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Abstract. Using orthogonal polynornials,
a

navet approach for studying DC and AC con-

ductivity and velocity-velocity correlation function has been developed. The method works

in direct space and can treat order
or

disordered, limite or infinite, and pure or alloy systems
with equal ease. Further, it is trot computer intensive and allows conductivity calculations as a

function of frequency or the location of the Fernù energy m an eficient manner.

Although electrical conductivity is a widely experimentally studied electronic property, re-

alistic calculations of trie conductivity are feasible only in limiting cases. For weak scattering,
trie Boltzmann equation provides a fairly good description of trie conductivity problem. How-

ever, as trie scattering becomes important, trie Boltzmann approach becomes inadequate and

one needs a better description. One-electron Kubo formulae iii relate trie conductivity to an

average of trie product of Green's functions and thus provide a viable alternative. However,
it is diilicult to calculate the average of trie product of Green's functions and one of trie ap-

proaches bas been to approximate trie average of trie product by trie product of trie average of

a single Green's function. Such a simplification ignores trie so-called vertex corrections known

to be important, and attempts bave been made to find ways in which one could avoid trie

above simplification. Indeed, by modelling trie system within effective medium theories such

as Coherent Potential Approximation [2,3] using numerical techniques based on trie equation
of motion method [4, 5] or recursion method [6, 7] conductivity calculations induding vertex

correction bave been reported.
In this paper we propose a diiferent approach to trie electronic transport. It is based on a

generalization of trie modified moments approach [8] which has been successfully applied to

study the electronic structure of ordered and disordered systems. The new scheme works in

both the weak and the strong scattering regime. For the case of weak scattering, the new

approach gives conductivity in agreement with Boltzmann equation. However, it becomes

more efficient as the scattering is increased and it is here that its true application lies. Another

feature of trie present approach is that conductivity calculations as a function of frequency or

as a function of the location of the Fermi energy can be made in a single calculation. Trie new

approach also permits an effective way to study correlation functions such as velocity-velocity
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correlation function. As we show, variations in the mean relaxation time of electrons and

transitions to localized regime are most transparent in this correlation function.

In the framework of linear response theory and trie oue electron approximation, the couduc-

tivity can be studied via the Kubo-Greenwood formula [Ii

Re(a(~o))
=

2~re~&/Q
/

dB
~~~~ ~ ~~j FIE, E + &w) Il)

with

FIE, E')
=

Tr [V~ô(E H)V~ô(E' H)] (2)

Here H is trie Hamiltonian of the system, V~ is the velocity operator, aud f(E) is the Fermi

Dirac distribution function. The central problem is the calculation of F(E, E').
In this work we propose an expansion of à(E H) in polynomials Pn(H) of the Hamilto-

nian. Consider any function N(E) finite in a region of real axes. The theory of orthogonal
polynomials [9] lets one define a set of polynomials Pn(E) of degree n which are orthogonal m

the sense

à«,m
=

/
N(E)P«(E)Pm(E)dE (3)

It can be shown that polynomials Pn(E) satisfy the recurrence relation

EPn(E)
=

anPnjE) + bnPn+i iE) + bn-iPn-i iE) j4)

where an and bn depend on trie density NIE) via its moments and b-1
"

0. The crucial point
is that Pn(E) form the basis for expansion of any function and in particular one can express
à(E H) as [8]

m

à(E H)
=

N(E) £ Pn(E)Pn(H), (5)

n=o

provided N(E) is non zero on the spectrum of H. Using this expansion, the function F(E, E')

can be expressed as

F(E, E')
=

£ Cn,mPn(E)Pm(E')N(E)N(E') (6)

with

Cn,m
=

Tr [V~Pn(H)V~Pm(H)] (7)

All the physics of the conductivity is contained in Cn,m.
The convergence of the expansion depends on the choice of the density N(E). We expect a

faster convergence when N(E) is not too diiferent from the mean density of electronic states [8].
Indeed, in the present work, we have used trie mean density of electronic states determined

using the recursion method for N(E). With this choice, trie random phase approximation
(RPA) used by Mott et ai. [4], m the case of mean free patin shorter than trie interatomic

distance is equivalent to keeping only Co,o in expansion (6). Trie remaining terms, therefore,

represent a systematic developmeut beyond the RFA.

Consider a system described by a tight-binding Hamiltoniau

H=£ej(1><1(+£(j(1><j( (8)

ij
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where fi are the site energies and fg are the hopping matrix elements assumed to be (j
=

V

between near neighbors aud zero otherwise. To evaluate the trace in (7), we calculate the

diagonal element on randomly chosen initial vectors as follows [7]. Consider a vector in >

la >= La ail > T
=

o t
=

i/Nôz
j

(9)

where ai are independent random variables for site and the bar indicates an average over the

probability distribution of ai. N is the total number of sites in the system. For any operator
A, one has

Tr A
=

N(o(A(o) (10)

the bar indicating an average over ail in >. Thus,

Cn
m

"
Cn m(Ci) (Il)

with

Cn,m(CY) =
(fin Îvzl~tml (121

Where

jfl~ >= PniH)v~i
a > and "fm >" ~~~~~'

° ~

Knowing the density NIE), sets (fin > and (~fn > can be easily calculated by the recurrence

relation similar to equation (4) for Pn(E), 1-e-, using the expression

H (lYn >= an( flfn > +bn (§ln+i > +bn-iÎ §ln-1 >

where §l
=

fl or ~f with

(flo >= V~ o > (fl-1 >= 0

(~fo
>=( o > (~f-1 >= 0

Knowing Cn,m, the couductivity can be calculated using equations (1) and (6). The details

are given in Appendix A. The eisect of trie magnetic field cari also be easily included. In fact,
it can be shown [loi that trie eisect of a magnetic field, B, is to change the hoppmg matrix

elements in equation (8) by the complex elements

V(c)zj
=

V(0)zj exp

-(e/&c)B
(RzxjRj)j (13)

where V(0)zj are the matrix elemeuts in the absence of the field and Ri are the positions of

the ions. The conductivity calculation then proceeds as before, the only diiserence being that

V(c)zj are complex and depend on the position of sites and j. We refer the reader to our

previous article [1Ii for details.

As we pointed out in the begmning, trie expansion outlined in equations (5) aud (6) can also

be used to calculate correlation functions such as velocity-velocity correlation function C(E, t)
given by

C(E,~)
"

lvlo)vl~)à(E H)) l14)

Using equation (5) for à(E H), C(E, t) can be expressed as

CIE, t)
=

/
exp [iE't/&]F(E, E') exp [-iEt/&]dE' (là)

where F(E,E') is given by equation (6) which can be easily calculated using the present
approach. Trie details are given in Appendix B.
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)
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6(.). Trie mset shows ~)~~'~

m,
m

for
)

=
6 and

m =
14.

To demonstrate trie strength of our approach we bave carried out calculatious of the couduc-

tivity as a function of frequency and Fermi energy, and C(E, t) for a cubic lattice with nearest

neighbor interaction V and diagonal disorder. Trie site energies fi are randomly distributed

uniformly from -W/2 to W/2. Trie disorder can also be characterized by trie mean free patin
t calculated with a Boltzmann approach. An average value over trie whole band is

~
=

14 (~~) (16)
a

W

~

where a is the lattice spacing. Trie model bas been previously studied by various authors [5]
and it is fairly accepted that ail the electronic states become localized at W/V

m là. In this

work we primarily focus on the conducting region W/V < 10. To carry out trie configurational

average, ail calculations were carried ont on rive random configurations. This was found to be

sullicient to converge to average values. We would like to point ont that trie same
N(E) is

used for all configurations.
In Figure we show the coefficients Cn,n for diiferent strengths of disorder. In all cases, the

coefficients decrease with increasing n. However, the rate of decrease depends on the strength
of disorder. We found that Cn,n for n > 2 decrease exponentially with n if the disorder is not

too strong
(~

< 6 in our calculation which corresponds to
~

+~

I.à). We further observed
V a

that the variation of Cn,n in this regime is well represented by the expression

Cnn=1.3exp
-~ $

(n-1)In>2.
'

6~4
~
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ce

As is easily shown usiug equations (1), (3) and (6), the £Cn,n is related to the integral of

»=o

the diifusivity,
°~~~

,
over ail energies. Usiug trie above expression, and the fact that n =

0
N(E)

and n =
1 give only a small contribution, we find that

1C»nCY/
ldEa (Il ~

This dependence of the integral of diifusivity is in agreement~with the prediction of the Boltz-

mann equation where the conductivity a(E) varies as

~W~

As the disorder becomes stronger, the localization becomes important and trie coefficients

Cn,n become negative for larger n
(W/V

+~
10, trot shown in Fig. l). This is a cousequence

of backscatteriug [9]. It may appear from the figure that ouly Co,o will be non-zero in the

limit of strong scattering. This is not the case and the entier set of coefficients are needed

to calculate the conductivity. The inset in Figure 1 shows Cm+p,m/Cm,m. We found that

this ratio is independent of m for large m values, which means that Cm,m+p can be expressed

as Cm,m f(p) where f(p) only depends on p. Furthermore, when localization eifects are not

too important, the function f(p) decreases rapidly with p, indicating that only the elements

close to the diagonal in the matrix Cn,m contribute to conductivity. This regular behavior of

the coefficients Cn,m can be used to give confidence in the convergence of the series used to

calculate conductivity. It is of interest to point out that one can invert relation (6) to obtain

Cn,m
=

/
F(E, E')Pn(E)Pm(E')dEdE'.

Thus information on
F(E, El) could be used to understand the behavior of Cn,m. This will

be discussed in a forthcoming paper. To give an estimate of the computational eisorts, we

calculated Cn,m on a cubic lattice consisting of 68921 sites with periodic boundary conditions.

Calculation of ail Cn,m up to n, m =
30 took 30 minutes on a VAX 8650 conlputer. We would

like to emphasize that the bulk of trie numerical eisort is involved in trie calculation of Cn,m.
Once Cn,m are determined, conductivity as a function of Fermi energy or frequency can be

calculated extremely rapidly. We refer trie reader to Appendix A for details.

In Figure 2a we show the DC conductivity a(0, E), diifusivity D(E), and the density of states

N(E) as a function of energy. Notice that, while the diifusivity is marked by two shoulders,
the conductivity is maximum in the middle of the band and decreases to zero at the band

edges. In Figure 2b we show the corresponding quantities in the Boltzmann limit. Notice that

N(E) in Figure 2b is the density of states of the cubic lattice without disorder as opposed
to NIE) in Figure 2a which includes elfect of disorder. The Boltzmann limit is probably
less valid around trie band edges because of trie importance of fluctuations which will first

localize states in this region. Also, the mean free path is shorter m the center of the band and

the Boltzmann equation has limited validity. Except for these limitations, we find that trie

Boltzmann approach lead to trie same conductivity variation as obtained by us, namely that

trie conductivity increases as one goes towards trie middle of trie band. Also it is interesting to

note that the diifusivity, which has a pronounced shoulder in the Boltzmann l1nlit retains this

feature m the more exact calculation shown in Figure 2a.

In Figure 3 we show the frequency dependent conductivity as a function of frequency for

various values of the Fermi energy. The results correspond to W/V
=

6. It is seen that a(~o)
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Fig. 2. a) DC conductivity a(E), diffusivity D(E) and trie density of states N(E)
as a

function

of energy; b) DC conductivity a(E), diffusivity D(E) and the density of states N(E) based
on

trie

BoltzJnann hmit.

is maximum at ~o =
0 and decreases to zero as analogous to a Lorenzian form obtained in trie

weak scattering Boltzmann limit. It is interesting to compare the full width at half maximum

(FWHM) obtained in this work with those based on Boltzmann equation where one obtains

Re a(~o, EF) 4r~

a(o, EF) (h£°)~ + 4~~

"~~~~~
Î ÎÎ

ÎÎÎÎ~ ~Î~ ~~~~~~'

Here, A is half the band width, and nT(EF) is the normalized density of states, le-,
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1.

~

~=
É~II
~

~

~

fiùJ

2

ig. 3.

a(0,EF)
4

''
half

the
aud

/nT(E)dE =
1. For the three cases namely EF

"
-3 ~, -~

and 0 considered in our
2

work, we obtain FWHM of 0.2A, 0.3A and 0.44A. The Boltzmann approximation, using the

density of states of the disordered system yields FWHM of 0.14A, 0.27A and 0.36A, showing
that the Boltzmann limit already includes most of the eifect. It is also interesting to compare
the present results with the corresponding results in binary alloy chains obtained by Hwang
et ai. [2], within the coherent-potential approximation. The density of states for the binary
alloy contains a minimum in the density of states in the middle of the band which leads to zero

conductivity at ~o =
0 for the Fermi energy in the middle of the baud. In the present case, the

density of states has no such feature aud the conductivity decreases to zero as ~o is increased.

In Figure 4 we show our results on the velocity-velocity correlation function. Trie correlation

function decreases to zero for longer times. In the Boltzmann picture, this correlation function

decreases exponentially with time, i e.,

c(E, t)/c(E, o)
= exp (-2rjtj là)

We have also shown in Figure 4, C(E, t)/C(E, 0) calculated using this expression for the case

of
~

=
6. As seen from this figure, the Boltzmann approach is quantitatively inaccurate. A

V

companson of C(E, t) for W/V
=

6 and W/V
=

la shows that the correlation function starts

to develop negative components as the disorder increases. This is a result of backscattering.
As one approaches the localization limit, the correlation function develops more and more of

the negative region until the time average becomes zero and the states become localized. To

our knowledge, our studies represent the first realistic calculations of this function.

To summarise, we have proposed a new approach to electronic transport which is compu-
tationally ellicient, allows studies of a variety of transport coefficients, and can be applied to

a wide range of systems. The present approach is numerically ideal for the cases where the

mean free path is less than a few interatomic distances. It is m this region that the Boltz-

mann approximation becomes less accurate, as also shown by us, and therefore our approach
is complementary to the Boltzmann equation. The other merits of our approach are that (1)
the conductivity as a function of frequency and energy can be easily determined, (ii) the con-
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vergence can be tested by the behavior of the coefficients Cn,m and (iii) systems of arbitrary
complexity cari be studied.
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Appendix A

A. Orthogonal Polynomials

A.I. DEFINITIONS AND BASIC RELATIONS. It is known that given a positive function

N(E) which is zero for E outside the energy range a < E < b and is such that

/N(E)dE
=

1

there exists a serres of polynomials Pn(E) of degree n such that

/N(E)Pn(E)Pm(E)dE =
ôn,m (A.1)

Further, these orthogonal polynomials obey a three terril recurrence relation.

EPn(E)
=

anPn(E) + bnPn+i(E) + bn-iPn-i(E) (A.2)

with b-1" 0 and n > 0.

Trie coefficients an and bn are related to trie moments of trie density N(E).
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One cari define a Hilbert transform R(z) of N(E)

Riz)
=

/
~~~(dE (A.3)
Z

where Z is complex and outside trie real axis. One bas

N(E)
=

Lim
-

Im R(E +
f)]

(AA)

~ _
o+ ~r

and R(z)
cari be calculated from trie continued fraction expansion

R(z)
=

~~
(A.5)

o
~ ~0

~2
z ai

~

z a2

A.2. DECOMPOSITION OF A FUNCTION f(E) IN THE BASIS OF ORTHOGONAL POLYNOMIALS

A function f(E) can be expanded in trie basis of orthognal polynomials Pn(E) provided that

NIE) is non zero, wherever f(E) is non zero. One bas

f(E)
=

É
CnPn(E) (A.6)

and using (A.l)
we get

Cn
=

/
N(E) f(E)Pn(E)dE IA.?)

A.3. ORTHOGONAL POLYNOMIALS AND RECURSION METHOD. Given a normalized density
of states NIE), one can define an associate semi-infinite chain in the following manner.

Consider an orthonormal basis set composed of states (§ln > with

(§lnÎ§lm)
"

ôn,mn, m > 0

and a Hamiltonian H defined by

H(§ln >= an(§ln > +bn(§ln+i > +bn-iÎ§ln-i > (A.8)

with b-1
=

0, n > 0, and with same coefficients an and bn as in (A.2). For details on how to

calculate an and bn, the reader is referred to an earlier paper [12].
It is then easy to show that N(E) is trie partial density of states of state (~o > for trie

Hamiltonian H, namely
N(E)

=
(itolô(E H)Îi~o) (A.9)

Notice that one can define orthogonal polynomials for the Hamiltonian H simply by replacing
E by H in Pn(E). They obey the same recurrence relations, namely

HPn(H)
=

anPn(H) + bnPn+i (H) + bn-iPn-i (H) (A.10)

with b-1
=

0 and Po(H)
=

1.

Using (A.10) and comparing with (A.8) we get

ji~~ >= p~(H)j i~o > (A.ii)
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A.4. CALCULATION oF SCALAR PRoDucTs. TO decompose a function f(E) in the basis

of Pn(E)
one has to calculate trie components Cn given by (A.7), 1-e-,

Cm
=

/
N(E)f(E)Pn(E)dE.

Trie coefficient Cm is trie scalar product of f(E) and Pn(E). Instead of performing this integral
numerically, it can be more efficient and accurate to use the recursion method. In trie space

(( < §ln >,n > 0) and using equation (A.9)
one has

Cm
=

/
(~olô(E H)( ~o) f(E)Pn(E)dE

and thus

Cm
"

ilfo Îf(H)Pn(H)Î ilo)
=

14ÎoÎf(H)ÎiIn) (A.12)

We now show how these are calculated for the three forms of f(E) appearing in this work

a) f(E)
=

Pq(E)Pr(E + &w) (A.13)

In this case,

Cn
=

(~o ÎPq(H)Pr(H + &~o)(~n) (A.14)

1-e-,
Cn

=
(~q(Pr(H + &w)(~n) IA-là)

In the basis ( (~m >), the vector Pr (H + &~o) (~n > was calculated using the recurrence relation

HPr(H + &w) =
(ar &~o) Pr (H + &~o) + brPr-i (H + &w) + br-iPr-i (H + &w) (A.16)

which can be obtained by replacing H by H + &~o in (A.10). Note that Pr (H + &w) (~n > obeys
the same recurrence relation as Pr(H + &~o) and can be easily obtained.

b) f(E)
=

e~E~ (A.17)

~~ ~~* ~"~
Cn

=
(§lo Îe~~~

~n)
(A.18)

"
1@0(t)li~n)

(~o(t) > was calculated by solving the equation of motion for (~o(t) >.

c) f(E)
=

(A.19)

In this case,

Cn
=

/
)~~~ Pn(E)dE

=
Tn(z) (A.20)

E

Also,

Cn
=

Tn(z)
=

~o
~ ~

~n (A.21)

Using the recursion relation (A.8) for (~n > one obtains the following recurrence relation for

Tn(z)
zT~(z)

=
a~T~(z) + ô~T~+i(z) + ô~-iT~-i (z) + ôn,o (A.22)

~~~~ ~~~ ~ ~~~ ~~~~ /~Î~~Î ~~~~

To(Z) is calculated from (A.5) and Tn(Z) from (A.23).
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Appendix B

B. Calculation of Ihequency-Dependent Conductivity and Velocity Auto- Carre-

lation Function from Coefficients Cn,m

B-1- GENERAL APPROACH. If one calculates F(E,E') using equation (6) and then

Rea(~o,E) or
C(E, t) using Cn,m obtained in the recursion method, one finds oscillations in

these functions as E is varied. These oscillations which have strengths going up to 10-20il of

trie value, are due to trie finite number of Cn,m's used in the summations, as well as trie inac-

curacies inherent in trie calculation of Cn,m. Similar oscillations also appear m trie calculation

of density of states from trie continued fraction
m trie recursion method.

To remove the above oscillations, one can try to make a convolution of F(E, E') by Lorenzians

L(z) depending on E and E', 1-e-,

É(E, E')
=

/
F(t, t')L(t E)L(t' E')dtdt' (B.I)

Such a convolution suppresses oscillations as a function of E or
E' and hence oscillations in Re

a(~o,E) or
C(E,t). Unfortunately, we found that the convolution also decreases the value of

F(E, E') by an appreciable amount. Indeed, it is dear from equation (2) that the convolution

by a Lorenzian of width r is equivalent to introducing an inelastic scattering with relaxation

time rjn +~

~
which can appreciably decrease the conductivity.

r
We thus used an alternate procedure to calculate Rea(~o,E)

or
C(E,t). In each case we

define an intermediate function f(E) by

f(E)
=

N(E)
É

fnPnlE) (B.2)

where trie coefficients fn are calculated directly from Cn,m (see below). f(E) also presents
oscillations as a function of E and these are eliminated by a convolution with a Lorenzian

L(~), i-e-,

/(E)
=

/
f(~)L(z E)dz (B.3)

Using

L(z E)
=

~
Im (E + ir) (B.4)

~r Z

where 2r is trie full width at half maximum for trie Lorenzian, we obtain

IIE)
"

£ faim (TH(E + i~)) lB.5)Îo

where Tn(Z) is defined in (A.20). For each value of E, Tn(E + ir) is calculated via equation
(A.22) which permits a precise and quick estimate of the convolution. We chose 2r to be

around 5-10il of the total band width.

B.2. CALeULATION oF Rea(~o, E). In order to calculate Rea(~o, E) we define

D(&w, E)
=

N(E) £ Cn,mPn(E)Pm(E + &w) (B.6)

n-m
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Here, D(&w, E) corresponds to the function f(E) defined in Section B-1. Using equation (1),

one obtains

R~°(~°? E)
"

/~ N(E + &~)D(E> &~)) (B.7)
E-h~

As mentioned above, we develop D(&w, E) as

D(&w, E)
=

N(E) £ Dn(&w)Pn(E), (B.8)
o

that is

£ Dn(&w)Pn(E)
=

£ Cp,qPp(E)Pq(E + &w), (B.9)

« P,q

and by inversion (see A.2)
we get

Dn(&w)
=

£ N(E)Pp(E)Pq(E + &w)Pn(E)dE, (B.10)

P,q

which can be calculated as explained in (AA).

B.3. CALCULATION oF C(E, t). Using equation (2) we obtain for C(E, t)

C(E,t)
=

e~~~~ô(E, t), (B.Il)

with C(E, t) corresponding to f(E) in B-1, 1-e-,

Ô(E, t)
=

N(E) £ Ôm(t)Pm(E) (B.12)

and

Ôm(t)
=

~j Cn,m
/ (E)Pn(E')e~~~~dE')

(B.13)

~

Ôm(t) is calculated as explained in AA.

References

[ii Kubo R., J. Phys. Soc. Jpn12 (1985) 570.

[2] Hwang M., Gains A. and Freeman A.J., Phys. Rev. B 33 (1986) 2872.

[3] Swihart J-C-, Butler W-H-, Stocks G-M-, Nicholson D.M. and Ward R-C-, Phys. Rev. Lett. 57

(1986) 1181.

[4] Weir G-F- and Morgan G-J-, J. Phys. F11 (1981) 1833.

[5] Kramer B., MacKinnon A. and Weaire D., Phys. Rev. B 23 (1981) 6357; MacKinnon A. and

KraJner B., Phys. Reu. Lett. 47 (1981) 1546.

[6] Stein J. and Krey U., Z. Phys. B 37 (1980) 13.

[7] Ballentine L.E. and Hammerberg J-E-, Gan. J. Phys. 62 (1984) 692.

[8] Wheeler J-C-, Prais M.G. and Blumstein C., Phys. Reu. 810 (1974) 2429.



N°9 A REAIJ-SPACE APPROACH TO ELECTRONIC TRANSPORT 1211

[9] Mayou D., Europhysics Lett. 6 (1988) 549.

[loi Luttinger J-M-, Phys. Reu. B 4 (1951) 814; Holstein T. and Friedman L., Phys. Rev. 165 (1968)
1019.

[Il] Peter D., Cyrot M., Mayou D. and Khauua S.N., Phys. Rev. B 40 (1989) 9382.

[12] Mayou D., Pasturel A., Nguyen Manh D., J. Phys. G19 (1986) 719.

iowsAL DE pHYsiom L -T. s, A& 9, sEPTEuEm 199s 4x


