, they
vanish exactly whenever two hard cores overlap). Therefore, if either ri r21 or

r) -r[ is less

than b (or both), the corresponding matrix elements of p[t~ have to vanish. It is straightforward
to extend this result to the grand canonical version pII of the two partiale density operator.

Such a cancellation is a non-perturbative property of the two partiale density operator. At

zero relative distances, however small the potential range is, the correction brought by the

interactions to the ideal gas expression of pII remains finite: it has to exactly compensate for

the zero-order term. On the other hand, nothing similar occurs for the one partiale density

operator, which undergoes only perturbative changes. Mathematically speaking, hard core

potentials introduce a non-analytical expression of the potential energy, and the limit of the

matrix elements of pu at short distances is obtained in a non-uniform convergence process. It

is therefore an interesting test of our method to see how this result is recovered, and indeed

we will see that the process is not trivial.

In what follows we limit ourselves to the proof of this non-perturbative cancellation: we

look for ail short range corrections in pu that are of zero-order in b and ignore ail higher order

corrections. What we have to do, then, is to consider the whole series of terms of the Ursell

expansion of pII and identify the terms of zero-order in b; fortunately, it turns out that only a

small numbers of the Ursell diagrams contribute, namely those of zero, first and second-order

in U2 as well as first-order in U3. As m Section 3.2 above, we start the analysis from the terms

which are zero-order in U2.

4.1. ZERO-ORDER TERM IN U2 In a system with translational invariance (periodic bound-

ary conditions), pu commutes with the sum of the momenta of the two partiales, which means

that all its matrix elements are diagonal with respect to this sum. We therefore have

(ri r2 PII ~Î rÎ)
"

~ ~ ~ ~
~~

~~
~~~ ~~~ ~ ~~~

~~~
~~~~

K q,q'

x
(~

+ q
~

q jp~~
~

+
q', ~ q') (78)

2 ' 2 2 2

where V is the volume of the system (which arises from the normalization of the plane waves).
This general formula can readily be applied to an ideal gas; from (29), where the operators f

are diagonal in the momentum representation, we obtain a direct term where q =

q', followed

by an exchange term where q =

-q',
so that the sum is

/d~ ki
/

d~ k2 f(ki )f(k2 e~~~~ ~~~l'(~~ ~~~ ~~~~~~) ~~
+ ne~~~~~~~1 (~~~~~ ~~~ ~~~) ~j

(79)

If for instance we consider only the diagonal elements of pII (ri
"

r(,
r2 "

r(),
we see that the

only spatial dependence arises from the exchange term (term in ~ inside the bracket). More

generally, in equation (79), the only charactenstic length is the thermal wavelength introduced

by the functions f

~~
ùù

~~~~
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and no special variation occurs when ri r2 or
r( rj becomes smaller than b. The

result is, of course, independent of b, which makes it zero order in b for any value of the r's. In

the following calculation, therefore, our purpose will be to find in the Ursell expansion series

the terms which will compensate for the short range value of (79) and to check that no other

zero-order term has been omitted.

4.2. FIRST-ORDER IN U2

4.2.1. Prelimiuary Cousiderations. In order to simplify the discussion of the other terms,

we first make a few remarks about the characteristic lengths involved in the matrix elements

of some relevant operators. We start from the elements of U2 itself

(~l,~21~Î2(1, 2)1~~,~~) (~~)

In this element, if the distance between two particles (in the bra- or in the -ket) is smaller than

the potential range b, the application of the operator exp[-fl (Ho Il, 2) + Vil, 2))] gives zero;

this is easily checked by a reasoning similar to that based on equation (76). In this case, inside

(81), U2 "reduces" according to

~/ (~ ~) ~-p[Ho(1,2)+V(1,2)] ~-pHo(1,2)
~

~-pHo(1,2) ~/ (~)~/ j~) j~~)
2

,
l 1

Therefore, if at least one of the lengths (ri r21 and (r(
r(

is smaller than b, that is "inside

hard cores", we have

(~l,~21~Î2(1,2)Î~~,~~)
"

~(~l,~2 1~ll(~)~ll(2) 1r~,r~)

=
j~~j-6 e-1«tri-ni/>Tl~e-1«lr2-rl)/>Tl~ l~~~

Obviously, this matrix element is zero-order in b (it is actually completely independent of the

potential range) it has significant values as long as the differences ri
r( and r2

r(
are

not much larger than the thermal wavelength ÀT.
For a more detailed study, since the motion of the center of mass factonzes inside U2, it is

convenient to introduce the variables R of the center of mass and
r

of the relative motion and

~~ ~~~~~

jR,
r

U2(1, 2) R', r')
=

2~~~ [ÀT]
~

e
~~~~~ ~'~~~~~~

~~ ~~~~ ~~
~~~~

where U(~' is given in terms of the operator P associated with the relative momentum by

~~~
~ô

~~ V12(r)j
-# (~

~Î2 " ~ ~ (~~)

We have

(~ Î~Î~~~Î
~')

"

~~ ~~~9~k(~) (9~k(~')j
~ ~~ ~~~9~Î(~) (9~Î(~')j

~ (~6)

k k

where the ek and the q~k(r) are the energies and the eigenfunctions of the Hamiltonian Hr~j

describing the relative motion in the presence of the interaction potential, while the same

notations with an extra upper index zero are the corresponding quantities in the absence of

interaction(~) Equation (84) shows that the R and R' dependence are the same as for an ideal

gas, explicitly given in (83); on the other hand, the r and r' dependence is more complicated

(~) For simphcity and compactness of the notation we assume a
finite volume and do not distinguish

exphcitly the discrete (bound) spectrum from the continuum.
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since, according to (86), it involves a difference of two exponential operators. We already know

from the discussion above that, if
r or

r' (or both), are smaller than b, U(~~ merely reduces

to the second term of (86), associated with a free relative motion, so that the matrix element

becomes zero-order in b. Let us assume then that r' is fixed to some value, for instance of the

order of ÀT and that r increases progressively from zero. In three dimensions, the perturbation
of the eigen-wave functions of the Hamiltonian, introduced by a short range potential, is limited

within a region(9 of size comparable to the range. As a consequence, we expect that the matrix

element of U(~~ will remain of zero-order in b only within a domain of dimension comparable to

b (or some relatively small multiple of this length). If, on the other hand, r increases beyond
this domain, the matrix elements will decrease (in absolute value) and become first-order in

b, for instance proportional to b/ÀT. In other words, sufliciently far from the origin they tend

uniformly towards zero when tends to zero, as opposed to what happens when
r is comparable

to b.

Since the two variables r and r' play a symmetric role in the discussion, we may summarize

this discussion by saying that the matrix elements of U2 are first-order in b everywhere except
in regions of the configuration space where either r (, or

r'
(, or both, are of the order of the

potential range b.

We now assume that, inside (81), we insert an operator f, for instance on the right hand

side of U2, so that we study the matrix element

(ri>r2 ÎU2(1,2)f(1)(r[,r[)
=

/d~r (ri,r21U2(1,2)(r) + r,r[) (r) + r(f(r[) (87)

We first note that, if ri r2 1< b, this matrix element is zero-order in b since U2 reduces

to a product of Ui's as in (82); the dependence in ri r2 is therefore of the same type

as that obtained in the absence of an operator f. But if ri r2 has much larger values,
for instance of the order of ÀT, the dependence in r) r[ is drastically aifected by the

intermediate operator f: however small r( r[
(, the matrix elements never come back to

zero-order in b. To show this, we remark that, as for Ui> the only characteristic length which

occurs in f is the thermal wavelength ÀT, which is necessarily much larger than b if the latter

length tends to zero. In other words, in the integration over
d3r of (87), the second matrix

element has significant values in a range centered around the origin and of size comparable to

ÀTI one may see this as the result of a "delocalization" of partiale (1) in the ket produced by
the operator f. As for the first matrix element, it has two characteristic lenghts, b and ÀT, so

that we must distinguish in the integration domain two contributions: first, that arising from a

volume comparable to b~ around the value r =

r( r[, which obviously gives a contribution of

third order(1°) in b which we can ignore here; second, that arising from the rest of the volume

where the function to be integrated itself is first-order in b. The net result is that, provided
(ri r21 suflicently large, however small r( r[ is, the matrix element (87) always remains

of first-order in b and tends uniformly to zero when the potential range decreases. TO make ii

zero-order in b necessitates that the distance of the partiales in the bra which touches directly
U2 is allowed to become very small. By symmetry, it is straightforward to obtain similar resuits

(~)This property arises from the fact that the three dimension problem
is

equivalent to a one di-

mension problem with a
boundary condition which always cancels the fictitious

wave
function at the

ongin, even m the absence of
a potential; this phenomenon does not take place for lower dimension

problems.
(~°)The volume where the matrix element of U2 is first-order m b does not have to be precisely
proportional to b~ for our reasonmg to be valid; it could vary more

slowly,
as b[ÀT]~ for instance,

without alfecting
our

results.

iouRNALoefHYsiquBi-T.3,N°io,ocroBm1993 5o
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for an operator f acting on the left of an operator U2i ii is suflicient to interchange the bras

and the kets in the reasoning.
Finally, if we consider the matrix element

(ri>r2 lf(1)U2(1> 2)f(1)1ri> ri) (88)

or

(ri,r2 ÎÎ(2)U2(1,2)1(1)1r~,r~) (89)

A simple generalization of our reasoning shows that, since the bras and kets where the positions
of the partiales are fixed are never in direct contact with U2 (but only through f operators that

delocalize them over about ÀT)> the matrix elements are always at least of first-order in b; they
tend uniformly towards zero with b everywhere. Moreover, all preceding results apply without

any change when U2 is replaced by Ul'~ which, according to (48), contains an extra operator

P~x_, this is because the exchange operator changes the sign of the vector ri r2 but not its

length. To summarize, zero-order ternis in b can only be obtained when the Ul'~ operator is

in direct contact with the ket, or the bra, where two partiales are at a short distance (of the

order of b).

4.2.2. Contribution to pII We now apply the preceding results to equations (51)-(53). Two

types of corrections are preseut in pII> those which appear through changes of pI and contain no

dynamical correlations, and those which are given by (53) which do contain such correlations.

It is natural to expect that the former do not play a role in the present discussion, and this

is indeed the case because they contain a trace over a collision partner which makes them at

least first-order in b. Mathematically we have

(ri Tr2 (Ul'~ il + q f(2)] ri
=

d~r2 (ri, r2 (Ul'~ il + q f(2)] ri,
r2 (90)

Since an integration over a variable d~r2 is involved, the situation is similar to that found

in (87): one may distinguish two domains of integration, one where the matrix elements are

zero-order but which has a volume tending to zero with b, and one where the matrix elements

themselves tend to zero, so that the sum is at least first-order in b. So, we only have to include

(53) in our zero-order reasoning. We now distinguish between three cases:

1) If( r) rj (< b while ri -r2 is much larger, according to what has been said in Section

4.2.1, the zero-order terms inside (53) are obtained by suppression of the f operators

from the brackets [1 + n fl's on the right of Ul'~. This is because the operators f's would

introduce, according to (87), corrections that tend uniformly to zero when b tends to

zero. Under these conditions the matrix elements we obtain are those of

2z~jri,
r2 il + q jjl)j il + q j12)j Uj>~jl, )[ ri, rjj j91j

but, since U2 reduces to a product of Ui's according to (82), we merely obtain the result

(ri>r2 lf(1)f(2) il + nPexil ri> ri) (92)

which shows that the ideal gas term (29) is exactly cancelled by this term; we therefore

obtain the expected cancellation of the matrix element of pII in this case.

ii) If (r( r(( < b while (ri r21 is much larger, the reasonmg is exactly similar to that of

ii), except that one has to interchange bras and kets. In this case also, the first-order

terms in U2 are exactly opposed to the zero-order terms and the matrix elements of pII

vanish as required.
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iii) If (ri r21 and (r(
r[

are both smaller than b, in order to provide zero-order contribu-

tions in b, the reduction process of Ul'~ may occur, either from the bra or from the ket

(or both) We may therefore keep the factors [1 + n f(1)] [1+ n f(2)] either on the right,

or on the left of the operator Ul'~, but in doing so we double count the term where all

brackets [1 + iii
are replaced by one, so that it is necessary to remove this contribution.

The total result is therefore

2z~ (ri, r2 Il + q f(1)] [1 + q f(2)] Ul'~(1, 2) r[, ri )+

+2z~ (ri r2
Ul'~ Il, 2) il + q f(1)] il + n f(2)] r[, ri) (93)

-2z~(ri>r2 Ul'~(1,2) r[, ri)

which is equal to

2jri, r2 iJil)jj2) il + qP~xjj rj,rj) + z~jri,
r2 iUiil)Ui(2) il + qP~xjj ri, ri). (94)

Therefore, in the case where the hard cores of the partiales overlap in both the bra and

the ket, the zero-order cancellation with (29) is no longer obtained. We will see that

higher order terms are needed to restore it.

4.3. NEXT TERMS. We have seen in the preceding section that taking into accourt only
diagrams with at most one U2 is not suflicient for describing the short range properties of

pII correctly. We will now search for other terms, derived from other diagrams, which give a

contribution of order b° to pII> in order to see whether, by this way, we can obtain a faithful

description of what happens at short interparticle distances.

4.3.1. Second.Order in U2. We now consider the contribution of the diagrams with two

U2's given in Section 3.3. The first term we study is given by (63). We are searching for a

contribution of zero-order in the potential range, which can only be clone by reducing each of

the two U2's into two Ui's; this means that both U2's must act directly on bras or kets where

two partiales are close (we have seen in the preceding section that every f operating on a two

partiale wave function delocalizes one of the partiales, which introduces a supplementary order

in b). Hence, from (63), we keep only the contribution

2z~Ul'~ (1, 2) il + q fil )] il + n f(2)] Ul'~ Il, 2). (95)

Therefore, if ri r21 and (r(
r(

are both smaller than b, we have to add to (94) the following

contribution

z~ (rir2 lfll)f12)Uill)Ui12) Il + nPexll> 2)il titi) 196)

On the other hand, if (r) r(( < b while (ri r21> or the reverse, we have no extra term to

add to (92).
As for the term given in (60), it involves a trace over a third partiale and can be ignored.

This is because one can show following the same line as in the previous section that the

trace introduces a supplementary order in b. The reasoning can be generalized: any trace

over a third particle gives a contribution which is of at least order b, as long as there is no

permutation operator inside the trace which transposes the two partiales pII is operating on

(see the discussion of the terms with one U3 later in this section). Hence, we will be able to

drop ail terms with a trace, so that the only contribution to pII of the diagrams with two U2

in
the order considered arises when the partiales both in the bra and the ket are doser than b,

and is then given by the expression derived above (96).
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4.3.2. First,Order in U3 The next terms of the Ursell series expansion of pII are the contri-

bution to Log Z coming from the diagrams containing one single U3, which we have obtained

in Section 3A. Since both (71) and (72) involve a trace over
(at least) one extra partiale, at

first sight, one might infer frein the discussion of the previous section that they introduce only
matrix elements that tend uniformly towards zero with b. We will see that this is not true,

and that some new zero-order contribution is introduced by the exchange ternis.

We start with the second term (72) which contains only one trace, so that it is more likely
to leave a zero-order contribution. As in the previous section, we can ignore the f's acting at

both ends on partiale 1 or 2, since they correspond to ternis which tend to zero with b, so that

the matrix element becomes

6z~ < ri, r2 ÎTr3 Ul'~ il, 2, 3) il + q f(3)] (r[, r[ > (97)

How con U3 be reduced in this terni to give a zero-order contribution? The operator U3 is

defined as

U3
"

e~~~~~'~'~~ [Ui(1)U2(2,3) + permutations] Ui(1)Ui(2)Ui(3). (98)

If two particles, for instance 1 and 2, are at a distance smaller thon b inside either a bra or

a ket on which U3 acts, the cancellation of the three body wave functions inside hard cores

allows us to ignore the term in e~P~~~,~>~) and to reduce one of the U2's so that U3 becomes

U3 -
-Ui(1)U2(2>3) Ui(2)U2(1>3). 199)

If, in addition, we assume that in either the bra or the ket the distance between particle 3 and

partiale 2 is smaller thon b, the operator U3 is further reduced according to

u~
-

ui(i)ui(2)ui(3) ui(2)u~(1,3). (ioo)

We note that the first term is indeed of order zero in b, whereas we cannot make any general
statement about the second terni (as long as we do not specify anything about the distance

between the first and the third partiales).
We can now return to (97) and develop the symmetrizerlantisymmetrizer according to

(l + q [P~x(1, 2) + P~x(1,3) + P~x(2,3)] + C3(1, 2, 3) + C3(1,3, 2)) (101)

and examine the ternis one by one, assuming that partiales 1 and 2 are close (in the brai.

i) The direct terni

z~ < ri, r21Tr3 (U3(1, 2, 3) il + n f(3)]) (ri, r[ > (102)

can be reduced once to

z~ < ri r21TY3 liUi (1)U2(2, 3) + Ui(2)U2(1> 3)1il + nf(3)11 (ri, ri > (103)

but not further; the trace over the third particle introduces an order b by the sonne process

as in the discussion of U2-terms. The contribution of the direct term therefore vanishes

to zero-order in b, whatever the positions of partiales and 2 are.

ii) The term where partiales 1 and 2 are exchanged

qz~ < ri, r21Tr3 (U3(1, 2, 3)P~x(1, 2) il + n f(3)]) (r[, ri > (104)
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which, after a first reduction, becomes

-qz~ < ri, r21Tr3 ([Ui (1)U2(2, 3) + Ui (2)U2(1, 3)] P~x(1, 2) [1 + q f(3)] ) (ri, ri > (105)

Here again we cannot reduce U3 anymore, since both U2's act on the third particle over

which the trace is taken. For the same reasons as before, this leads to a negligible
contribution.

iii) The terms where the third partiale is exchanged with partiale 1 or 2; the former term is

given by

qz~ < ri, r21Tr3 (U3(1, 2, 3) P~x(1, 3) [1 + q f(3)]) (r[, ri > (106)

Assuming that particle and 2 are close in the bra, we apply (99) and obtain, by inserting

a closure relation and making the trace over the third partiale explicit

-qz~ J d~r3 d~r < ri> r2> r31 (Ui(1)U2(2, 3) + Ui(2)U2(1, 3)](r, r[, ri > x

~~ ~~~
x < r([1 + iii (r3 >

The term in Ui(1)U2(1, 3) does not introduce any zero-order contribution since there is

no way to reduce U2(1, 3), whatever values we choose for r( and r[;
we therefore ignore

ii. However, the term in Ui(1)U2(2,3) can indeed be reduced from the right hand side

by assuming that r) r( (< b, leading to the result

qz~ < ri(Ui Il +nf] Ui(r[ >< r2(Ui(r[ >= qz~ < ri>r2(Ui(1)Ui(2)f(1)(r[,r[ > (108)

which is of the required zero-order.

Obviously the term in P~x(2, 3) of (101) leads to a similar contribution, where the indices

and 2 are exchanged. We therefore have to add the following zero-order contribution

to pII~
nz~Uili)Ui12) [iii) + f12)1 l109)

iv) The cyclic permutation terms, of which the first one is given by

z~ < ri r2(Tr3 (U3(1, 2, 3)C3(1, 2, 3) [1 + q f(3)]) (ri, r[ > (l10)

which, according to (99), becomes, if ri r2 (< b,

-z~ J d~r3 d~r < ri> r2, r3(ÎUI(1)U2(2, 3) + Ui(2)U2(1, 3)][r[, r, ri > x
j~~~~

x < rlJ + nfllr3 >

If, in addition, r( r[ (< b, by the same argument as in (iii) we keep only the term in

U2 Il, 3) which reduces into Ui(1)Ui(3). This provides the result

Z~ < rl>r21Ul(1)Ul(~)Î(~)l~ex(~,~)Î~~>~~ ~ ~~~~~

Adding the equivalent contribution from the term in C3 Il, 3, 2), we obtain the contribu-

tion to pII as:

Z~Uli~)Ul12) iii~) + i12)1~e~i~> 2i i~~~)

The sum of all corrections to piI that we have obtained in this section is

Z~Uli~)Ul12) iii~) + i12)1 il + ~e~i~> 2)1 i~~~)
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which is valid whenever ri r2 )< b and r) r[ (< b. On the other hand, if any of

the distances ri r2 or
r( r~ is much larger than b (or both), there is no way to

reduce all U2's and no new zero-order term appears.

The other contribution to pII originating from first-order in U3 is given by (71) and

contains the trace over two extra partiales. While it was possible to cancel the eifect of

one extra trace in (72) by taking into account exchange operators, one can easily convince

oneself that two traces are too many and that at least one trace over a U2 operator will

survive. All these terms tend to zero with b and we may ignore them.

We conclude that the only term arising from diagrams with one U3 which survives the

reduction of pII to zero,order zero in b is (l14); it contributes to pII only when the interparticle
distances in both the bra and the ket are smaller than b.

4.3.3. Higher-Order Terms. We have not studied ternis which are more than second-order

in U2 or
first order in U3. However, this is not necessary as long as we limit the calculations

to zero-order in b. For instance, any contribution from diagrams with more than two U2's will

contain more second-order operators than it is possible to reduce by choosing close positions
for two partiales inside the bra and the ket; this is for example the case for the higher-order

contributions resummed by ladder diagrams (cf. Appendix II). The same conclusion applies

to second, third, etc. order in U31 we have seen that it is necessary to reduce U3 twice, that

is once from each side, in order to obtain a term which involves Ui's only, and completely
reducing two independent U3's is not possible. Generalizing to higher order Ursell operators,

we may notice that in each term of the Ursell series expansion, we have to reduce ail Ut 's to

t Ui operators, in order to obtain contributions of zero-order in b. As we have at maximum

two correlated partiale pairs (in the bra and the ket) for reduction, it is clear that higher order

terms (U4, 2 x U3, etc.) cannot be reduced completely to Ui's.

Therefore, the terms that we have calculated so far are suflicient for the study of the zero-

order properties of pII. Of course, if we were interested in higher order correlations between

the partiales, we would have to consider higher order partial density operators pIII> PIV, etc.

and the situation would be diiferent: with more position variables in the bra and the ket, it

would be possible to reduce more efliciently Ut operators than inside pII> and to block more

trace operations. Consequently, more complex diagrams would play a role to zero-order in b

when the distance between all partiales in the bra and the ket is smaller than the potential

range.

4.4. SUMMARY. To summarize, if either ri r2 or
r( r( is much smaller than b

(but not both), the first-order U2 calculation which provides (53) is suflicient since it ensures

a proper cancellation of pII when we add it to the ideal gas term (29). On the other hand, if

both ri r2 and r) r[
are smaller than b, the situation is more complex and we have

to add the corrections given in equations (94), (96) and (l14). The overall result is:

1-2f(1)f(2) + z~Ui(i)Ui(2) Ii + f(i)f(2) + nf(i) + nf(2)11 x Ii + nPex.1 (lis)

which, when added to (29), gives exactly zero, as readily seen from the relation

f
=

zut ii + iii. (i16)

This shows that the matrix elements of pII vanish exactly inside hard cores, as expected, and

that the sum of the three corrections gives a correct treatment of non-perturbative eifects inside

the potential; one can therefore expect that this expression provides a good description of the
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short range properties of pII. It is interesting that the cancellation of the matrix elements

requires adding to the first and second order U2 terms a contribution arising from a rather

subtle exchange eifect inside the U3 term, corresponding to cyclic exchange or to exchange
with an interaction partner.

To summarize, a good approximation to the two-body density operator pII> which includes

perturbative eifects at long relative distances between the partiales as well as non-perturbative
eifects at short distances, is given by the following expression

PII "
lf(1) + ôf(1)1 49 If(2) + ôf(2)1 Ii + 4Pexl +

~~~~~
+ Ii + f(i)1 Ii + f(2)1F(1> 2) Ii + f(i)1 Ii + f(2)1

where ôf is the operator defined in (52) and where

F
=

2z~Ul'~ + 2z~Ul'~ il + f(1)] [1 + f(2)] Ul'~ + 6z~Tr (Ul'~(1, 2, 3) il + f(3)] (l18)

5» Conclusion

The U-C diagram method provides explicit expressions for the partial density operators, includ-

ing non-perturbative eifects. This is seen in equations (51), or the more precise approximation
(l17), which are the main results of the present article. The expressions remain relatively

compact, at least when the calculation is limited to first-order in the Ursell operators. The

two-body density operator gives physical information on the correlations between partiales;
the operator can be used to calculate, for instance, the amount of light scattered by a gaseous
sample, or of density corrections to the index of refraction of a degenerate gas of bosons [7].
But other calculations are also possible. For instance, from the one-body density operator one

can calculate average kinetic energy of the partiales, from the two-body density operator the

average potential energy, so that it is possible to get information on how the total energy is

shared between its two components. Of course, for an exact calculation including all Ursell

operators to all orders, the sum of the two energies should reconstruct exactly the "macro-

scopic" energy obtained by derivation of Log Z with respect to the inverse temperature. But,
for approximate calculations, this is not necessarily the case, so that the two calculations of

energy give a convenient way to evaluate the quality of the approximations made in the calcula-

tions. Another check is given by the calculation of the pressure from the expression of its exact

microscopic operator [8]; ideally, the average value of this operator over piI should reconstruct

the macroscopic value [kTLog Z] IV, so that deviations from this rule are a convenient guide in

the approximations. Finally, the knowledge of pII could be useful as a tool for understanding
the physical origin of complex phenomena such as the superfluid transition in gases, a subject
that we are planning to investigate in future work.

It is also possible to take a point of view which is completely diiferent from that in the present
article, where the Ursell operators are known diiferences between exponentials of Hamiltonians,
and to consider them as unknown operators which will be determined according to variational

principles. The N body density operator at thermal equilibrium is given by:

pN =
KN (l19)

ZN

where KN is defined by the exact expression(3). Now, this expression can also be truncated

to the terms leading to some approximation for Log Z (first-order approximation ternis in U2

for instance, or second-order in U2 with first-order U3> etc.) while the Ut are now left free to

vary, instead of being fixed. This provides a variational pN or, by a simple generalization, a
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variational expression of the many partiale density operator in the grand canonical ensemble.

Now, since the expressions of the partial density operators that we have written allow an exact

evaluation of the energy (or of the pressure,1-e- the grand potential),
one can then determine

the Ui's that make these expressions stationary. In this way one gets a variational method,
valid at zero temperature, which provides approximate values of the ground state energy of

the system. Of course, if no truncation had been in (3), the method should simply lead to

the initial definition of the Ui's (at
zero temperature) and to the exact energy. On the other

hand, a truncation will in general lead to different expressions of the Ui's; for instance, if the

operators of order more than 2 are ignored, the changes in the value of U2 will tend to make up
for the omission of U3, etc. An interesting feature of the method is that is would automatically
provide the next step in the variational method: inserting more U-C diagrams in the expression
of Log Z. The extension to non-zero temperature can also be envisagea, by calculating the

rnicroscopic expression of the pressure and making it stationary, but the practical usefulness

of this possibility has not yet been examined.
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Appendix A

Instead of varying the first Ursell operator Ui, as in the text, we can also obtain reduced

density operators by varying the interaction potential. Let us assume that l~j gets the following
variation

l~j ~ l~j + fl~~d~ (1 q~«; j q~b) Ii à«; j : ôb (A.l)

Circular permutations under the trace allow us to write

~~
"

~~ ~12..
N

Il
. 9~«> . 9~~i« .

°«1
. °~ ~~~~ Î

iA.~~

Î~ ~ ~~~'~~ ~~~ ~~'~~~

where BN is the N particle Hamiltonian; the factor 1/2
anses frorn the fact that pII is nor-

malized with a trace equal to N(N -1), and not to N(N -1)/2. We therefore have the simple
relation

i°a, °b PII l~a, l~b)
=

2 )Î~~~ L°~ z. iA.3)

If we apply this formula to an exact expression of Log Z, containing ail terras of the expansion
in Ursell operators, we will get exactly the same result as when using (18). But, if we start from

some approximate expressions of Log Z, different results are in general obtained by the two

methods. As an illustration, we apply (A.3) to the lowest order treatment of the interactions

given by (33); because Ui does non depend on the interaction potential the only variation of

Log Z arises from that of U2, which is given by

dUl'~
=

dz
f f

[-flH2(1, 2)]P 1 çJ«; 2 : çJb) Il @«; 2 ôb x

n=o p=o
"' (A.4)

x
[-flH2(1, 2)]"~P~~

~ ~~~

2

1



N°la URSELL OPERATORS II 1277

where the two partiale Hamiltonian H2 is equal to

jp j2 ~ jp j2H2(1, 2)
=

~ ~
+ Vil, 2). iA.5)

Introducing the sumrnation index p'
= n p 1, we can write

dUÎ'~
"

d~ ~j
~ ~ ~ ~jj

l~flH2]~ l §~ai 2 §~b)11 °al 2 °b X

,Î=o
~ IA-fi)

x
j-pH2]~' ~ ~~~

2

which, alter insertion into (33) and iA,2), gives

~
,

~~~ " ~[~ ip + p~ + iii
~~~~~~~~ ~~l~ l~ + ~~~~~l ~~ + ~~~~~l ~~~~~~~~ ~~l~ l~ + ~~~~l ~~.~~

This result is indeed different from isl) 153). The brackets il + fi now appear in the center

of the product of operators, instead of at both ends, and there are two of them instead of four.

Moreover, series which cannot be summed in exponentials or operators f remain explicitly in

the final result. If we insert Vil, 2)
=

0 into this expression, we readily recover the expression
of the two-body operator given in (29).

We now study the properties of iA.7) at short relative distances and show that the two

partiale distribution indeed vanishes in regions of the configuration space where the repulsion

is sufliciently strong. Assume that we keep p' fixed and sum over p. If p'
=

0, the sum over p
of [-flH2]~ introduces the operator

~
~ÎÎÎ2] ~' ~~'~~

In the same way, if p'
=

1, the same summation introduces

e-PH2 ji p H~j
~

(A.9)
[-flH21

and so on for p'
=

2,3,... for each value of p'
we obtain a function which contains in the

numerator an exponential and a polynomial in H2 with a degree which is inferior to that of

the numerator. Therefore, if H2 becomes infinite, ail these expressions vanish. Now, assume

that we calculate the matrix element

(ri r2 = ri + r PII if)
=

i(ri
r2 = ri + r1 ~

~p +

)
+ iii

1-flH21~ Op) (A.10)

~ p

where
,

Ôp'l
"

Ii + ~f(i)1 Ii + ~f1211 l~flH2l~ it) IA-ii)

and where flf > is any ifixed) ket. If we insert a closure relation over the eigenstates çgq >

of H2, with energies Eq, we get

~-flEq ijCg (ri, r~ = ri + r 1~qll~Jq Bol
p~

+

+ (ri, r2 = ri + r çJq)(çgq ail
~ ~)~

~) ~~~~~j + (term p'
= 2j + etc.

~~ ~~~

9
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All terms p =
0,1, 2,.. in the right-hand side of this equation contain different fractions which

vanish when the energy becomes infinite. Assume now that the interaction potential is strongiy
repulsive at short relative distances. Then, if r is sufliciently small, the scalar product (ri, r2 "

ri + r çgq) will be non zero only if the energy Eq is sufliciently large; in the limit of hard core

repulsion, it actually completely vanishes if (r( < b, where b is the range of the interaction. This

shows that ail terms in the right hand side of (A.12) become zero at short relative distances(1ii,
and therefore that piI has the cancellation properties discussed in Section 4. Obviously the

same reasoning applies to the conjugate inatrix element (flf pII ri, r2 " ri + ri, provided
that the summation over

p' is now made before the summation over p(~~). Equation (A.7)
therefore contains the desired non-perturbative cancellation properties of pII at short relative

distances. We note that, with this method, the derivative with respect to the potential is

first-order instead of second-order; there is a doser relation between the value of Log Z and

pII, so that the result obtained for the latter coula be less sensitive to approximations made in

Log Z. On the other hand, the big advantage of the method used in the text is that it provides

compact analytic expressions where ail summations have been incorporated into exponentials

or fractions of operators.

Appendix B

As shown in [2], it is possible to sum an
infinite numbers of terms containing powers of U2

going to infinity (ladder diagrams, associated with the condensation of pairs) into the following
expression

Log Z
=

[Log Z];~ Tri,2 (Log il z~Ul'~(1, 2) x il + n f(1ii x [1 + q f(2)]j (B.l)

which can be simplified into

Log Z
=

[Log Z];~ Tri,2 (Log il z~Ûl'~(1, 2)j (B.2)

with the notation

ÙÎ'~(1, 2)
=

UÎ'~(1, 2) x
J + nf(i)1 x J + nf(2)1. (B.3)

But the logarithm of (B.2)
can be expanded as

f
lTri,~

[u]>A(1, 2) j(i) j(2)j ") (B.4)

ami
n

which is a convement expression for varying the Ui's, and therefore the f's. At this point,
the discussion becomes similar to that given for the ideal gas (by circular permutation under

the trace, the variation m d~ can always be brought in front of ail the other operators, which

eliminates in practice the factor 1/n)
as

well as that given after equation (57): the f's can be

expanded as in (35) and the variations of the Ui may occur either inside the saine f, or in two

(~~) We assume here that ail 8~, remam finite (see next footnote).

(~~) Dilficulties would nevertheless
anse

for diagonal matrix elements (ri,
r2 = ri + r pu ri, r2 =

,

ri + ri with (r( < b: the kets e
,

would become infinite under the elfect of the factor [-flH12]~

m
(A.Il). As

m
the method used În Section 4, a more detailed study mcluding higher order terms is

needed when the partiales become close
m

both the bra and the ket;
we

do not study this particular

case
here.
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consecutive f's, or in two non-consecutive f's related or not to the saine partide. In the first

case, (58) is used, and we obtain the following contribution to pII

qP~x_B(1, 2) + B(1, 2)qP~x_ (B.5)

with

B(1, 2)
=

f(1) @ il + q f(2)] Tr3 ~~~~Î'~~ (B.6)
1 z2U~' (2, 3)

This is a term which contains no dynamical correlations but just exchange correlations; it is

reminiscent of an exchange terni for the ideal gas.
If two consecutive f's are varied, we now use (fil and a similar calculation gives the following

contribution to the two particle density operator pII

2z~ Il + q f(1)] x [1 + q f(2)]
~ ~

x
1 z2U~ '

Il, 2) il + n f(1)] il + n f(2)] (B.7)
xUÎ'~li, 2) J + nfli)1 J + nf12)1

which can also be written as

2z~ Îl + q fil)] x Il + q f12)] ~ ~~
~~j'~~ (B.8)

1
-~Î~'

il, 2)

This term is the generalization of the first fine of (53) and of (62); it contains no trace over

extra partiales and introduces short-range correlations for strongly repulsive potentials.
The last two terms contain, as in (B.6),

a trace over a third partiale, which gives them a less

important rote in the introduction of short-range correlations for hard cores (see the discussion

of Section 4); to save space we do not write them explicitly here. So (B.8) is the result of this

Appendix.
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