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Abstract, The stability of the random field Ising model (RFIM) against spin glass (SC)
fluctuations, as

investigated by Mézard and Young,
is naturally expressed via Legendre trans-

forms, stability being then associated with the non-negativeness of eigenvalues of trie inverse of

a
generalized SC susceptibility matrix. It is found that the signal for trie occurrence of the SC

transition will manifest itself in free-energy fluctuations only, and net in the free energy itself.

Eigenvalues of the inverse SC susceptibility matrix are then investigated by the Rayleigh Ritz

method which provides an upper bound. Coming from the paramagnetic phase
on

trie Curie une,

one
is able to use a

virial,Iike relationship generated by scaling the single unit Iength (D < 6; in

higher dimension a new Iength sets in, trie inverse momentum cut off). Instability towards
a

SC

phase being probed on pairs of distinct replicas, it follows that, despite the repulsive coupling
of trie RFIM the effective pair coupling is attractive (at Ieast for small values of the parameter
gÀ,

g the coupling and À the effective random field fluctuation). As a
result, "bound states"

associated with replica pairs (negative eigenvalues) provide the instability signature. Away tram

trie Curie fine, the attraction
is

damped Dut tilt the SC transition hne
is

reached and param-

agnetism restored. In D < 6, the SC transition always precedes the ferromagnetic one, thus

the domain m
dimension where standard dimensional reduction would apply (on the Curie hne)

shrinks to zero.

After nearly twenty years of intense activity, there is yet no consensus on the critical behavior

of random field systems (for recent reviews see il, 2]).
A blatant contradiction arose when a calculation to ail orders in perturbations [3,4], later

supported by a non perturbative approach [5], established dimensional reduction (between the

RFIM in dimension D and the pure Ising system m D à) both for hyperscaling relationships
between critical exponents and for the exponents themselves as a

function of D. With à
=

2

this was predicting a lower critical dimension D£
=

3 for the existence of a ferromagnetic phase,
in contradiction with an early Imry-Ma [6] argument predicting D£

=
2 (later supported by

rigorous work of Imbrie [7], proving the existence of ferromagnetism in D
=

3).

(*)Also at Groupe de Physique Statistique, Université de Cergy-Pontoise, 95806 Cergy-Pontoise,
France
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Despite the fact that D£
=

2 is now widely accepted, there remains the question of down to

which dimension are the resummed perturbation results valid, and what happens below that

dimension.

Meanwhile several groups have proposed the existence of a glassy phase sector in the £h,T
plane IA is the width of the random field gaussian distribution and T the temperature) out

of numerical studies [8-12] or from analytical work, extending to random field systems [13-16]
the techniques of replica symmetry breaking [17] (RSB). In particular Mézard and Young [14]
have used as a control parameter the number of components m

las in Bray [18] self consistent

screening approximation) and written out explicit self consistent equations for the exponents.
Here, we

follow the most straightforward approach to analyze properties of the RFIM, 1-e-,

we mimick what is done in the pure system to describe the paramagnetic and condensed

(ferromagnetic) phases.
We know since the work of Yvon [19] that the appropriate way to have access to the condensed

phase is to replace the expansion in the local field H~, by one in the local magnetization M~,
through a Legendre transform. The Jacobian of the transform det (ôM~/ôHj) vanishes at the

transition (with the lowest eigenvalue of the matrix ôM~ /ôHj ), displaying the non-equivalence
of the H~ and the M~ expansions.

Likewise here we consider the RFIM described by an effective hamiltonian with an externat

field £h and perform the appropriate Legendre transform to the conjugate observable. Again the

Iowest eigenvalue of the jacobian matrix yields the locus of the singularities of the associated

susceptibility, here the SG susceptibility,1-e-, the fine of the SG transition.

In Sections 1-2, we recall the perturbation expansion and effective hamiltonian for the RFIM.

In Section 3, the Legendre transform is effected yielding stationarity conditions and eigenvalue
equations for the SG transition. In Section 4 we study the transition and show that it manifests

itself in the free-energy fluctuation las contrasted with the standard SG). Section 5 is devoted to

a study of the phase diagram using the Rayleigh-Ritz variational method [20] and we conclude

in Section 6, where our results are summarized.

1. Trie Pure Ising System

Consider the pure Ising hamiltonian, in its soft spin version,

~i=j£(to+p~)§7lp)wl-p)+(£§7]-£Hj§7j Iii)

p j j

and

W (Hj )
=

In DçJ exp 7i(ç2) + In Z (Hj ) il.2)

One may describe the system by expanding m H; or via a Legendre transform

W (Hi
=

-r (Mj ) +
~j Hjmj (1.3)

J

where the magnetization M~ is

Mg
=

$
= iç~j) 11 .4)

j

and the Legendre transform r satisfies

Hj
=

$
,

Il.à)
J
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by expanding in M. The bracket in (1.4) stands for "thermal" average

Mj
=

/
Dç2 ç2je~~l~l /Z Il.fi)

The Jacobian of the transformation is the determinant of the inverse susceptibility matrix

-ij ô~P
~

~~ ômjômj
(1.7)

and when a zero eigenvalue occurs it signais the inequivalence of the two expansions and the

occurrence of a transition. In Fourier transform x~~(q), and, e-g-, in zero momentum for a

standard system, x~~ vanishes in zero field, at Tc the Curie point

x~~ (q
=

0; T~)
=

0
,

(1.8)

below which M # 0 even for H
=

0.

This well-known description of the paramagnetic to ferromagnetic transition we would like

now to extend to the random field system.

2. Trie Random Field Ising System; Perturbation, a Reminder [21]

Let us consider now H~ to be a quenched random field with a pure Gaussian probability
distribution, 1-e-,

Hi
=

0 (2.1)

HjHj
= ô~j£h (2.2)

where the bar stands for probability average.

2.1. DIRECT AVERAGING. One may compute the H expansion of observables and then

perform the Wick average of the H's on each term of the expansion. In the parmnagnetic
phase, to keep things simple, one obtains

W(H)
=

£ connected graphs with all pairs of H's

coalesced as in (2.2). (2.3)

G(1; j) e (ç2jç2j) (ç2~) (ç2j)
=

£ connected graphs, rooted at and j,
with all pairs of H's coalesced. (2.4)

C(1; j) e (ç2~) (ç2j =
£ graphs made of two disconnected pieces, respectively rooted

at1 and j with ail pairs of H's colaesced. (2.5)

The coalescence of all pairs of H's transforms the two disconnected pieces into one single
field-connected graph.
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2.2. AVERAGING VIA THE EFFECTIVE HAMILTONIAN. The above results can be recovered

using the rephca trick, that is, computing

1-
y~2

2

Z"
=

(exp W(H))"
= exp nW + W~ W +.. (2.6)

~

where one then recovers the averaged free energy

Fe W
= (Z" -1) (2.7)

n-o

but also its successive fluctuation cumulants.

The effective Hamiltonian is now(~),

~in
=

L lj L (to + p~) §7°lp)§7~l-p) +
( £ (§7))

~

~ p j

~j ~ ~ 9~" (P)9~~(-P) (2.8)

a,P P

The propagator becomes a matrix G with components

Gap
= 1~7a~7p)n -1~7~)n (~7p)n (2.9)

where the rephca-thermal average is shown as
()n. In the paramagnetic phase (no magnetiza-

tion) (çJn)~
=

0. The bare propagator G$~ is the inverse of the matrix (p~ + to) ô~p £h, 1-e-,

with [G°) ~~
=

p~ + to
Go ~Go

~~~ ~~~~~ ~
l n£hG°

~~'~~~

The first term is the connected (bare) propagator, the last is the field-connected (bare) prop-

agator (suppressing the H-coalescence into £h's it fàlls into several disconnected pieces). In

general we wnte

G e G~p e Gaôap + C~p (2.Il)

Of course, in the paramagnetic region there is no explicit replica dependence (in a RSB phase
Cap however depends [13-16] upon the a, fl overlap).

The observables calculated by direct averaging as in Paragraph 2.1, are recovered via

G
=

Ga(~_~

C
=

C~p(~_~ (2.12)

Under RSB, one can relate (14,15] them by,

~
njn 1)

~Î ~~~ ~~'~~~

"~~
n-o

,

4

(~) For
a non

Gaussian probability law (e.g.,
a

bimodal one) terms m

~ ~j £~a)
are

also
4.

J n

generated. See below.
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3. Legendre Transform

TO keep things simple we work from the paramagnetic phase, 1-e-, with (çJ~)~
=

0. We cari

then forget about the first Legendre transform that takes H into (çJ~)~ and concentrate on the

second transform [22-24] taking £h~p(p) into (çJn(p)çJp(-p))~. We treat here £h as a source

which we extend to values £h e £hnp(p) for the purpose of generating appropriate observables,

with in the end £hap(p)
-

£h. Together with Wn e In Z" we introduce

Wn(£h)
=

-rn(G) + tr £h G (3.1)

with

~"~ll'~
"

ôlàp) ~ ~"ll'~~"~ ~ ~~~ll'~ l~~~

and
ôr«

j3.3)à~p(P)
" ~G ~jp)

mstead of il.4,5).
The rn functional is itself given by

r«jGj
=

tr in G tr [G°] ~~ G + K<il jGj j3.4)

that is exhibiting components,

-r« jG~ c~~j
=

£ in G~ + tr in (ô~~ + Gjic~~)

OE °, fl

£ [G°) ~~ [Gn + C~n] +
£ K(~~ (Ga; Cap ) (3.5)

~
~ s=1

Here K~)
is the 1-irreducible functional built with çJ$ vertex and Gap hnes Ii.e., such that by

cutting off two such lines, whether connected (G~ô~p) or field connected (C~p) the represen-

tative graph does not fall into two disconnected pieces). The subscript s in KÎ~~ is the number

of free replica indices, after account of the ônp constraints of the connected propagators.

3.1. STATIONARITY CONDITION. We consider separately, stationarity with respect to olf-

diagonal and diagonal components.

OIT-diagonal component à/ôcnp
:

ôx~U)
[1 + G~~C)

~
Gj~ + £hnp + ~j ~

=
0 (3.6)

"

s=2

~~"P

In the paramagnetic phase, Cap
-

C and, in the above equation, only s =
2 contributes

ôx~<i)
G~~CG~~

=
£h + ~(G; C) (3.7)
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Diagonal comportent à/ôGn
e à/Cnn

The equation obtained is more subtle to interpret because it contains botll connected and

field-connected graphs and hence provides two equations. In Appendix A it is shown that one

equation is the Dyson equation for Ga

G [G~ ~
l~

~ ~~ ~~
~

~ ~~~

s=1 "
conn

where, m the paramagnetic phase, only s =
contributes. The other equation is the corre-

sponding equation for C~n

[1 + G~~C] ~~

G~~Cj Gj~ + Ann +
£ (~~~l=

0 (3.9)
~"

s=2 ~ f-cran

Both equations (3.6) and (3.9) cari then be rewritten as (Appendix Ai

[1 + G~~C] ~~

G~~CG~~j + £hnp + £ $~
=

0 (3.lo)
DEP

~=~

ÎÎ

an equation valid for a # fl and a =
fl. This seemingly formol result has the consequence that,

contrary to what happens in the standard SG

C(x
=

1 e)
--

Cil) (3.Il)
e -

0

showing that there is no jump in a RSB phase as the an fl overlap x is taken to be exactly
equal to one(~).

3.2. SECOND-DERIVATIVE MATRIX. We have

Jwn~,~à ip; pi
= ~ ~

)~jjji
,~

13.12)

a matrix in p,p' and in replica pairs off, ~fô. The structure in replica pair space has been

analyzed by de Almeida and Thouless [25] (for the paramagnetic region and in the absence

of diagonal components of G). Here again the dangerous sector is the replicon one with the

matrix

ÀR (P;P')
#

Mi 2M2 + M3 + fi4R (P; P') (3.13)

where

Ml
~

Ji4np;op jp( p')

M2
=

fi4np;n~ (p; p')
=

fi4np;~p (p; p') (3.14)

M3
"

Ji4npnàjp(p')

The above expression simplifies greatly if one recognizes compensations occurring between the

M components. These compensations are handily taken care of as follows.

(~) Note that for consistency, trie extension 6
-

Amp, introduced here, has to satisfy
a

relationship
analog to (3.Il).
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Consider the first functional derivative

£hnp
=

)
(3.15)

CnP

£ha~
=

)
=

)
(3.16)

an

Gn

Contributing graphs are such that the ends a, fl in £h~p are necessarily field-connected, whereas

in Ann the ends may be connected (contributing to the equation for Gj~)
or field-connected

(contributing to the equation for C~a). Upon a second derivative, consider the connectedness of

the new end points to the pair ofinitial end points. These may be connected or field-connected.

The structure of eigenvalues (3.Il-14) is such that, one recovers

~R (PIF')
"

Mllconn ~ fi4"Pl"P (PiP')Îconn (3.17)

where the index conn. stands for the connectedness between the nght and left pairs.
All the graphs with field-connexions between the left and right pairs compensate each

other(~) to only leave (3.17). From the explicit form of rn one gets, in exact form

, ~ ,

ô2J~ji)
~~ ~~'~ ~" ~~~~~ ~~ ~~~~"° Î

ôCnPlP)ôCaP lP')
~~~~

~~'~~~

where only s =
2 contributes in trie n -

0 liniit.

Note that ÀR starts with an attractive coupling making it a candidate to come out with a

null eigenvalue.

4. £h-Susceptibility and trie SG Transition

We are now in a situation that bears some analogy with the SG in field. In the paramagnetic
region we have Cap

=
C, the analog (now space-dependent) of the SG order parameter q~p = q.

As one crosses the line, defined by the vanishing of the lowest eigenvalue of ÀR (Pi P'), Playing
the role of the Almeida-Thouless line, to avoid negative eigenvalues one has to break replica-

symmetry [13-16] and write Cap
=

C(x) where x =
on fl is the overlap of the replica pair (in

the Pansi [17] sense).
Just like in the pure system the vanishing of the jacobian signais the occurrence of a singular-

ity in the H-susceptibility, here the vanishing of the lowest ÀR eigenvalue signais a singularity
in the £h-susceptibility.

~~~
~~~"~ ~~'~~

ôAop(p)ôÉ~à (p') ~~'~~

Indeed in its replicon sector, we have

~R (p; p')
#

Çi (PI P') 2Ç2 (Pi P') + Ç3 (P; P') (4.2)

which is just the inverse of fi4R (PI P')

çR lP>P')
=

1J4Ri~~ lP;P') 14.3)

4

(~)In particular the ~j ~j~a) terms generated by a non
Gaussian probability law, do net

J n

contribute to (3.17).
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that is

çR lp; p')
=

G~lp) ôp+p,;o +
£ fi4np;np lp; p") çR lp"; p') 14.4)

~"
conn

One may also directly wnte out the standard SG susceptibility

xsG (ri r2)
= 1(~7

(ri)
~7

lr2))
1~7

(ri))
1~7

lr2))i~ 14.5)

which is related to ÇR by

~j ÇR (Pi P')
"

~
XSG (ri r2) (4.6)

p,p' 1,2

It is striking to see that in the random field system, SG singularities are confined to 2-replica
2

contributions, i-e-, looking back at (2.6) into -F2 +
W~ W the free energy fluctuation

and not the free energy itself.

However, as soon as we are in a RSB phase, free energy fluctuations F2> F3... are no longer
of order n~,n~ respectively but all become proportional to n and thus contribute m a fimte

way to tl~e free energy.

Let us see that effect on a simple example. Let us consider the lowest order contribution to

x~<ij
2

~j ~j C~p (ri r2) (4.i)

1,2 n,p

We have

~ ~~~ ~ l~ ~~~ ~ ~~OE

n,p OE pin

= n

~

dx C~ ix) + C~ il (4.8)

1 ~
~ ~ ~~

dx
~~~~~

where one has used (3.Il). Hence the O (n~) term is now O(n) and one understands the

vanishing of that contribution in the RS limit with the vanishing of the derivative d C(x) /dx.
In general the total number of derivatives (with respect to overlaps x,y...) is equal to the

number of replicas involves minus one (s -1 in KÎ~~). This is an unusual example where tl~e

topology of tl~e grapl~s contributing to tl~e free energy strongly depends on tl~e phase one is

into.

5. Phase Diagram

To investigate, in the plane IA, T) what line is defined by the occurrence of a null eigenvalue,

we first consider the Curie hne. On that line the progagators are massless and we write them

as follows,
i /~W

Clp)
=

~
c
(w) là-i)

P
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Here we have à
=

2 (lj ~), ùJ > 0 (ùJ =
1 in the mean field limit), and c(y)

=
0 if y =

0

(the pure Ising case), c(y)
= y if y - cc to recover a behavior m p~~+fl Hence we may take

~w
£

C(P)
" fi + j (5.2)

As for the connected propagator we take first, for simplicity

GIP)
"

)
15.3)

noting that in the crossover region to the pure system, (5.3) will have to be modified.

(i) Lowest order in Â
: on tl~e Curie fine

To lowest order the eigenvalue equation reads,

P~~~~f~ Ii (gÂ)~
/ jj~(~

c~jq) /~ jp q)
=

/~ jp) j5.4)

with f~ (p) the eigenvector with eigenvalue and

c
d~s

~_q
+ ~s-D-2fl

C2(q)
"

/
(2~r)~ S~~~ (~ ~ ~~

~2 jj D 4 + 4) /2)
(~'~~~

~~
~~

r (18 ~ ~~~ ~~~
~ l~ ~ ~ ~~

Here C2(q) can also be interpreted as the first cumulant contribution of a random temperature

term.

To overcome the diiliculty of solving the above integral equation (or in Fourier transform, the

"Schrôdinger" equation with an "almost quartic" kinetic term)
we resort to the Rayleigh-Ritz

variational approach that provides an upper bound, by writing

ÀR % =

/ jj~fi
P~~~~ If lP)l~ (gÂ)~

/ jj~(~
C21q)4 lq) là-fi)

41q)
=

/ jj~(~
f* lP) f lP q) là-1)

Here f (p)
a normalized trial wave function (1.e., çi(0)

=
1) whose parmneters are to be deter-

mined variationally.
Since we are looking for the lowest eigenvalue ("zerc-energy bourra state" we take f (p)

=

f(p) and real. We can now scale out the unit length R.

~ RÉ
2~

ÎÎÎ~Î/-~ / ~~q 1

a

~ l~7~)~ qS-D-2141q)

~ ~~~~
~~~i~

2(D~
4+ni

~~~~

Writing the stationarity condition with respect to R, one gets

~
Î~)~~~ ~~ ÎÎ~~~~~~~~

~~'~~
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Hence solving from equations (5.8,9), we obtain finally

=
ID 6 + fl + i~)

l~
~ ~

=
ID 6 + q + i~)

~~~~ ~

~ ~-
(5.10)

ID 4 + 4) (R~) (2 i~) (R2) ~

with the length scale Ii.e., correlation length)

~ ~ ~ q ~
i/(6-D-~-q)

~ =
(gÂ) j5.Il)

R 2 -11 a

As we rest on the Curie litre we see that the eigenvalue upper bound remains negative for ail

Â (except Â*
=

0 where
=

0, a hmit upon which we retum below).
It follows that, within the interval of dimension where the (ultraviolet) eut off does not spoil

the length scaling, the paramagnetic to ferromagnetic transition is superceded by a paramag-
netic to SG transition, provided it is meaningful to keep only the lowest order contribution to

the fi4R (Pi P') kemel.

The boundaries of the dimension interval are

Du=6-i~(Du)-lj(Du)=6

and

D£=4-lj(D£)

Given that the standard dimensional reduction land the associated
i~ =

lj result) is no more

applicable, one is entitled to take lj
= 2i~ which is correct [26-28] near D

=
2. The lower critical

dimension D£
=

2 then obtained by using à
=

2 (lj i~) in the vicinity of D
=

2, that is

~ =
l for D

=
2.

Thus, modulo the (inessential) changes that will be introduced below for a treatment of the

cross over region, what this very simple calculation is telling us reduces to the following: the

results obtained by perturbation to ail orders (dimensional reduction with à
=

2, and lj
=

~)

are superceded by the occurrence of the SG transition which originates in the attraction exist-

ing between pairs of distinct replicas. In contradistinction, and a contrario, for "animais" Ii.e.,
branched polymers) whose effective Lagrangean is alike the RFIM one but with a pure imagi-

nary coupling [29-31], the attraction becomes a repulsion, and in a random field, dimensional

reduction is indeed correct [30],

(ii) To test the robustness of the above result, one may follow Mézard and Young (14] in

adopting Bray's [18] approach, 1-e-, use a screened interaction for an m-component system and

work consistenly to a given ) order.

Equation là-fi) is now replaced by

=

/
j)((~ P~~~~f~lP)

~(l~ /
j)((~ s2(q)c~(q)#(q)

jgÂj~ j dDq
~~ j dDp i ~

~
i

~ ~~
m 12~r)~ ~~~ 12~r)~ ~~?~lP+q)~~i ?

with C2(q), çi(q) as of (5.5,7) and
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6-D-~-i

s(q)
=

p6-D-~-~ ii à (~qo q)] +
~ ô (pqo q) (s.13)

qÎ~~~~~~
= j~))/~ r l16 D

~1
4) /2)

r jjD 4 + q) /2) rjjD 2 + y~)/2)
~~

r (D ((6 4 ~1)/2)) r (12 ~1)/2) r l14 4)/2) ~~'~

Here p can either be unity, or chosen to take the best accourt of screening. Again scaling
out the unit length yields

~ ~~ÎÎOR
~

~~ ~~
~ ~

~~A(q)+ /~ (Î~~ ~~~~ ~ ~ ~~~~~~~
x

(/
r)~~

°~

"~~~ ~

(5.15)
1

O
m

j~ 16)

m

~ i
~

~ ~~~ c~ jq)jjq) +
/ jÎ~§ fl?~

jp + q)~~~

Note that the R-derivative with respect to integration boundaries does not contribute. The

stationarity condition upon R yields then

~ ~~ ~~

RÉ
2~

~ÎÎ~~ 2(D~
4+1)

~~~~ ÎÎÎÎD qÎR~ ~~~ ~ ~ ~~ ~~~j

~~~~ ~2<D~~Î~ /~~ ~~(D
Î~~~~

~ ~ ~~~~~~ ~~'~~~

Mm

leading again to the Rayleigh-Ritz approximation of the eigenvalue,

=

~~ i+j + ~~
~(~~ ~~~~

~+~~
/[~ jj[~l JL~~~-~-~-~~Aiq) 15.18)

This expression remains negative for D < 6, confirming the result obtained in ii).

(iii) So far we have shown instability along the Curie line when keeping the terms in (g~crÂ)
~

m

One would obtain analogous qualitative behavior for g~crÂ)~j ~

terms. The first repulsive
m

contribution only occurs as
~~~ Â ~~~~~~~~

~

m m
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(iv) Lowest order in £h cross over region
If we want to use

G(p) throughout the crossover to the pure limit Â
=

0, one should replace
(5.3) by

j§<~P~~)/~ j§l/9
G(p)

=
~

g (5.19)
P ~~ P

with g(x)
+J

x~~~P as x -
0 and g(x)

+J
C as x - cc, the subscript p referring to the pure

limit, or alternatively, by

GIP)
= ~~~ à

~~
15.20)

P P

with §(0)
=

1 and §(x)
+~

1/x~~~P as x - cc.

Now equation (5.8) is replaced by

~ ~~Î 1~ / ~~(Di~~
~~Î~~i~~ 9

~ ~~~~~i~)
~2<~Î~~+q)

~~'~~~

and with the stationarity condition

2 ~
j~)<~-~p) dDp

~ ~ ~ ~
2 y §(y/p)

~
D 4 + fl R4~2~ 11 (2~r)D

~ ~~ ~~~ ~ ~~~~~
~

~
2

i~ P g(y/P)

~2<~Î~~+fl)
~~ ~~~

where y a
RÂÎ, thus yielding, with obvious notations,

~
=

~ ~ ~ ~l ~ ~l ~~) ~~~ (g-2)
+

~ ~ g~~)j
(5.23)

D-4+fl R~~ 6-D-q-i~ p

A suificient condition to keep negative is to have g(x) be a monotonously increasing function,

a very natural property given the above limiting values for x =
0, x - cc.

The correlation length R is now given by (5.22) and one verifies that when D is between D£
and Du, vanishes with Â.

(v) Lowest order in Â away from tl~e Curie fine

As one is departing from the Curie line, the propagators become massive. In equation là-fi),

e-g-, the "kinetic" contribution will be increased slightly but the "potential" one will be sharply
decreased, the mass playing the role of an infrared cutoff. Hence the eigenvalue will increase

and become null at some point, on the SG transition line. To obtain that line we need the

scaling functions for the propagators which are now significantly
more complex, since they

depend upon two variables x =

Âi /p + £ho/P and y =
ôT~P /p where ôT

= )T Tc (Â) is

the distance, for a given Â to the Curie line. If one is willing to become more speculative, one

may use a typical scaling form, restituting the appropriate behavior in ail limits, as

p4-fl (ôT)1
C~~IP)

= ~2-q+~p + ~(n-~p)/vp
o o

i~~ ~~
2-~+~P

~ ~~ ~~
~~~~

~~ ~~~

where 1
= v (4 lj), and
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G~~ IF)
=

P~~~P + p2-~àj-~P +
ôT~

ôT~~~p + à<~~~P)/UP
o

?~~~ + ~~~~ + ~~~~
i
?fil((il[Îv~ 15.25)

Leaving out a
complicated discussion to be dealt with separately, [et us just consider the

vicinity of the upper critical dimension,
m

the simplest case where screening is left out.

Note first that the Curie line becomes now the locus of a SG/Ferrc-SG transition. However

the G propagator being weakly dependent upon the SG order parameter, we shall assume it

unchanged near D
=

6, that is given by

T Tc + a£h ci 0 (5.26)

where a is positive.
Let us compute the SG transition line for D

=
6 e, at vanishing values of ôT and £h.

Proceeding in the same mariner as m ii) and (iv) we get to leading order

ôT
+J

b£h~fi (5.27)

where b is positive and vanishes with e. We thus have(~)

T Tc
+J

-a£h + b£h~/~, (5.28)

1-e-, the SG transition litre starts tangent to and remains very close to the Curie line for small

e.

As D decreases, the SG domain gets wider but too little is known about the behaviour of

the Curie line itself to decide whether there is reentrance Ii.e., whether the £h exponent of the

b term in (5.28) cari become smaller thon the one of the a term). Besides we have not taken

care of screening which plays an important role when D < 6.

6. Conclusion

We have shown that for small enough values of gÂ,
one obtains a negative upper bound for the

eigenvalues of the inverse spin glass susceptibility, as it occurs in the free-energy fluctuation.

This enforces the occurrence of a SG phase and replica symmetry breaking [13-16]. It

enforces it for ail D between the upper (Du
=

6) and lower (D£
=

2) dimensions. Thus the

general properties obtained via perturbation to ail orders [2-4], for D < 6 Ii.e., dimensional

reduction with à
=

2) have no domain of application on the Curie litre, if the above results are

not reversed for higher values of g~crÂ. Indeed, they are then superceded by the SG transition

for any D, 2 < D < 6.

Whether this entails that the appropriate description is via a SG order parameter as m

Mézard-Young remains to be seen

ii) although the above result is unlikely to be reversed, one would like to render foolproof
the above derivation (by extending it to ail orders in gÂ).

(~) Note that the same reasomng may be applied when approaching trie Curie une from trie Iow

temperature side,
i e., from the ferromagnetic phase to determme

a
Ferro/Ferro SC transition hne, as

lu refereuce (32].
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(ii) this being given, it would also be desirable to see whether the above SG transition is trot

superceded itself by 3-replicas "zero energy bound states", 4-replicas, etc. (as contrasted with

the 2-replica studied above).
Or put another way, just as we have seen above, that the SG transition associated to the

order parameter (çJnçJp) cari be interpreted as governed by an effective random temperature
Ii.e., mass, with a C2(q)

~

l/q(~~~~~fll correlation), likewise one may ask whether higher
order parameters, e-g-, (çJ~çJpçJ~), etc., associated with higher random couplings [33] will not

become relevant and spoil the above results.
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Appendix A

Here we show that the stationarity condition on trie rn functional (3.4,5) yields equations (3.8-
l0) with the implication (3.Il).

Consider the contributions associated with a given graph to K<~) (G).
Then take a given choice for the G components (with a constraint as in G~ônp or no con-

straint as m
Cap ). The contributions of K<1)

are then associated with K)~~,Ki~~,
Consider now the first functional derivative

ôr<i)j IA-1)

and the connectedness with respect to the input-output pair of lines (opened by the func-

tional derivation). Those two lines cari be connected or field-connected (if suppressing the

£h-coalescence the input-output lines fall apart) and one can always write

ô~ji) ~~ji) ~~ji)
~ ôGn

~
ôGa

~~'~~

conn fieid-conn

With (A.2) one can separate out the stationarity condition vith respect to Ga (or Caa) as (3.8)
and (3.9).

By inspection, one then writes

ô~o) ~~<i)Î ôi$

Noting that any à/ôc~p contribution is by definition field-connected. Hence one obtains (3.10)
and the result that the equation for C~n (3.9) is obtained by working with a pair of distinct

replicas, and letting (alter functional derivation) fl
- a, implying (3.Il).
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