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Abstract. — We apply the formalism of Ursell operators, introduced in a previous article, to
the calculation of reduced density operators (one and two-body density operators) in a dilute
quantum gas; the calculation is not a fugacity expansion and is therefore not limited to low
degrees of degeneracy. We obtain quantum corrections for the one-particle density operator
as a function of the second Ursell operator. For the two-body density operator, we examine
how statistics and interactions combine their effects on the correlations between particles; in
particular we discuss in detail how hard cores potentials affect the short range correlations, a
non-perturbative effect.

1. Introduction

In a previous article [1] (see also [2]), we introduced a method for obtaining the partition
function of a degenerate gas which combines the use of cluster operators U;, associated with
an auxiliary system of distinguishable particles, with exchange cycles for an exact treatment of
statistics. The basic motivation of this technique was to give a better treatment of correlations
between particles than in mean field approaches, especially at short relative distances for
strongly repulsive interaction potentials. In this article we show that the method is indeed
a useful tool for obtaining explicit expressions of partial density operators, in particular of
the two-particle density operators which, in principle, contain all two-body correlations. The
expressions remain valid at short distances even in the presence of hard core potentials, which
means that they include physical effects occurring “in the middle of a collision” and not only
asymptotic effects occurring long before or after collision (phase shifts).

In transport theory, an important issue is the derivation of kinetic equations, which is usually
made by introducing appropriate approximations into the exact equations of motion of the
system. A traditional approach is to start from the first equations of the BBGKY hierarchy
and to use them to derive (or to guess) an approximate expression for the two-body density
operator, which becomes a function of the one body density operator. The expression is then
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inserted into the first BBGYK equation in order to obtain the desired kinetic equation (see for
instance [3]). A well known example is the derivation given by Snider [4] of a quantum kinetic
equation bearing his name for particles with or without internal states. The detailed study
of the properties of reduced density operators may therefore be a useful point of comparison
1 this domain; for instance, one may require that the ansatz made for the expression of the
two-body density operator (as a function of the one body operator) be valid at equilibrium,
which provides a useful guide.

2. Partial Density Operators

In classical physics, the one-particle distribution function in a homogeneous system 1s indepen-
dent of the interaction potential; this is because the contribution of the potential factorizes out
of the distribution, which leaves in factor a Gaussian distribution function of the momentum.
In quantum statistical mechanics, since the operators corresponding to kinetic and potential
energy do not commute, this factorization does not take place so that the momentum distribu-
tion is no longer a Gaussian. One sometimes uses the words “diffraction effects” to characterize
these changes (since they arise from the wave properties of particles), as opposed to “quan-
tum statistics effects”, which arise from the consequences of particle indistinguishability and
also modify the distribution function. Our purpose 1n this section is to study how these two
effects combine 1n the expression of the one and two particle density operators, 1n terms of the
second Ursell operator Us, of the ternary operator Us, etc. We will use a technique based on
the partial derivative of the operators, already sketched in [2], which starts from the following
general expression of the canonical partition function Zy (the notation 1s the same as in [1]):

S

Zy=Tr {KN } (1)
A

where the symmetrizer S applies for bosons, the antisymmetrizer A for fermions, and where

Ky is the exponential of the N particle Hamiltonian Hy multiphed by the inverse temperature

B

Ky =e PHv (2)
which can be expanded as
En =Y Ui(Ui()--U() x Us(, e (s )Ua(., ) xUs(.s ). (3)
w} m’1 factors m; factors

We recall the definitions of the lowest order Ursell operators:

Ui(1) = =P “
U2(1,2) = —BAH212) _ Ul(l) X U1(2)

By recurrence, higher orders are obtained in a similar way.
2.1. ONE-PARTICLE DENSITY OPERATOR. — If we set(!)

U(1,2,. 1) =U(1,2,. D [U(1) x U1(2) x . x Us(1))] (5)

(*) With this definition, U; is non-Hermitian; we could of course ntroduce only Hermuitian operators
by symmetrizing (5), namely by putting square roots of Ui’s on both sides of Uz, but this 1s not
especially useful for our calculations.
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we can choose U; _e}_nd the U)’s, instead of the U’s, to characterlze_ the cluster properties of
Kn; by definition U, is equal to one. Assume now that we keep all U,;’s constant and vary Uy
according to(%):

AUy = dz x Uy | 9)(8 | - (6)
What is then the variation of Z? Inserting this relation into (5), then into (3) and finally into
(1), we get

S =N ' .
dZy = dz nl,2,3,,,N{AKNZ |z:<p)(z:0]}. (7)
=1
Since the canonical N particle density operator s equal to
can __ -1 S S
R ®)

expression (7) is nothing but the product of Zy by the average value of the one-particle operator
Z:zf’ | i :¢)(i : 8 ]. Therefore, in terms of the canonical one-particle density operator(?) p*",
we obtain

d
108 Zn =Tr{[ ) | pi™} = (0| 1™ | ¥) (9)

(the derivative with respect to z 1s meant at the value z = 0). We can therefore obtain reduced
density matrices from this kind of operatorial vanations.
If the grand canonical ensemble is used, the many-particle density operator 1s defined by

_ w[S. S
poe = 2> 27 wfSEn ) (10)

and a similar reasoning provides the following relation involving the grand canonical one-
particle density operator pr (for the sake of simplicity we now omit the index (gc))

< Log Zge = Te{pr | o0 [} = (6] o1 ] ) an

This formula shows that pr is the “operatorial derivative” of Z..
2.2. Two-PARTICLE DENSITY OPERATOR. — We now vary U; according to (see note 2)
dUs = Uy [dz | 02)(62 | +dy | oy}{0y |] (12)

and we calculate the term, in the variation of Z, which is proportional to dz x dy {cross term).
This term 15 given by

S . . . .
Az x dy x Trip v KN D |6 @aid s @) 621516y | (13)
K]

(*) As Uy, the vanation dU; 1s non Hermitian 1 general. Note that the Us’s are at the end of the
product in (5) while they are at the beginning m (6); 1n fact, we could also choose the opposite
convention where the U’s are at the other end in both equations.

(®) Here we take the convention where the operator pr 1s normahized to the number N of particles
(not to one).
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which is nothing but the product
dz x dy X Zn x (82,0, | pF" | @y 9y) (14)
containing the matrix element of the two particle density operator(?) p§#® which is therefore

given by
5?

(0.0 | A" 02 00) = (28] 5502w, (15)
Going over to the grand canonical ensemble leads to the relation
-1 62
(62,04 | p11 | @z, @y) = [Zg] mch (16)

(where the derivative 1s meant in z = y = 0 and, again, the index (gc) is not explicitly written
for the reduced operator). But since

P 107
axay Log ch - [ch]

3 0Zge  OZge

dzdy ~ 1] oz dy (17)

we get, with the help of relation (11) (again, for simplification, we suppress the index (gc) from
the reduced operator)

52
(0 N | p11 | @2 ‘Py) = (0. | p1 I ‘Pa:)(ey ' P1 I Say) + é}B—yLOg Zge. (18)

This is the starting point of our calculations below.

3. Application to a Dilute Gas

In [1] we obtained expressions for Log Z that are valid for dilute gases. We now combine them
with the preceding formulas to obtain reduced density operators, starting from the simple
example of an ideal gas (no interactions).

3.1. IDEAL GAS. — For an 1deal gas we have
Log Z = —n Tr {Log [1 —nzU1]} =75 Z n T Tr {[n2U1]"} (19)
n=1
where 7 is equal to 1 for bosons, —1 for fermions, and
z =P (20)

3.1.1. One-Particle Density Operator. — When U; varies according to (6) in the right hand
side of (19), we have to vary the n factors of the product [zU1]" But, in fact, all these
terms are equal since, in each of them, a permutation of the operators under the trace allows
us to bring the variation 1n front of all the other operators; the factor n~! disappears in this
operation and the result is

dLog Z = npdzx x ZTr (anl | ©){8 | [anl]n_l) (21)

n=1

(*) with a normalization to (N — 1)N.



N°10 URSELL OPERATORS II 1259

or
dLog Z = n
B =@ T {ln=ti]"} 1) = 0| o1 | ). (22)
n=1
This provides the simple result
pr=f (23)
where the operator f is defined as a function of the operator U; as
ZLH
=27 2

or, more explicitly (in the case where the external potential is zero), as

o[E—]
e XLy

nEm (25)

1—mne

(this is nothing but the operatorial version of the well known Fermi of Bose functions for an
1deal quantum gas). We therefore recover a classical result.

3.1.2. Two Particle Density Operator. — We now vary U; in (19) according to (12) and look
for the cross terms in dz and dy. As in the preceding section, in every term of the sum over n
the replacement by dz | ¢;)(6; | Ur can occur in n different places, but can be brought back
to the front position by circular permutation under the trace, which suppresses the factor n=1
The cross term appearing in nn~1Tr{[nzU1]"} is therefore equal to

n—2

ndzdyTr {an1 | 02)(6z | D [n2U1]" 02Ut | 0, ){0s | [an1]”"2“"} (26)

=0
which, when summed over n, mtroduces the quantity:

o n—2

1Y S (0 | InzU P | 0,)(8y | InzUn]" 7177 | o) (27)

n=1 p=0

VYe cansetp =n— p — 2 and replace the summations over n and p by summations over n and
p ; then, each of these summations introduces again the operator f defined in (24). Inserting
this mnto the right hand side of (18), we get

02,0y | pru | @os 0y) = {02 | F 1) x Oy | Flowd+00: | floy) x40 | flws)  (28)
or
pi(1,2) = [f(1) ® f(2)] [1 + nPex.] (29)
where f(1) is the f operator with the momentum of the first particle inside Us:

ZLH(l)

f():m (30)

while f(2) has the same definition for the other particle; Pey. is the exchange operator between
particles 1 and 2. Equation (29) is of course a known result for ideal gases.
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Remark: from (23) and (29), since the trace of the one-particle density operator is equal to
the average number of particles, we obtain

Tra {pu(1,2)} =< N > pi(1) + 7 [pr(1))? (31)

which shows that the partial trace of the two-body density operator is not merely proportional
to the one-particle density operator, but contains an additional term proportional to [pr(1)]?

This is a consequence of the use of the grand canonical ensemble where the number of particles
N fluctuates, so that for instance the average of the product N(IV — 1) is not exactly equal to
< N >< N -1 >. In the thermodynamic limit, nevertheless, where the volume and < N >
tend simultaneously to infinity (while their ratio remains constant), since the expression of
the operator pj 1tself does not depend on the volume, it is clear that the first term in (31) 1s
dominant, so that the usual trace relation of the canonical ensemble

Tra {pff™(1,2)) =< N — 1> p*(1) (32)

is recovered to a very good approximation. Physically, this happens because the exchange
term in (29) is significant at microscopic relative distances between the particles, but vanishes
when this distance becomes macroscopic; therefore, by average over all possible positions of
the second particle, the direct term becomes dominant.

3.2. INTERACTING DILUTE GAS: FIRST CORRECTION. — Qur purpose now is to introduce
interactions and to examine how (23) and (29) are modified. We shall start from the simplest
generalization (°) of the Beth Uhlenbeck formula introduced in [1]

1+ nPex

2
1+ 0Py,
2

Log Z = [Log ZJ;, + 2°Tr15 {Uz X [L4+nf(1)] x[1+ "7f(2)}}

(33)
< F(1) x f(2 )}

= [Log Z,, + Tru {Uz

where [Log Z];, is the value obtained in the absence of interactions, given in (19); according
to (5), the operator U is defined by

= U, x [U1(1)U1(2)] (34)

3.2.1. One-Particle Density Operator. — The product f(1)f(2) in the second line of (33) can
be expanded according to

Ff2) = Z [zU (D] x [n2Ur (2)F (35)

n,p=1

(we use the fact that n2 = 1 for bosons and fermions) so that the vanations of U; defined in
(6) introduce a term equal to

1+ Pex oo n—1
Tri,2 {U2+ Z Z [zUy (D] n2U1(1) | 1: 0 >< 1:6 | (36)
n=1 k=0

U2 (L] nf(2) ) +id.(1 - 2)

(°)In the second hne of (33), the factor z® appearing in the rnight hand side of the first line has
been combined with the U;’s mntroduced by the substitution of Us for Uz in order to provide the two
operators f’s.
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where id.(1 < 2) symbolizes the same expression with indices 1 and 2 exchanged. The sum-
mation over n can be replaced by a summation over n = m — 1 — k& which introduces the
operator

S (D" = 1+77(1) (37)
n' =0

while the summation over & introduces

> et ()" = s = 0f(1), (39)

Now, since
f(1) = 2U1(1) [1 + nf(1)]

the factor 1f(2) in the right hand side of (36) and the 5£(1) from (38) can be inserted into Uz
to provide the result 22U [L + nf(1)][1 + nf(2)], which leads to

1+ nPex.

220 | {1+ () s {022

[+ nfUI[ + nf<z>1} o) (39)

(the factor 2 arises from the term [1 « 2]). Finally we obtain

1+ nPex.

o = F(1) + 222 [1 + nf(1)] Ty {U2 L

i nf(zn} L 4+ nf()] (40)

This equation 1s valid to first-order in Us,

The validity of (40) does not require that the degree of degeneracy of the gas should be very
low, but of course it can be applied to this particular case: 1n the limit of a non-degenerate gas,
the correction to pr is sumply obtained by replacing n (40} all factors [1 + 7] by one. One can
also expand these factors in powers of nf, which provides the quantum corrections introduced
by particle indistinguishability, starting with the term corresponding to a permutation between
two particles, followed by the term introduced by cycles of three particles, etc.

Equation (40) is limited to imnteraction potentials with sufficiently small range b, a necessary
conditions for the higher order corrections in [Us)?, [Us]°, etc. as well in any power of Us, Uy,
etc. to be negligible(®); on the other hand, 1t is not a perturbative result with respect to the
intensity of the interaction potential, which can take arbitrarily large values for small relative
distances between particles (see for instance Section 4 for a discussion of hard core potentials);
1n other words, the equation contains the effects of local perturbations on thermal equilibrium,
even if they are strong.

Mathematically, Us is the difference between two exponential operators and, as such, contains
all powers of the potential. In order to make contact with perturbation theores, it is of course
possible to retain only the first-order term from the V expansion of Uz, that is to replace
Uz(l, 2) by

Us ~ — /0 ® a8 ur WUt @y, 20f WU @) (41)

where

"

Uf (1) = e—ﬁ” [P2/2m+‘/cxt(r)] (42)

() See Section 3.3 for a discussion of these terms.
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and where V. (r) is the external potential. This yields

ﬁ ’ !
o £ +270) [ a8 U <1>m{v<1,z>ﬂpﬂf<2)}uﬁ WE+nfQ)]  (43)

an equation which now requires the potential to be sufficiently small. In the case of fermions
(n = —1) the diagonal element of p; gets a non-zero correction only if the product f{1)[1 — f(1)]
is non zero, where [1 — f(1)] can be interpreted as the distribution function of holes; as a
consequence, the correction occurs only near the surface of the Fermi sphere, within an energy
range of the order of kT, which is a familiar result("). The fact that (43) contains integral
over the mverse temperature 3 is characteristic of the results of perturbation theories [5, 6]
(second order terms would contain a double integration over B and 8", etc. ), as opposed to
our formalism where every U, contains a resummation of an infinite perturbation series which
suppresses these summations.

3.2.2. Two-Particle Density Operator. — We now insert (12} into (35) and look for the crossed
terms in dz and dy. Several possibilities may arise, depending on whether the variations affect
two U;’s corresponding to two different particles, or to the same particle. This introduces
under the double sum over n and p the following expression

Z [772U1(1)]k17,zU1(1) [1:p){1:8; | [’UZU1(1)]n_1_k »

k=0
X Z [WZUl(z)]kl nzUL(2) | 2: @y){(2: 6y | [ﬂzUl(Z)]P‘l_k' 4
K =0
n2 n—2—k , (44)
+ Z [nZUl(l)]k 7725U1(1) f 1: 4,03:)(1 18, | Z [773U1(1)]k
k=0 e

UL (1) | 12 0,)(1: 6, | [n2Us (]2 [l @)
+id.([1,n] & [2,p])) +id.(z < ¥)

where, in the last line, id.([1,n] < [2,p]) originates from two vanations in U;(2)’s, which
introduce a term equal to that contained in the two preceding lines with the substitutions
mdicated between brackets. Moreover, since the first operator which is varied can contain a
variation in | ¢;)(6; | as assumed explicitly in (44), or a variation in | ¢, )(6y |, one should add
to all preceding results the same term with the substitution (z < y), as indicated in the second
term of the last line. The rest of the calculation is similar to that of the preceding section:
when independent summation 1ndices replace n, p, k£ and k', the summations introduce either
operators nf’s (when the index runs from 1 to infinity) or operators [1 + 5f] (when it runs
from 0 to infinity) so that (44) becomes

nf(1) | 1:a){1: 02 | [L+nf(D)]nf(2) [ 2:0y)(2: 0y [ [L +nf(2)]+
+nf(1) [ 1:0e)(1: 0z [ nf(1) [ 1:0y)(1: 0y | 1 +0f(1)]nf(2) (45)
+id.(1 « 2)+id(z < y)

According to (33), we now have to multiply this term by Us and a symmetrization operator,
and to take the trace over the variables of two particles. As in the calculation of py, it is

(") This remains true if the more general formula (40) is used, as can be seen by replacing
Ua [ +nf()}[1 + nf(2)] by the product Uz f(1)f(2).
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convenient to move 7f(1) as well as 7f(2) towards Us, with which they combine to introduce
the product 22U, [1 + 7f(1)] [L + nf(2)}; doing this operation, for instance, in the term of the
first line of (45) provides the result

2Tz {USA L+ nf (D] 113 o)1 05 | [L +0f(1)] x (46)
X [L+nf@)]12:9,)2: 0, | [1+nf(2)]}

which is simply equal to
200,60y | [1+9fU] 1+ nf @)U 1+ af )1 +nf (D} ]| ¢z, 0y) (47)

where we have introduced the notation U2S A for the restriction of Uy to the symmetric/antisymmetric

space:
1+ 78,

2
(because the operator U, itself is already symmetric by exchange of the particles, in this
definition the symmetrization projector [1 + 9Fex.] /2 may arbitrarly be put on either side, or
on both). Similarly, the second line of (45) introduces a contribution

220, | nf(1) | 920y | [+ nf (D) Tra {USA L+ 0f @} L+0f (W] [ 0a)  (49)

This can be written as a term containing a trace over a third particle

2260, ,8y | [1+nf(D)[1+nf(2) Trs {UPA(2,3) [1 +05(3)]} x (50)
x [1 + Uf(Q)] 77Pex-(11 2) | (Pa:,‘P'y)

which, according to (40) and (18), is nothing but an exchange term associated with the product
of pr’s appearing in (18). Finally, if we include the contributions of the permutations 1n the third
line of (45), our results concerning pr and prr can be summarized in the following equations,
where we use the notation 1 x U as a reminder that the present calculation is first-order in Us

pi(1) = f(1) + 6p(1) (51)
pII(l, 2) = f(l) ® f(2) [1 + nPex.] + 6911(1, 2)

Uyt = (48)

with
61 = 6f =25 [+ nf ()] Tra {UPA [1+nf (@]} [ +nf (V)] (52)

and
Sp = 22%[L+nf(V)[L +2f(2)) Us(1,2) 1 +2f ()] [1 +2£(2)] (53)
+[1+7Pex] [f(1) ®6p1(2)] [1 + nPex.]

The latter result includes two kinds of contributions to ép1;. In the second line, we get a correc-
tion as a direct consequence of the modification of py under the effects of the interactions, but
which contains no correlation between the particles, except of course the statistical correlation
introduced by the operators [1 + 7Py} at each end. In the first line, we get a different kind
of correction which may contain strong short range correlations created by the interactions,
that is correlations that manifest themselves over a characteristic distance of the order of the
potential range b (and not only of the order of the de Broglie wavelength). In Section 4 we
discuss these short range effects in more detail.

Otherwise, the remarks made after equation (40) apply without any change. For instance,
(53) is a non-perturbative result in terms of the intensity of the interactions, but is valid only
if the potential range b is sufficiently small. The limit of non-degenerate gases 1s immediately
obtained by suppressing all brackets [1 + 7f] in (52) and (53).
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3.3. SECOND-ORDER IN U;. — We now include the effect of the terms in Log Z which are
second order in Uy and have been obtained in {1]. Their contribution has been found to be
equal to the sum of two terms

4

Sta{ o5t @2+ nsl 4 ns@)] | 69
and
224 Try 00 {U7A(1L,2) [L+nf D)L+ nf@IUSAWLS) L+ nf W)L +0f @)} (55)

Introducing the notation
1+ nPex

Ty™(1,2) = Ua(1,2) =, (56)

we can rewrite (54) as

STra {704 (1,27 T (1,250} (57)

From now on, we focus the calculation to the two particle density operator, which contains
the correlations between the particles and therefore the most interesting physical information.
The f’s may be expanded in U;’s as m (35); when the Uy ’s are varied, several kinds of situations

may occur, depending on whether the variations occur in close f’s or f’s separated by a Uﬁ’A,
and whether the f’s correspond to the same particle or not. Since all f’s play the same role,
we can assume that the variation in dz takes place in the first f(1), and multiply the result by
4. There are now four possible cases, depending on where the second variation 1s placed.

1) If the second variation occurs in the same f(1), the term which appears is similar to that
calculated in the third and fourth lines of (44), and we have to make the substitution

FQ)=nf(1)[1:0a)(1:0: | f(1) [ Lry)(l:8y | [L+nf(1)] +id(z < y).  (58)
This leads to

2005 | £(1) | @y} x Tria {T5 " (1,2)f(1) |12 0a){1:6y | x

— 59
X [1+nf (D] F@T5" (LA 9

But we also have to add the symmetric term id.(z < ), so that we get the following
contribution to the two particle operator

4 S,A 2
254F(1) [1 +nf(2)) Trs { (U323 L+ nf@)] [t +nf (3] }npex(l, 2)+(1 & 2) (60)

where the term (1 < 2) is simply obtained from the preceding term by moving the
exchange operator Pex(1,2) in front of the other operators. The contribution (60) is
clearly an exchange term, which contains no dynamic correlation between the particles,
but just correlations from statistics.

1) If the variation occurs in the f(2) which follows immediately the varied f(1), both f’s
should be varied according to

F=2 11 @eg) 10y | [1+0f] (61)
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so that we obtain
2Try,z { Ty (1,2F(1) | 12 @a){1: 6 | [1+0f(1)] F(2)x
x12:0,)(2 16, | L +0f@] T (1,22}
which leads to the following contribution

22 [1+nf (V] [1 + nf(@] U5 (1,2 [L +nf (1)] x (63)
X [L+0f2) Uz (1,2) [1 +af (D} [1 +7f(2)].
This is a second-order generalization of the first line of (53), which contains no trace

over a third particle; we expect that it will contain short range correlations for strongly
repulsive potentials at short distances.

(62)

If the second variation occurs in the other f(1), equation (61) applies again and we obtain
2Trr,z {05 (1,2) F(1) | 12 @a){1: 6 | [1+0£(1)] F(2)
XUy (1,2)F(1) | 1: @, )(1: 6, | [+ f (V] ()}
and the following contribution to the two particle density operator
22* [+ nf (] [1 + nf(2)) Tro {U54(1,3) [L + nf (V] [L +nf (3)]
xUSA(2,3) (1 +0f2)] (1 +0f(3)]} Pex(1,2)

The curious feature of this term 1s that it contains an exchange operator without a factor
7; we will see other similar cases below.

(64)

Finally, the variation may occur in the second f(2), which from (61) leads to:

2Trr,z {054 (1,2)£(1) | 15 @a){1: 6 | [1+0f(1)] (2)

XUy (1,20 F()F(2) | 2: 0,)(2 : 6, | [L+nf(2)]}

which gives the same contribution to pr1 as the term (65).

(66)

Among all four terms that we have obtained, only (63) contains dynamical correlations
between the particles, and no trace over a third interaction partner. This term will play
an important role in the discussion of Section 4.

We now have to apply the same kind of calculation to (55). The general method is exactly
the same, but here we obtain 5 terms instead of 4: one term which contains a trace over
a third particle with, inside the trace, only one U, operator; one term of the same kind
but with two Uz’s mside the trace; and finally three terms containing traces over two
extra particles. As an example, we give one of these three terms, which is equal to

424 (1) L+ 0f(2)] Troa {USA(2,9) [ +nf ()] [L +nf (3)]
xUPA(2,4) [1+nf2)][1 + nf(4)] P (1,2) } + (67)
+id. [1 « 2].
To save space, we do not write the other terms explicitly.

Finally, one must not forget to include the second order modifications of the product of
p1 ® p1 according to (18). They combine with the terms in 9Pex(1,2) of (60) and the
analog contribution derived from (55) 1in order to produce a symmetrizer/antisymmetrizer
[1+ nPex(1,2)] /2 in the same manner as for the first-order calculation.
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3.4. FIRST-ORDER IN Us. — In reference [1], we obtain the following term for the first-order
contribution of Us to Log Z

e {UPA(1,2,3) [L+ nf (][ + S @)1 [1 + nf(3)]} (68)
where USS ’A(l, 2,3) is the properly symmetrized version of the three particle operator Us
S
Us™(1,2,3) = Us(1,2,3) 2. (69)
As
It is convenient to rewrite (68) in the form
+5,A
oz {T57(1,2,8) x £(1) x £(2) x £(3)} (70)

and, as in (35), to expand each of the f’s inside the product into a series of U;’s which will be
varied. If both variations occur in Uy’s originating from the same f, we use (58) and we are
led to the following contribution to pn:

3f(1)® [1+nf(2)] Trs,a {Us(2,3,4) L + 0fB) 1 + nf (D]} [1 + 0f(2)] nPex. + hic.  (71)

where (h.c.) symbolizes the Hermitian conjugate operator, with Pey. in front of the product of
operators instead of at the end. This term is similar to (60) and reminiscent of the exchange
terms in pyp for an ideal gas.

If the variations of the U; occur in operators originating from two different f’s, we use (61)
and we are led to the following contribution to the two particle density operator

62° [1+nf (D] [1+7f(2)] x Trs {Us(1,2,3) 1+ 0f @)} x L +af D] 1 +2f(2)]  (72)

which is a direct generalization of the first line of the right hand side of (53); as this term, it
contains dynamical correlations at short distances.

Of course, as for Us, there are terms in py; that are second order in Us third order, etc. as
well as terms depending of the higher order Ursell operators U;. Nevertheless, for a gas, we will
see that the terms that we have already explicitly written are sufficient for a good description
of the correlations.

4. Effects of a Strong Repulsion with Short Range

We now study the properties of the partial density operator pr for a potential with a strong
repulsive core. For the sake of simplicity, we will often assume a hard sphere potential of spatial

extension b: i | | <b
[ oo forr=|r;—r2| <
V(ry,re) = { 0 otherwise )

but most of our calculations are in fact more general, b being defined as the distance between
particles at which the interaction potential becomes significantly larger than the thermal energy
kgT. We know that the two body density operator:

{r1,r2 | pur | T, 1) (74)

must necessarily vanish whenever erther the distance | ry —rz |, or | r; —ry |, (or both) becomes
inferior to b. This 1s because, if we call | ¥ > the eigenstates of the N particle Hamiltonian
Hy

Hy | i) = By | ¥i) (75)
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and ¥,(ry,rs,rs,...ry) the associated wave functions, the matrix elements of pff® can be
expressed as:

(ri,ra | pF™ | vy, 1p) = [d3rs.. . [Brn 3, e‘ﬁE"lI/n(rl,rz,rF,..I.rA{)x , (76)
xWr(ry,ry,rg,...T5)

where the wave functions vanish exponentially in any region of configuration space where the
potential energy exceeds their energy (in the limit of infinite potential and hard cores, they
vamsh exactly whenever two hard cores overlap). Therefore, if either |r; — ra| or | ry —ry | is less
than b (or both), the corresponding matrix elements of pf?™ have to vanish. It is straightforward
to extend this result to the grand canonical version g1 of the two particle density operator.

Such a cancellation is a non-perturbative property of the two particle density operator. At
zero relative distances, however small the potential range b is, the correction brought by the
interactions to the ideal gas expression of py remains finite: it has to exactly compensate for
the zero-order term. On the other hand, nothing similar occurs for the one particle density
operator, which undergoes only perturbative changes. Mathematically speaking, hard core
potentials introduce a non-analytical expression of the potential energy, and the limit of the
matrix elements of py; at short distances is obtained in a non-uniform convergence process. It
is therefore an interesting test of our method to see how this result is recovered, and indeed
we will see that the process 1s not trivial.

In what follows we limit ourselves to the proof of this non-perturbative cancellation: we
look for all short range corrections in pyy that are of zero-order in b and ignore all higher order
corrections. What we have to do, then, is to consider the whole series of terms of the Ursell
expansion of pr; and identify the terms of zero-order in b; fortunately, it turns out that only a
small numbers of the Ursell diagrams contribute, namely those of zero, first and second-order
i U; as well as first-order in U3. As 1n Section 3.2 above, we start the analysis from the terms
which are zero-order in Us.

4.1. ZERO-ORDER TERM IN Us. — In a system with translational invariance (periodic bound-
ary conditions), pr1 commutes with the sum of the momenta of the two particles, which means
that all its matrix elements are diagonal with respect to this sum. We therefore have

(1‘1,1‘2 | ot ‘ r’l,r;) — V—2 Z z e [q '(rl—rz)—q«(rx—rz)] (77)
K q,d
K K K + K ‘
2 hq=- = = 78

where V is the volume of the system (which arises from the normalization of the plane waves).
This general formula can readily be applied to an ideal gas; from (29), where the operators f
are diagonal in the momentum representation, we obtain a direct term where q = q , followed
by an exchange term where q = —q, so that the sum is

/d3k1fd3k2 f(kl)f(kZ) ez(kz—kl).(r1—r2—r1+r2)/2+"e1(kz—k1) (r1+r1-r2—r2)/2 . (79)

If for instance we consider only the diagonal elements of pp (r1 = r'l, ro = r’z), we see that the
only spatial dependence arises from the exchange term (term in 7 inside the bracket). More
generally, in equation (79), the only characteristic length is the thermal wavelength introduced

by the functions f
h

Ap = ——e 80
T ZrmksT (80)
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and no special variation occurs when | r; —ry | or | r; — ry | becomes smaller than b. The
result is, of course, independent of &, which makes it zero order in b for any value of the r’s. In
the following calculation, therefore, our purpose will be to find in the Ursell expansion series
the terms which will compensate for the short range value of (79) and to check that no other
zero-order term has been omitted.

4.2. FIRST-ORDER IN Uy

4.2.1. Preliminary Counsiderations. — In order to simplify the discussion of the other terms,
we first make a few remarks about the characteristic lengths involved in the matrix elements
of some relevant operators. We start from the elements of U; itself

(r1,7r2 |Ua(1,2)| rp, 15) (81)

In this element, if the distance between two particles (in the bra- or in the -ket) is smaller than
the potential range b, the application of the operator exp[—5 (Ho(1,2) + V(1,2))] gives zero;
this is easily checked by a reasoning similar to that based on equation (76). In this case, inside
(81), Uz “reduces” according to

Us(1,2) = e~ BAlH(1,2)+V(1,2)] _ o—~BHo(1,2) y _o—BHo(1,2) ~U (1)UL(2) (82)

Therefore, if at least one of the lengths |r; — rs| and Ir’l - r;I 1s smaller than b, that is “inside
hard cores”, we have

{r1,72 |U2(1,2)|1y,13) = —(ri,r2 | U1(1)Uh(2) Ilr’l,r’z)2 , ,
=—[A] %€ [ (r1-r1) 12a]” o= [ (r2—r2) /2x]

Obviously, this matrix element is zero-order 1 & (it is actually completely independent of the
potential range); it has significant values as long as the differences | r; —r; | and | ry — 1, | are
not much larger than the thermal wavelength Ar.

For a more detailed study, since the motion of the center of mass factorizes inside Us, it is
convenient to mtroduce the variables R of the center of mass and r of the relative motion and
to write

(83)

(Ryr | Ua(1,2) | R, r') = 2572 ]~ e~ r(BR) 3] e ) (84)

where US® is given in terms of the operator P associated with the relative momentum by

o[Bavie)] e—ﬁ["#]‘

Ul=¢ (85)

We have ) o o
(U3 E) = D) o) - DD e P un(r) [wh )] (86)
k k

where the e, and the pi(r) are the energies and the eigenfunctions of the Hamiltonian Hyel
describing the relative motion in the presence of the interaction potential, while the same
notations with an extra upper index zero are the corresponding quantities in the absence of
interaction(®3) Equation (84) shows that the R and R’ dependence are the same as for an ideal
gas, explicitly given in (83); on the other hand, the r and r dependence is more complicated

(®) For simplicity and compactness of the notation we assume a finite volume and do not distinguish
explicitly the discrete (bound) spectrum from the continuum.
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since, according to (86), it involves a difference of two exponential operators. We already know
from the discussion above that, if r or r’ (or both), are smaller than 6, U®! merely reduces
to the second term of (86), associated with a free relative motion, so that the matrix element
becomes zero-order in b. Let us assume then that r' is fixed to some value, for instance of the
order of Ap, and that r increases progressively from zero. In three dimensions, the perturbation
of the eigen-wave functions of the Hamiltonian, introduced by a short range potential, is limited
within a region(®) of size comparable to the range. As a consequence, we expect that the matrix
element of UZ®! will remain of zero-order in b only within a domain of dimension comparable to
b (or some relatively small multiple of this length). If, on the other hand, r increases beyond
this domain, the matrix elements will decrease (in absolute value) and become first-order in
b, for instance proportional to b/Ar. In other words, sufficiently far from the origin they tend
uniformly towards zero when b tends to zero, as opposed to what happens when r is comparable
to b.

Since the two variables r and r play a symmetric role in the discussion, we may summarize
this discussion by saying that the matrix elements of U, are first-order in b everywhere except
in regions of the configuration space where either | r |, or | r' |, or both, are of the order of the
potential range b.

We now assume that, inside (81), we insert an operator f, for instance on the right hand
side of U3, so that we study the matrix element

{r1, 12 |Ua(1,2) f(1)] 2}, 15) = / dr (r1,ro|Us(1,2)|ry +1,15) {ry +r|flr})  (87)

We first note that, if | ry — rs |< b, this matrix element is zero-order in b since Us reduces
to a product of U;'s as in (82); the dependence in | r; — rp | is therefore of the same type
as that obtained in the absence of an operator f. But 1f ! ry — I | has much larger values,
for instance of the order of Ag, the dependence in | r1 - r2 | is drastically affected by the
intermediate operator f: however small | r; — r, |, the matrix elements never come back to
zero-order in b. To show this, we remark that, as for U3, the only characteristic length which
occurs in f is the thermal wavelength Ar, which is necessarily much larger than b if the latter
length tends to zero. In other words, in the integration over d3r of (87), the second matrix
element has significant values in a range centered around the origin and of size comparable to
Ar; one may see this as the result of a “delocalization” of particle (1) in the ket produced by
the operator f. As for the first matrix element, it has two characteristic lenghts, b and A, so
that we must distinguish in the integration domam two contributions: first, that arising from a
volume comparable to 6% around the value r = r; — r,, which obviously gives a contribution of
third order(®) in b which we can 1gnore here; second, that arising from the rest of the volume
where the function to be integrated itself is first-order in b. The net result is that, provided
|ry — r2| sufficently large, however small | r; — r, | is, the matrix element (87) always remains
of first-order in b and tends uniformly to zero when the potential range decreases. To make it
zero-order in b necessitates that the distance of the particles in the bra which touches directly
U, is allowed to become very small. By symmetry, it is straightforward to obtain similar results

(°) This property anses from the fact that the three dimension problem 1s equivalent to a one di-
mension problem with a boundary condition which always cancels the fictitious wave function at the
origin, even 1n the absence of a potential; this phenomenon does not take place for lower dimension
problems.

(1) The volume where the matrix element of Uz 1s first-order mn b does not have to be precsely
proportional to 6% for our reasoming to be valid; 1t could vary more slowly, as b[/\T]2 for instance,
without affecting our results.
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for an operator f acting on the left of an operator Us; it is sufficient to interchange the bras
and the kets in the reasoning.
Finally, if we consider the matrix element

(r1, 72| f(1)U2(1,2) f(1)| r1, 15) (88)

or
(r1,r2 | F(2)Ua(1,2) (1) vy, x5) (89)

A simple generalization of our reasoning shows that, since the bras and kets where the positions
of the particles are fixed are never in direct contact with Us (but only through f operators that
delocalize them over about At), the matrix elements are always at least of first-order in b; they
tend uniformly towards zero with b everywhere. Moreover, all preceding results apply without
any change when U is replaced by Uzs A which, according to (48), contains an extra operator
FPex., this is because the exchange operator changes the sign of the vector r; — ro but not its
length. To summarize, zero-order terms in b can only be obtained when the U2S A operator is
in direct contact with the ket, or the bra, where two particles are at a short distance (of the
order of b).

4.2.2. Contribution to pr1. — We now apply the preceding results to equations (51)-(53). Two
types of corrections are present in prr, those which appear through changes of p; and contain no
dynamical correlations, and those which are given by (53) which do contain such correlations.
It is natural to expect that the former do not play a role in the present discussion, and this
is indeed the case because they contain a trace over a collision partner which makes them at
least first-order in b. Mathematically we have

(1 [T (U5 04 nf @Y1 = [ @raterm [0S 42 stms) (90)

Since an integration over a variable d3r; is involved, the situation is similar to that found
in (87): one may distinguish two domains of integration, one where the matrix elements are
zero-order but which has a volume tending to zero with b, and one where the matrix elements
themselves tend to zero, so that the sum 1s at least first-order in &. So, we only have to include
(53) in our zero-order reasoning. We now distinguish between three cases:

i) If | r, —ry |[< & while | ry —ry | is much larger, according to what has been said in Section
4.2.1, the zero-order terms inside (53) are obtained by suppression of the f operators
from the brackets [1 + 7f]’s on the right of US™*. This is because the operators f’s would
introduce, according to (87), corrections that tend uniformly to zero when b tends to
zero. Under these conditions the matrix elements we obtain are those of

26%(x1, 2 [+ nf (D) (1 + nf (] USA(1,2)| xf,xp) (91)
but, since U, reduces to a product of U ’s according to (82), we merely obtain the result

— (r1, 2 [ f(1)(2) [1 + nPe]| v, 13) (92)

which shows that the ideal gas term (29) is exactly cancelled by this term; we therefore
obtain the expected cancellation of the matrix element of prp in this case.

i) ¥ r'1 ~ r’z‘ < b while |r; — rz| is much larger, the reasoning is exactly similar to that of
(i), except that one has to interchange bras and kets. In this case also, the first-order
terms in Uy are exactly opposed to the zero-order terms and the matrix elements of pyg
vanish as required.
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iif) If jr; — ro| and 'rll - r;’ are both smaller than b, in order to provide zero-order contribu-

tions in b, the reduction process of U2S’A may occur, either from the bra or from the ket
(or both) . We may therefore keep the factors [1 + nf(1)] [1 + nf(2)] either on the right,
or on the left of the operator U2S’A, but in doing so we double count the term where all
brackets [1 + 5 f] are replaced by one, so that it is necessary to remove this contribution.
The total result is therefore

222(r1, 12 |[1+7f ()] [1 + 7 (2] USA(1,2)| ), r)+
+22%(r1, 12 (U (1,2) [1+ 0f (1)) [1 + nf(2)] |}, 14) - (93)

—222(ry, 3 [USA(1,2)| 2}, 14)

which is equal to
—2{r1,r2 |F(1)F(2) [1 + 9Puy]| vy, 5} + 22(x1, 2 Ut (1)U1(2) [1 + nPey]| i, 1h).  (94)

Therefore, in the case where the hard cores of the particles overlap in both the bra and
the ket, the zero-order cancellation with (29) is no longer obtained. We will see that
higher order terms are needed to restore it.

4.3. NEXT TERMS. — We have seen 1n the preceding section that taking into account only
diagrams with at most one Us is not sufficient for describing the short range properties of
o1 correctly. We will now search for other terms, derived from other diagrams, which give a
contribution of order b° to pr1, in order to see whether, by this way, we can obtain a faithful
description of what happens at short interparticle distances.

4.3.1. Second-Order in Us. — We now consider the contribution of the diagrams with two
U,’s given in Section 3.3. The first term we study 1s given by (63). We are searching for a
contribution of zero-order in the potential range, which can only be done by reducing each of
the two Usy’s into two Uy ’s; this means that both Us’s must act directly on bras or kets where
two particles are close (we have seen in the preceding section that every f operating on a two
particle wave function delocalizes one of the particles, which introduces a supplementary order
in b). Hence, from (63), we keep only the contribution

22°U5*(1,2) [1 + nf (V)] [1 + 0 f(2)] USA(1,2). (95)

Therefore, if |[r; — r2] and |r'1 - r;’ are both smaller than b, we have to add to (94) the following

contribution
22 (r1r2 | F (D) F(2)U1(1)U1(2) [1 + nPex (1, 2)]| ¥ 15) - (96)

On the other hand, if lr'l - r;l < b while |r; — raf, or the reverse, we have no extra term to

add to (92).

As for the term given in (60), it involves a trace over a third particle and can be ignored.
This is because one can show — following the same line as in the previous section — that the
trace introduces a supplementary order in b. The reasoning can be generalized: any trace
over a third particle gives a contribution which is of at least order b, as long as there is no
permutation operator inside the trace which transposes the two particles pyy is operating on
(see the discussion of the terms with one Us later in this section). Hence, we will be able to
drop all terms with a trace, so that the only contribution to py1 of the diagrams with two Us
in the order considered arises when the particles both in the bra and the ket are closer than b,
and is then given by the expression derived above (96).
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4.3.2. First-Order in Ug. — The next terms of the Ursell series expansion of py; are the contri-
bution to Log Z coming from the diagrams containing one single Us, which we have obtained
in Section 3.4. Since both (71) and (72) involve a trace over (at least) one extra particle, at
first sight, one might infer from the discussion of the previous section that they introduce only
matrix elements that tend uniformly towards zero with b. We will see that this is not true,
and that some new zero-order contribution is introduced by the exchange terms.

We start with the second term (72) which contains only one trace, so that it is more likely
to leave a zero-order contribution. As in the previous section, we can ignore the f’s acting at
both ends on particle 1 or 2, since they correspond to terms which tend to zero with b, so that
the matrix element becomes

623 < r1,1r2|TYs {U?,S’A(l,z, 3)[1+ nf(3)]} It > . (97)

How can Us be reduced in this term to give a zero-order contribution? The operator Us is
defined as

Us = e PH(:23) _ (1, (1)U,(2, 3) + permutations] — Uy (1)U (2)Us(3). (98)

If two particles, for instance 1 and 2, are at a distance smaller than b inside either a bra or
a ket on which Us acts, the cancellation of the three body wave functions inside hard cores
allows us to ignore the term in e #¥(1:2:3) and to reduce one of the Us’s so that Us becomes

Us — =U1(1)U>(2,3) — U1(2)Ux(1, 3). (99)

If, in addition, we assume that in either the bra or the ket the distance between particle 3 and
particle 2 is smaller than b, the operator Uj is further reduced according to

Uz — Ur(1)U1(2)U1(3) — U1(2)U2(1, 3). (100)

We note that the first term is indeed of order zero in b, whereas we cannot make any general
statement about the second term (as long as we do not specify anything about the distance
between the first and the third particles).

We can now return to {97) and develop the symmetrizer/antisymmetrizer according to

% {1 +n [Pex(la 2) + Pex(la'g) + Pex(2)3)] + 03(11 27 3) + 03(1’ 3a 2)} (101)

and examine the terms one by one, assuming that particles 1 and 2 are close (in the bra).

i) The direct term
23 < 1‘1,1‘2”}3 {U3(1,2’3) [1 + ﬂf(3)]} 'r;.i rl2 > (102)

can be reduced once to
= 2° <11, 1| Trg {[U1 (1)U2(2, 3) + U1 (2)U2(1,3)] [1 + 0f(3)]} Irh, x5 > (103)

but not further; the trace over the third particle introduces an order b by the same process
as in the discussion of U,-terms. The contribution of the direct term therefore vanishes
to zero-order in b, whatever the positions of particles 1 and 2 are.

ii) The term where particles 1 and 2 are exchanged

7133 <r, r2lrrr3 {U3(1’ 293)Pex(1, 2) [l + "7f(3)]} Irg.i rl2 > (104)
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which, after a first reduction, becomes
~07* < 11,12l Trs {[UL (1)02(2,3) + Us(2)Ua(1, 3)] Pex(1,2) [L + nf ()} It} x5 > . (105)

Here again we cannot reduce Uz anymore, since both Uy’s act on the third particle over
which the trace is taken. For the same reasons as before, this leads to a negligible
contribution.

The terms where the third particle is exchanged with particle 1 or 2; the former term is
given by

77Z3 < rl,rZI’I\rIi {U3(17 273) Pex(173) [1 + "7f(3)]} 'I‘;, I"2 >. (106)
Assuming that particle 1 and 2 are close in the bra, we apply (99) and obtain, by inserting
a closure relation and making the trace over the third particle explicit

—nz3fd3r3 d3r < r1,r2,r3| [Ul(l)U2(2,3) -+ U1(2)U2(1,3)] |I', I"z,l‘i > X

x <r|[l+nf]|rs > . (107)

The term in U3 (1)U2(1,3) does not introduce any zero-order contribution since there is
no way to reduce Uz(1,3), whatever values we choose for r; and ry; we therefore ignore
it. However, the term in U;(1)U2(2,3) can indeed be reduced from the right hand side
by assuming that | r; — ry |< b, leading to the result

nz® < r1|U; [1 4 9f]Urlr] >< r|Us|ry >= n2? < r1,r2JUr(1)U1(2) f(1)|r], x5 > (108)

which is of the required zero-order.

Obviously the term in Py (2, 3) of (101) leads to a similar contribution, where the indices
1 and 2 are exchanged. We therefore have to add the following zero-order contribution

to pm:
12U (D)U1(2) [F(1) + £(2)].- (109)

The cyclic permutation terms, of which the first one is given by
23 <ri, r2|’I‘r3 {U3(1)273)C3(1’273) [1 + "7f(3)]} |I‘11, r,2 > (110)
which, according to (99), becomes, if | r; — s |< b,

—2% [ d3r3 d®r < 11,79, 13| (U1 (1)U2(2, 3) + U1 (2)Ua(1, 3)] rh, T, 7] > X

x<t|lenflles>. 1D

If, in addition, | r; — ry |< b, by the same argument as in (iii) we keep only the term in
U, (1, 3) which reduces into Uy (1)U; (3). This provides the result
22 < r17r2|U1(1)U1(2)f(2)Pex(1’ 2)|I"1,1"2 > (112)

Adding the equivalent contribution from the term in C3(1, 3,2), we obtain the contribu-

tion to pr as:
2U1(1)0L(2) [F(1) + £(2)] Pe=(1,2). (113)

The sum of all corrections to py1 that we have obtained in this section is

22U (DUL(2) [F(1) + F(2)] [n + Pes(1,2)] (114)
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which is valid whenever | ry — Ty ]5 band [ r; —r, |[< b. On the other hand, if any of
the distances [ ry — 13 | or | r; — ry | is much larger than b (or both), there is no way to
reduce all Usy’s and no new zero-order term appears.

The other contribution to py originating from first-order in Us is given by (71) and
contains the trace over two extra particles. While it was possible to cancel the effect of
one extra trace in (72) by taking into account exchange operators, one can easily convince
oneself that two traces are too many and that at least one trace over a Us operator will
survive. All these terms tend to zero with b and we may ignore them.

We conclude that the only term arising from diagrams with one U; which survives the
reduction of py1 to zero-order zero in b is (114); it contributes to py1 only when the interparticle
distances in both the bra and the ket are smaller than b.

4.3.3. Higher-Order Terms. — We have not studied terms which are more than second-order
in Uy or first order in Us. However, this is not necessary as long as we limit the calculations
to zero-order in b. For instance, any contribution from diagrams with more than two Us’s will
contain more second-order operators than it is possible to reduce by choosing close positions
for two particles inside the bra and the ket; this is for example the case for the higher-order
contributions resummed by ladder diagrams (cf. Appendix II). The same conclusion applies
to second, third, etc. order in Usz: we have seen that it is necessary to reduce Uz twice, that
is once from each side, in order to obtain a term which involves U;’s only, and completely
reducing two independent Us’s is not possible. Generalizing to higher order Ursell operators,
we may notice that in each term of the Ursell series expansion, we have to reduce all U; ’s to
I Uy operators, in order to obtain contributions of zero-order in b. As we have at maximum
two correlated particle pairs (in the bra and the ket) for reduction, it is clear that higher order
terms (Uy, 2 x Us, etc.) cannot be reduced completely to Uy’s.

Therefore, the terms that we have calculated so far are sufficient for the study of the zero-
order properties of prp. Of course, if we were interested in higher order correlations between
the particles, we would have to consider higher order partial density operators pmi, prv, etc.
and the situation would be different: with more position variables in the bra and the ket, 1t
would be possible to reduce more efficiently U; operators than inside pr1, and to block more
trace operations. Consequently, more complex diagrams would play a role to zero-order in &
when the distance between all particles in the bra and the ket is smaller than the potential
range.

4.4. SUMMARY. — To summarize, if either | ry —rs | or | ¥} — ry | is much smaller than b
(but not both), the first-order Us calculation which provides (53) is sufficient since it ensures
a proper cancellation of pr; when we add it to the ideal gas term (29). On the other hand, if
both | r; — ry | and | r; — ry | are smaller than b, the situation is more complex and we have
to add the corrections given 1n equations (94), (96) and (114). The overall result is:

{=2f()F(2) + 22U (ML) [L + F)F(2) + nf (1) +nf (2]} x [1 +nPex] (115)
which, when added to (29), gives exactly zero, as readily seen from the relation
f=2U1[1+9f]. (116)

This shows that the matrix elements of py; vanish exactly inside hard cores, as expected, and
that the sum of the three corrections gives a correct treatment of non-perturbative effects inside
the potential; one can therefore expect that this expression provides a good description of the
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short range properties of pr1. It is interesting that the cancellation of the matrix elements
requires adding to the first and second order Us terms a contribution arising from a rather
subtle exchange effect inside the Us term, corresponding to cyclic exchange or to exchange
with an interaction partner.

To summarize, a good approximation to the two-body density operator pr, which includes
perturbative effects at long relative distances between the particles as well as non-perturbative
effects at short distances, is given by the following expression

et = [f(1) +6f(1)] @ [£(2) +6F(2)] [L + nPex] + (117)
+[1+ D+ FNF(A,2) [1+ fFQ)] L+ f(2)]

where 6 f is the operator defined in (52) and where

F = 25205 4+ 24052 1+ (D) [1+ F@IUS* +6°Te {UFA(1,2,3) [1+ F(3)]} . (118)

5. Conclusion

The U-C diagram method provides explicit expressions for the partial density operators, includ-
ing non-perturbative effects. This is seen in equations (51), or the more precise approximation
(117), which are the main results of the present article. The expressions remain relatively
compact, at least when the calculation is limited to first-order in the Ursell operators. The
two-body density operator gives physical information on the correlations between particles;
the operator can be used to calculate, for instance, the amount of light scattered by a gaseous
sample, or of density corrections to the index of refraction of a degenerate gas of bosons [7].
But other calculations are also possible. For instance, from the one-body density operator one
can calculate average kinetic energy of the particles, from the two-body density operator the
average potential energy, so that it is possible to get information on how the total energy is
shared between its two components. Of course, for an exact calculation including all Ursell
operators to all orders, the sum of the two energies should reconstruct exactly the “macro-
scopic” energy obtained by derivation of Log Z with respect to the inverse temperature. But,
for approximate calculations, this is not necessarily the case, so that the two calculations of
energy give a convenient way to evaluate the quality of the approximations made in the calcula-
tions. Another check is given by the calculation of the pressure from the expression of its exact
microscopic operator [8]; ideally, the average value of this operator over pr1 should reconstruct
the macroscopic value {kT'Log Z] /V, so that deviations from this rule are a convenient guide in
the approximations. Finally, the knowledge of p11 could be useful as a tool for understanding
the physical origin of complex phenomena such as the superfiuid transition in gases, a subject
that we are planning to investigate in future work.

It is also possible to take a point of view which is completely different from that in the present
article, where the Ursell operators are known differences between exponentials of Hamiltonians,
and to consider them as unknown operators which will be determined according to variational
principles. The N body density operator at thermal equilibrium is given by:

1
=K 119
pn = 5K (119)

where Ky is defined by the exact expression(3). Now, this expression can also be truncated
to the terms leading to some approximation for Log Z (first-order approximation terms in U

for instance, or second-order in U, with first-order Us, etc.) while the U, are now left free to
vary, instead of being fixed. This provides a variational py or, by a simple generalization, a
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variational expression of the many particle deusity operator in the grand canonical ensemble.
Now, since the expressions of the partial density operators that we have written allow an exact
evaluation of the energy (or of the pressure, i.e. the grand potential), one can then determine
the U;’s that make these expressions stationary. In this way one gets a variational method,
valid at zero temperature, which provides approximate values of the ground state energy of
the system. Of course, if no truncation had been in (3), the method should simply lead to
the initial definition of the U;’s (at zero temperature) and to the exact energy. On the other
hand, a truncation will in general lead to different expressions of the U)’s; for instance, if the
operators of order more than 2 are ignored, the changes in the value of U, will tend to make up
for the omission of Us, etc. An interesting feature of the method is that is would automatically
provide the next step in the variational method: inserting more U-C diagrams in the expression
of Log Z. The extension to non-zero temperature can also be envisaged, by calculating the
microscopic expression of the pressure and making 1t stationary, but the practical usefulness
of this possibility has not yet been examined.
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Appendix A

Instead of varying the first Ursell operator U;, as in the text, we can also obtain reduced
density operators by varying the interaction potential. Let us assume that V;, gets the following
variation

Vi =>sz+ﬁ_1d:c|i:cpa;j Top)t i 6057 : 6 | (A1)

Circular permutations under the trace allow us to write

. . . . _ S
dZ = dz Tng,. N Z[z:cpa;):cpb)(zzea;yeble'3H"’A
1<J (A2)

1
= EZ X (Ga,ob | P11 I Soa,ﬂob>

where Hy 18 the N particle Hamiltonian; the factor 1/2 arises from the fact that prp 1s nor-
malized with a trace equal to N(IV —1), and not to N(N ~1)/2. We therefore have the simple
relation

Log Z. {A.3)

=0

d
0 [-X] =2
(60,0 | p11 | Varos) e

If we apply this formula to an exact expression of Log Z, containing all terms of the expansion
in Ursell operators, we will get exactly the same result as when using (18). But, if we start from
some approximate expressions of Log Z, different results are in general obtained by the two
methods. As an illustration, we apply (A.3) to the lowest order treatment of the interactions
given by (33); because U; does not depend on the interaction potential the only variation of
Log Z arises from that of Uy, which is given by

co n—1

1
AUzt =dz Y {E [—BH2(1,2)IP | 1: 0a;2: @p)(1:60452:85] x

e (A4)
x [~BH,(1,2)]" P [_1+_glfe1] }
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where the two particle Hamiltonian Hs is equal to

[P1)? + [Po)?

H2(112) = m

+ V{(1,2). (A.5)
Introducing the summation index p =n—p—1, we can write

°° 1
Wyt =dz 3 {m[~ﬁﬂzlpll:wa;2r%>(1¢9a;2:9b|><
oo (A6)

<-prp [FE 2] |

which, after insertion into (33) and (A.2), gives
P = Z;O Pry +1) pll T [(—B8H2(1,2)]" [1 + nf(1)] 1 +2f(2)] [-BH:(1, 2)]”' [1+7Pw]. (A7)

This result is indeed different from (51) - (53). The brackets [1 + f] now appear in the center
of the product of operators, instead of at both ends, and there are two of them instead of four.
Moreover, series which cannot be summed in exponentials or operators f remain explicitly in
the final result. If we insert V(1,2) = 0 into this expression, we readily recover the expression
of the two-body operator given in (29).

We now study the properties of (A.7) at short relative distances and show that the two
particle distribution mndeed vanishes in regions of the configuration space where the repulsion
1s sufficiently strong. Assume that we keep p’ fixed and sum over p. If p/ = 0, the sum over p
of [~ Ha]" introduces the operator

e=RH2 _q
—_— A8
[-BH:] (4.8)
In the same way, 1f p' =1, the same summation introduces
~-BHy _[1 — BH
i et 1 (A.9)
(—B8H;]
and so on for p' = 2,3,... for each value of p' we obtain a function which contains in the

numerator an exponential and a polynomial in Hs with a degree which is inferior to that of
the numerator. Therefore, if H> becomes infinite, all these expressions vanish. Now, assume
that we calculate the matrix element

(ri,r2=r14+r|pn|¥) = %:(1‘1,1‘2 =711+ ; m (-BH:" | ©,) (A.10)
where :
[©,) =1 +nf(} {1 +nf(2][-BH:}" | T) (A.11)

and where | ¥ > is any (fixed) ket. If we insert a closure relation over the eigenstates | ¢, >
of H,, with energies E,, we get

-BEq _
>, {(rl,l‘z =11 +71 | 9g)(¢q | Oo) [e_—ﬁq_l} *

+{r1,r2 =11 +1 | @) | O1) [e_ﬂEE:ﬂ[El‘q]—zﬁEq]} + [term p = 2] + etc.}

(A.12)
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All terms p’ =0,1,2,.. in the right-hand side of this equation contain different fractions which
vanish when the energy becomes infinite. Assume now that the interaction potential is strongly
repulsive at short relative distances. Then, if r is sufficiently small, the scalar product {r;,ro =
r1 + T | ¢4) will be non zero only if the energy E, is sufficiently large; in the limit of hard core
repulsion, it actually completely vanishes if |r| < b, where b is the range of the interaction. This
shows that all terms 1n the right hand side of (A.12) become zero at short relative distances(1!),
and therefore that p;; has the cancellation properties discussed in Section 4. Obviously the
same reasoning applies to the conjugate matrix element (¥ | pp1 | r1,r2 = r; + r), provided
that the summation over p is now made before the summation over p(1?). Equation (A.7)
therefore contains the desired non-perturbative cancellation properties of pj; at short relative
distances. We note that, with this method, the derivative with respect to the potential is
first-order instead of second-order; there is a closer relation between the value of Log Z and
P11, 80 that the result obtained for the latter could be less sensitive to approximations made in
Log Z. On the other hand, the big advantage of the method used in the text is that it provides
compact analytic expressions where all summations have been incorporated into exponentials
or fractions of operators.

Appendix B

As shown in [2], it is possible to sum an infinite numbers of terms contairing powers of Uz
gong to infinity (ladder diagrams, associated with the condensation of pairs) into the following
expression

Log Z = [Log Z},, ~ Tz {Log [1 - 2U5A(1,2) x L+ nf(M)] x L +nf@)]]}  (BD)

which can be simplified into

Log Z = [Log Z];, — Tr1 2 {Log [1 - zzﬁzs’A(l, 2)] } (B.2)
with the notation
U54(1,2) = U3 A(1,2) x [1 +nf(1)] x [1 +n£(2)]. (B.3)

But the logarithm of (B.2) can be expanded as
=1 —5,A n
> T {[7"a.2rw50)] '} (B4)

which is a convement expression for varying the U;’s, and therefore the f’s. At this point,
the discussion becomes similar to that given for the ideal gas (by circular permutation under
the trace, the variation in dz can always be brought in front of all the other operators, which
eliminates in practice the factor 1/n) as well as that given after equation (57): the f’s can be
expanded as in (35) and the variations of the U; may occur either inside the same f, or 1n two

(*') We assume here that all | ©,) remamn finite (see next footnote).
(lz)Dlﬂicultles would nevertheless arise for diagonal matrix elements {ri,r2 =ry +r | pux | r1,v2 =

r1 +r) with |r| < b: the kets | ©_ ;) would become infinite under the effect of the factor [-SH12]”
m (A.11). Asin the method used in Section 4, a more detailed study including higher order terms 1s
needed when the particles become close m both the bra and the ket; we do not study this particular

case here.
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consecutive f’s, or in two non-consecutive f’s related or not to the same particle. In the first
case, (58) is used, and we obtain the following contribution to py

nPex.B(ly 2) + B(lv 2)77Pex. (B5)
with .
— 22U2, (2:3)

This 1s a term which contains no dynamical correlations but just exchange correlations; it is
reminiscent of an exchange term for the ideal gas.

If two consecutive f’s are varied, we now use (61) and a similar calculation gives the following
contribution to the two particle density operator prg

2 1
O X A O e S s s @ (B
xUy™(1,2) [L + nf(L)] [1 +nf(2)]

which can also be written as

205%(1,2)

e B.8
1-2205%(1,2) (B8)

222 [L+nf(1)] x [1 +7£(2)]

This term is the generalization of the first line of (53) and of (62); it contains no trace over
extra particles and introduces short-range correlations for strongly repulsive potentials.

The last two terms contain, as in (B.6), a trace over a third particle, which gives them a less
important role in the introduction of short-range correlations for hard cores (see the discussion
of Section 4); to save space we do not write them explicitly here. So (B.8) is the result of this
Appendix.
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