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Abstract. Spectral correlations for the total cross section iii chaotic scatteriug or, alterna-

tively, for the resonance density fuuctiou in chaotic reverberant rooms, are
studied within the

frame of the random matrix theory. This framework allows us to develop
a

theory of spectral
correlations in the large modal overlap regime which goes beyond trie Ericson- Schrceder result

of Lorentzian autocorrelation functions. Spectral rigidity
is

showu to lead to a
different autocor-

relation function which is universal in the limit of large resonance overlap. Numerical evidence

for this signature of spectral rigidity is given withiu the frame of
a

2-dimeusioual chaotic billiard

model of a
reverberant room, for which level repulsion and spectral rigidity are knowu to be well

described by the Gaussian Orthogonal Ensemble
iii

trie absence of absorption.

Introduction

Since the works of Ericson in the field of nuclear reactions Iii and of Scuroeder for room

acoustics [2] in tue sixties, ii is only recently tuat tuere appeared a renewal of interest in tue

statistical properties of eituer wave scattering turougu a cuaotic region [3-5] or in tue frequency

response function of a reverberant roorn wuicu displays cuaotic ray dynarnics [6]. In nudear

reactions, at uigu energies, many melastic cuannels open leading to an overlapping of rnany

resonances associated to tue interrnediate states of the cornpound nucleus. In tuis situation,
peaks occur in tue cross section wuose inverse rnean widtu r~~ corresponds to tue average life

titre of tue compound nucleus. The fluctuations of the partial cross sections bave been assumed

by Ericson to be dorninated by tue Gaussian randorn cuaracter of uncorrelated partial widtus

connecting tue impur or output states with the interrnediate ores. This led him to establish

the Lorentzian covanance of the cross section which is due to the exponential decay of the

cornpound at the rate r. Using the sanie basic arguments, Schroeder established independently
the same Lorentzian "frequency autocorrelation function" for the frequency response function

(*) CNRS URA 190
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between two points in a reverberant room where the sourd energy exponentially decays due

to absorption. Both assumed that trie total widths (or decay rates) of the resonances do trot

fluctuate much around trie average width r and this cari be justified by trie fact that these total

widths rnay be viewed as cornposed of many partial widths. Bonn also obtain results where trie

specific statistical properties of trie positions of trie resonances are irrelevant.

Ii is trie aim of trie present paper to show that trie resonance fluctuations described by
random-rnatrix theory (RMT) (e.g., Gaussian orthogonal ensemble (GOE) for the spectra of

Hamiltonian systerns with tirae-reversai symmetry) may prove to be of chief importance when

evaluating energy correlations for total cross sections in chaotic scattering or, analogously, fre-

quency correlations for properly spatially-averaged response functions in wave problems witu

absorption. In particular, in tue case of moderate or large resonance overlap, the Lorentzian

shape turns to be a poor approximation for tue energy autocorrelation function of tue men-

tioned quantities. A somewuat related approach was initiated by Smflansky wuo tried to put

on a firm basis tue relevance of RMT in quantum cuaotic scattering by using Dyson's circular

orthogonal ensemble for the scattering matrix [3].

1. A Simple Model for the Spectral Fluctuations in the Large Modal Overlap
Regime

Following the simplifying assumptions made by Ericson iii,
we wnte the total cross section for

transitions from a given in-state as:

a~°~(E) ~K (1 Re S), (1)

wuere S
=

51°) +
i~j '~?~~

,

denoting by Ej
=

Re Ej ir/2 tue complex energies of the
E

~

j
J

intermediate states and assuming that the resonance widths are ail equal. Tue amplitudes
(jj (2 of tue resonances suould vary from resonance to resonance but also from a given in-state

to another one. Tuerefore, in tue following, we consider an average of a~°~
over in-states tuai

we still denote by a~°~ and wuich reads:

°~~~ " ~~ ~~~~ ~
~Î

(E Re
ÎÎ2

+ r2/4' ~~~

This expression is in close relation to tue Wigner-Eisenbud titre delay r(E)
or resonance

density [7,8] defined as:

T(E)
=

-1 Tr St ~~, (3)
ôE

and wuich has the following pote decomposition:

~~~~ ~
(E Re

ÎÎ2
+ r2 /4 ~~~

A formally equivalent problem is met when studying tue real part of tue sc-called input acoustic

impedance used, for instance, in tue field of reverberation room acoustics. Tuis will be tue

puysical problern we address turougu a numerical model described in tue following section.

In tue following, we assume tuai tue rigidity of tue complex compound (or of tue rever-

berant room) spectrum (for the real part of the energies) is fairly well described by the GOE

statistics. Wuat are tuen tue implications of tue corresponding spectral fluctuations on tue
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autocorrelation function of tue fluctuating part of tue resonance density < T~(E + e)r~(E) >

where r~
= r- < r > ? Denoting by D the local mean spacing between adjacent resonances,

< r > is then equal to 1ID. Now, using the normalised variables
x =

E/D, xj =
Ej ID and

j =
r/D, and defining the normalised resonance density function n(x)

=
Dr(E),

one con

write the power spectrum of n~
= n -1 as the Fourier transform of its autocorrelation function

Riz):
m

cos
ÀXR(x)dx

=

e~fl~' il b(À)], là)
Î

wuere b(À) is tue twc-level form factor defined as the Fourier transform of the twc-level duster

function 11 lx) [10] (see tue Appendix). For tue GOE, tue two-level form factor reads:

1
~

+ )ln(1+ À/7r) £ 27r

~~~~
~

(À/7r
+

1j ~ ~ ~

~~~

~
27r

~
À/7r

~

The evaluation of the autocorrelation Riz) is easily achieved in the limiting case of a very

large j value, which amounts to consider the large modal overlap regime. In the simple model

we analyse, only this limiting regime makes sense since the approximate constancy of the

decay parameter is assumed. This simplifying assumption is commonly used in the acoustic

literature [2, 6, 9] since it is claimed to be true in practice in the case of a diffuse sourd

field [2]. We postpone a tentative justification of this assumption within the frame of tue

model reverberant room discussed in the following section.

Due to the exponential factor in tue r-h-s of equation là), only the leading beuavior of

1- b(À)
~-

for small values of is to be retained. Note that, in tuis regime, the same

leading beuavior is obtained for otuer Gaussian ensembles (GUE or GSE)
or superpositions of

independent spectra [10] but not in tue Poisson statistics (whicu is conjectured to prevail for

spectra of dassically regular systems) for wuich Y2 lx)
=

0. Tuus, in tue limit of large resonance

overlap, no otuer information but spectral rigidity suould be revealed by tue autocorrelation

whicu is found to be related to tue derivative of tue Lorentzian:

~j~~
~

i lx/1)~
~

t 1- lé/r)~
~

~~~~ ~~~ir~i~ (1 + (x/1)~)~ ir~r~ (1 + (é/r)~)~

It suould be stressed again tuat R(x) would be a Lorentzian in tue case of a Poisson sequence
of resonances witu no level repulsion.

Expression (7) of tue autocorrelation coincides witu tue limiting form given by Eckhardt in

tue context of a semidassical analysis of a scattering problem wuere the width r is a dassical

escape rate [8]. A similar form bas also been derived by Suusuin and Wardlaw for a particular
scattering off a surface of constant negative curvature il Ii. In contrast, our derivation makes

no assumption about an equivalent classical problem but addresses a general dissipative wave

problem. As an extension of tue tueories of Ericson and Schroeder it relies on the validity of a

universal statistical feature of the spectrum, namely tue rigidity.

2. The Numerical Model

Here we provide numerical support for tue above predictions within tue fratrie of a 2D model

of a reverberant room, namely a cuaotic billiard where the wave equation is solved subject

to absorbing boundary conditions. We use a method based on ray trajectories, introduced
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previously [12,13], to calculate tue temporal response to a brief puise in a chaotic billiard

shaped 2D room in which the pressure p satisfies the standard wave equation [12]:

~2jP(x> t) + V~P(x> t)
=

-F(x> t), (8)

togetuer witu tue uniform absorbing boundary condition

Î "
~~T' l~~

where à/ôn denotes tue inward normal gradient at the boundary whicu plays tue rote of an

absorbing watt witu a specific admittance fl. Dur construction is based on a summation over

families of rays wuicli connect a source point to a limite size region around a measure point

so tuat tue response is evaluated on a coarse-grained scale wuich amounts to a spatial and

temporal averaging at high frequencies. Accounting for the absorption is achieved by reducing
the amplitude of each contribution by a factor (cos fl) Ii

cos + fl) for each reflection at

tue watt, being the angle of incidence witu respect to the normal.

The time response in such a model room is computed for an isotropic point source which

is a Dirac puise
in time. Tue enclosure used is a dissymmetrized Sinai billiard in wuicu the

dynamics of tue ray trajectories is cuaotic in tue strongest sense. It is also well known (see
for instance Ref. [loi tuat tue uigu-frequency spectrum of a membrane with tue suape of a

cuaotic billiard exuibits statistical features je-g-, level repulsion or spectral rigidity) wuich are

very well described by tue GOE. By Fourier transforming the decaying response, we calculated

tue frequency autocorrelation function in a frequency range wuere tue mean spacing between

resonances is much smaller tuan the decay rate. Two types of response were considered. The

first type of response corresponds to a measure point wuicu is different from trie source location.

For a point source at y and a measure point at x, trie Fourier transform of trie response lits
real part in fact), or tue transmission function, approximately reads [9]:

T(X, y( ld) OE ~j9~3(X)9~3(Y)j~
~ )2 + r2/~' ~~~~

~

~~

In the last expression, q7j is tue amplitude of tue j~~ resonance mode of tue wave equation
subject to tue boundary conditions given by equation (9).

At tuis stage, we show uow, in
tue large modal overlap regime, tue assumption of constant

decay parameter may be justified. Tue argument goes as follows. In our model, absorption is

uniformly distributed on tue boundary. At uigu frequencies, tue decay pararneter is obtained

turougu an average of tue squared pressure on tue boundary wuicu essentially is equivalent

to a mufti-channel dissipative process involving a large number N of independent cuannels

scaling as P/À IF being tue perimeter of tue 2D room and tue wavelengtu). If we assume

a Gaussian distribution for tue pressure (deduced from an ergodic conjecture due to Berry,

see [13] and references tuerein) and tuat tue average partial decay rates for each cuannel are

equal, 1-e-, (rj)
=

IF) IN, tuen a X~ distribution with N degrees of freedom is obtained:

~'~~~~~~ ~ÎÎ (Î~Î/2)~~~ ÎÎÎ Î'
~~~~

Tuus as N increases (at uigu frequencies) tue variance decreases:

ai
+ (F~l iF)~

"
(iF)~ "

jif)~. i12)
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Fig. 1. The normalized autocorrelatiou Jl(é)/R(0) of the frequeucy respouse calculated in a two-

dimensioual model of
a

reverberaut
room

with tue suape of
a

Sinai billiard is suown (squares) in tue

case of two uncorrelated
source

aud measurement locations. The value of tue decay rate r m 1.17

(deduced from an exponeutial fit of tue temporal decay response) is substituted in tue Lorentzian

il + (e/r)~]~~ which is plotted (dashed fine) for comparison. Frequency averaging is obtaiued in
a

higu
frequency wiudow whose width is arouud 50 decay rates. The corresponding frequency range is in trie

large modal overlap regime since the estimated value of trie local mean spaciug D betweeu adjacent
levels is of trie order of 0.015.

An estimate for jr)
can be obtained turougu Sabine's formula (ri

=
Po/7rS (S being tue area

of tue 2D room) wuere o is tue equivalent absorption coefficient [13] tue realistic values of

whicu being of tue order of, or smaller tuan, unity. Using tue leading term of Weyl's law at

high frequencies, tue mean spacing D is approximately /S. Tuerefore, tue large modal overlap
regime (ri ID » immediately implies that or be mucu smaller tuan (ri thus ensuring the

approximate constancy of the decay parameter.

Here it suould be noted tuat tuere exist two sources of fluctuations for expression (loi.
One is associated witu the random cuaracter of tue mode amplitudes q7j, the otuer is re-

lated to tue fluctuations of the spectrum (real parts of tue eigenfrequencies). If only tue

randomness of tue products q7j (x)q7j (y) is considered one recovers tue theories of Ericson and

Schroeder. Indeed, for spatially uncorrelated points x and y, tue frequency autocorrelation

function (Tito + e)T(w)) is expected to be of the Lorentzian type Il + (e/r)~]~~, due to the

fact that the fluctuations of Tito)
are dorninated by those of the mode amplitudes, at least for

sulliciently small values of
e. In Figure 1 this prediction is partially validated by comparing it

with trie autocorrelation function obtained numerically for a value of trie decay rate r deduced

directly from the early exponential decay of trie time dependent response. On the contrary
when the response is measured at the location of trie source, expression (loi reduces to the so-
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Fig. 2. Same as in Figure 1 wuen measuring tue response at tue location of tue source. For tue sake

of comparison, tue prediction of formula (7) is suown (dasued-dotted fine),
as well as tue Loreutzian

(dashed fine), both with r m 1.17. The agreement of the uumerical result with
our

prediction witu
no

adjustable pararneter is
excellent.

called input impedance of tue source

~~~'"~
"
~

~~~~~(w wÎ~+ r2/4' ~~~~

Wuen averaging this quantity over a number of different source locations, one is left with a

quantity which essentially is the resonance density function given in equation (4)

~
" ~~ Î

(w w~~+ r2 /4' ~~~~

In trie last expression trie overbar denotes the average over the source locations.

Tuerefore, tue autocorrelation of tue fluctuating part of equation (14) suould bear tue mark

of tue spectral rigidity as predicted in tue preceding section. Indeed tuis is wuat we have found,

as shown in Figure 2 where both the Lorentzian and our prediction given by expression I?i are

cornpared to the numerically obtained autocorrelation. The Lorentzian cannot account for the

shape and width of the autocorrelation in this case whereas our formula lits trie numerical data

very well. Again, it should be reminded that, for the norrnalized autocorrelation Rie) /R(0),
there is no adjustable parameter left since the value of r is deterrnined separately by a direct

measurement. In both figures, tue frequency averaging was performed in the same frequency
window w E [95, 150] wuere tue mean spacing D between adjacent resonances is of tue order
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0.015 as estimated by using tue leading term of Weyl's formula for tue mean density of resc-

nances. Tue absorption we used in botu cases leads to a characteristic decay rate r m I.Ii.

For values of trie frequency mismatch e larger than a few widths (not shown in trie figures), the

frequency autocorrelation functions we observe clearly display non-universal oscillations Ii.e.,
not predicted by assuming spectral rigidity as given by RMT). Tuese suould be related to trie

existence of non-universal features of trie form factor, as emphasized by Berry [14], associated

with trie suortest periodic orbits of tue billiard. Furtuer investigation is needed to account

for the non-universal long range behavior of the correlations probably through semidassical

calculations involving tue least unstable periodic orbits.

Conclusion

We bave provided simple arguments wuicu show uow spectral rigidity in complex spectra cari

be revealed in decaying processes even in tue regime wuere tue resonances are not resolved. Dur

approacu is based on a simple model already used by Ericson and Scuroeder but indudes one

more essential ingredient, namely tuat tue resonances bave real parts tuat should be described

by tue random matrix tueory. Using tue twc-point correlation function of the Gaussian ensem-

bles of random matrices, we suowed tuat the autocorrelation function of the resonance density
suould be different from tue standard Lorentzian and establisued its expression in the case of

large modal overlap. We then presented numerical support for our predictions by analysing the

spectral content of the time response of a model 2D reverberant room. We surmise that this

signature of spectral rigidity in dissipative complex wave systems has some close relation with

tue recent findings of Weaver concerning weak Anderson localization and enuanced couerent

backscattering in reverberation rooms in the time domain Ils].

Appendix A

Here, tue normalised variables defined in tue text are used. The normalised resonance density
function is written as:

=
~~~~ ~

~~

~~~~'~~~~ ~~'" XÎ~Î ~2 /4~°') jA_~~

wuere, for tue sake of simplicity, tue xj's stand for tue real parts, and the delta density function

z(x) is introduced:

z(x)
=

~j à(x xj ). (A.2)

J

It is then known tuat, from the knowledge of the correlation functions of z(x) which are deduced

from trie n-level distribution functions of the Gaussian ensemble, one may, in principle, find

the correlation functions of the resonance density n. The twc-level correlation function of
z

reads [16]:
lzlx + X)zlx))

=
ôlX) Y21X), lA.3)

where Y2(x) is the twc-level duster function of the sequence of xj's which have unit density

on the average.

For a given stationary random process six), one dermes the power spectrum S(À) as:

Sis; À) =

/~~ e"~jsjx + X)sjx))dX. jA.4)
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For the density function z, the power spectrum thus reads:

siz- < z >; >)
m

i bi>), jA.s)

where the twc-level form factor b(À) is the Fourier transform of Y2 [loi
:

bjÀ)
=

/~~ e'~~Y2ix)dx. jA.6)

Then trie power spectrum of n reads:

/~°~ e'>x linix + x)nix)) in)21 dx
=

e-~'>' ii bi>)). IAi)
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