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Abstract. We analyze the Thouless-Anderson-Palmer (TAP) approach to the spherical p-

spm spm glass model in zero externat field. The TAP free energy is derived by suniming up ail

the relevant diagrams for N
- ce

of
a

diagrammatic expansion of the free energy. We find that if

the multiplicity of trie TAP solutions is taken into account, there is a first order transition in trie

order parameter at trie critical temperature Tc higher thon that predicted by the replica solution

TRSB, but in agreement with the results of dynamics. The transition is of "geometrical" nature

since the new state bas forger free energy but occupies the largest volume in phase space. Trie

transition predicted by the replica calculation is also of "geometrical" nature since it corresponds

to the states with smallest free energy with positive complexity.

The understanding of trie low temperature phase of spin systems with random couplings,
namely spin glasses (SG), is still an open and interesting problem. Trie main feature is trie

complex froc energy landscape made of many minima, separated by very high barriers, not

related by any symmetry one to another. This is responsible for trie non-trivial behavior

of these systems, even at trie mean field level which is usually trie first step towards trie

understanding of the phases il, 2].
Recently a simple mean-field model (3,4] has been introduced to investigate the static and

dynamical properties of these systenls. This is an infinite range spherical SG model with

p-spin interactions. For any p > 2 trie model possesses a non-trivial low-temperature and

low-field phase. Within trie Parisi scheme of replica symmetry breaking trie most general
solution for any temperature T and field is obtained with only one step of breaking (IRSB).

In this paper we shall consider trie system without externalfield. In this case trie replica
approach predicts a first-order transition in trie order pararneter at trie critical temperature

TRSB where the order parameter junips discontinuously from zero
(high teniperature) to a

finite value (low teniperature). The free energy, nevertheless, remains continuous. The study
of the dynaniics yields a similar scenario but with a first-order transition at a higher critical

temperature T~ > TRSB, and a slightly different low temperature phase. This surprising result

was
first noted in reference [Si in a soft-spin version of the model. The reason why the two
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approaches led to two dilferent results is that in trie replica approach trie transition was obtained

by trie requirement of largest replica free energy, while in dynamics it follows from marginality.
Trie two conditions are equivalent for trie continuons transition in a field, but not for trie

discontinuons one [3, 4]

In an attempt to understand this result I<urchan, Parisi and Virasoro [6] proposed a Thouless-

Anderson-Palmer (TAP) free energy for this model and showed that, in the absence of magnetic
field, the IRSB solution was a solution of the TAP equations. However, strangely enough, this

solution does not correspond to an extremum of the proposed TAP free energy. Moreover,
at any temperature, the replica symmetric solution leads to a

lower value of this free energy.
Therefore, it is not clear why there should be any transition.

We bave derived trie TAP free energy from a diagrammatic expansion of trie free energy by
summing up ail trie relevant diagrams in trie N

- co limit. We show that taking into account

trie degeneracy of trie TAP solutions, usually called "complexity", then in trie thermodynamic
limit N

- co this naturally leads to a transition m agreement with trie results of dynamics.
Moreover it gives the constraint under which the TAP free energy for the IRSB is minimal. A

similar behaviour bas been found in trie Potts glass with p > 4 [7].

Trie J~-spin spherical SG model consists of N continuons spins a, interacting via quenched
Gaussian couplings. Trie Hamiltonian is a J~-body interaction

~
N N

~~~~
2

~ ~Î ~ ~i ;..,'P'i 'P
~ ~" ~~~

i=1 1<ii<...<ip<N i=1

where we have included an externat field h, and a parameter r to control trie spin magnitude
fluctuations. The couplings are Gaussian variables with zero mean and average (J,~,___,,~)~ =

p!/(2NP~~). The scaling with N ensures a well-defined thermodynamic limit [8j. This formu-

lation is slightly different from the one given m references [3,6j. In the large N liniit the free

energy per spm f of the original sphencal model [3,6] and that of model (1),
ç§, are related by

f(J, T, h)
=

ç§(r, J, T, h) r/2 (2)

where r is the value which makes the r-h-s- of equation (2) stationary. This corresponds to

N

imposing the global constraint ~j a)
=

N on the amplitude of the spins [3, 6].

i=i

Under general conditions the free energy ç§ can be derived from a variational pnnciple (9j.
To this end, we introduce the magnetization m, =

la,) and the connected spin-spin correlation

function G,j
=

(a,aj) la,) (aj) of (1) for fixed couplings, and perform a double Legendre
transform of the free energy to obtain a functional of m, and G,j. We will use the formulation

of references (10, iii. The free energy ç§ con then be written as

flNç§(r, J, T, h)
=

flH(m) + Tr In G~~ + Tr D"~ (m) G r2(m, G) + const. (3)

where TD~~(m)
=

ô~H(a)/ôa,ôaj, evaluated for a, = m,. The functional r2(m,G) is given
by the sum of all twc-partiale irreducible vacuum graphs in a theory with vertices determined by
equation (1) and propagators set equal to G,j. The m, and G,j are evaluated at trie stationary
point of trie r-h-s- of equation (3).

By taking into account only the diagrams which contribute to the averaged free energy m

the thermodynamic hmit [12j (see Fig. l),
we obtain
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+

Fig. 1. The two-partiale irreducible diagrams which contribute m the limit N
- ce to r2(m, G).

Each vertex has p fines and gives a
contribution -flJ,~,

,,~.
Each fine joining two vertices gives a

factor G,j, while each "dead-line" gives a
factor mi.

41q, g, E, r)
=

lq + g) jq~/~ ~j h,', + qP/~E

in g iiq + g)P qP pgqP-11 14)

where Nq
=

£~ m), m, =
q~/~fli,, Ng

=
Tr G and E

=
-(1/Np!) £ J,~,_,_,;~fli,~ ni,~. The

details are reported in Appendix A. In general, E is a random variable which depends on both

the realization of couplings and the orientation of vector m =
(mi, ,mN). In equation (4)

we did not include the constant term which comes from the normalization of the trace over the

spin variables (3j since it does not change the stationary point. Equation (4) is a variational

principle for the free energy smce, for any value of h, r and T, the m,, or equivalently q and

ni,, and g are determmed by the stationary point of (4).
We shall now consider only the zero extemal field case. From equation (4) we see that if

h,
=

0 all situations with the same E will lead to the same free energy. Consequently, to

have a defined problem, we consider E as given and study the solution as function of E. This

corresponds to dividing the phase space mto classes according to the value of E, and summing

over ail the states in one class. This is a statistics by classification (13j, and corresponds to

summing over the different TAP solutions [14-16j.
By ehmmating g and r from the stationary point of equations (2) and (4)

g =
i q là)

flr
=

~
+ ~)~ Ii qP~~) 16)

we are led to the following variational principle for the free energy per spm of the spherical
J~-spin SG model

flq, E, T)
=

qP/~E inli q) Ii + Iv i)qP vqP~~] Ii)

which, for any T and E, bas to be stationary with respect to q. Equation (6), for f(q)
=

flr fl~ p/2,
is the equation of state first derived in reference [4] from the study of dynamics.

Here r disappears, being replaced by the free energy.
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The functional f(q, E, T) is related to the generating functional of one-partide irreducible

graphs, and hence the stationary point is a niininium of f. Equation (7) is the TAP free energy
proposed by Kurchan et ai. [6] and obtained by adding to the "naive" mean-field free energy,
the first two terms in equation (7), the Onsager reaction term, the last term in (7), for the

Ising J~-spin SG model iii].
The stationary point of equation ii) gives, [6],

il q)qP/~~~
=

zT (8)

w~~r~

z =
i

1-E ~ Et
,

Ec
=

-i. jg~

It is easy to understand that, for any temperature T, and z low enough, there are two

solutions of the saddle point equation (8),
one corresponding to a maximum and one to a

minimum. For z > z~ =
z(E~) trie stable solution leads to an unphysical q decreasing with

temperature. Therefore, in equation (9) we take trie "minus" sign. For z < z~, and T low

enough, trie stable solution is trie largest one, q > 1 2 Iv. Trie condition z < z~ is equivalent

to trie non negativity of trie relevant eigenvalue of trie replica saddle point [3]. This confirms

trie assumption made in reference [6] on trie stability of trie TAP solution. Here, it contes

naturally from trie analysis of trie saddle point.
Trie results discussed so far are valid for any fixed E < E~. For values larger thon E~

there are no physical solutions. Trie residual dependence of trie free energy on E follows from

trie fact that we bave summed only over ail states within trie Mass selected by trie given E.

Consequently, equation (7) represents trie free energy of that Mass. To bave trie full partition
function we bave to sum exp(-flf), trie partition function of trie dass E, over all classes,
induding trie degeneracy factor [14-16]. In trie thermodynaniic liniit trie sum can be done by
saddle point, so we bave

fj
=

min lf(E j,
T)

~
lnfif(E j)j (10)

EJ N

where trie subscript "J" denotes that ail this bas to be done for fixed couplings. In other words,
trie minimum bas to be taken over all allowed values of E for trie given realization of couplings.
In equation (10), tif(Ej) is trie volume, or density of states, of trie class. In general tif(E j) is

a random function which depends on trie disorder only through trie value of E
j.

This follows

from the fact that for fixed temperature f depends only on trie value of Ej.
By definition fj is a function of trie realization of disorder. However, trie free energy is

self-averaging. This means that for N
- co trie overhalming majority of sample will give trie

same free energy f(T), 1-e,

for N
- co

fj(T)
=

f(T) with probability 1.

As a consequence, f(T)
can be obtained by just averaging equation (10) over disorder. Due

to the selfaveraging of Ej, this nieans replacing trie second term by Infif(E) and taking the

niinimuni over all allowed values of E.

We bave calculated tif(E) following trie lines of references [14 fiThe details are reported
in Appendix B. Trie explicit calculation reveals that g(E)

=
Infif(E) IN for N

- co is given
by

~~~~ Î~
p

~
~~ ~Î~ ~

~

2
~~ plz~ ~' ~ ~ ~~' ~~~~
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Fig. 2. g(E)
as a

function of E for p =
3. The range of E is restricted to E < Ec. Trie value ERSB

denotes the IRSB solution.

This function is an increasing function of E which takes its maùmum at trie extrenium E
=

E~
and is zero for E

=
ERSB < E~. In Figure 2 it is shown trie behavior of g(E)

as a function of

E for p =
3, trie corresponding values of E~ and ERSB are indicated. For E > E~ there are no

physical solutions, 1-e-, tif(E)
=

0. For E < ERSB trie volume tif(E) is exponentially small in

N. Consequently, in looking for trie minimum in equation (10), we bave to restrict ourselves

to values of E in trie range ERSB < E < E~.
Collecting ail trie results we bave that for N

- co there exists a critical temperature T~

below which trie thermodynamics of trie spherical J~-spin SG model is described by trie free

energy

f(T)
=

f(q, E, T) Tg(E)
~

il + In(27r)] (12)
2

where q is given by equation (8) and E is trie value which for trie given temperature makes

trie r-h-s of equation (12) minimal. Trie last term, not included before, comes front trie nor-

malization of trie trace over trie spins and represents trie entropy of trie system at infinite

temperature [3].
Trie critical temperature T~ is trie Iargest temperature where f(T) is equal to trie free energy

of trie replica synimetric solution q =
0 (high temperature solution ), and is obtained for E

=
E~.

This corresponds to trie critical temperature derived from dynamics from niarginality. Indeed

for E
=

E~ we bave
z = z~, 1-e-, trie marginal condition [4].

As trie temperature is decreased, trie value of E which niinimizes equation (12) decreases

until it reaches trie lower bound ERSB. This happens at trie critical temperature TRSB, trie

sanie as found in trie replica approach. From this point on trie value of E cannot be decreased

further since for lower values trie number of solutions is exponentially small in N. Therefore for
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Fig. 3. f(T) (Eq. (12))
as a function of T for p =

15 and different values of E: a) E
=

Ec; b)
ERSB < E < Ec; c) E

=
ERSBi d) the replica symmetric (high temperature) free energy.

T < TRSB we bave E
=

ERSB We note that while for temperatures in trie range TRSB < T < T~

trie free energy (12) is numerically equal to that of trie replica symmetric solution, for T < TRSB

it is larger. Nevertheless it is the lowest free energy among all the accessible states.

Similarly, in a dynamical calculation we have to restrict to the states with an energy corre-

sponding to the largest volume in trie phase space where the systems spends most of the time

in its evolution. In our case the volume is proportional to exp(N g(E)), which is maximal for

E
=

E~, and ail other permitted states have exponentially small volume compared to this.

This means that the time to visit the other states is exponentially large
m

the system size.

Therefore in the thermodynamic limit we have to limit to E
=

E~ and we get the free energy
(12) with E replaced by E~ for which

g(E~)
=

-j
In(p -1) 2

~ ~l. (13)
P

The energy defined by the thermodynamic relation £
=

ôflf(T)/ôfl is not affected by the

complexity (13) since it does not depend on temperature. Moreover, it tums out that the

energy so defined is equai to the energy derived front the dynamical calculation (4],

£
"

Il qP + m qP) j14)

where the parameter m
following from the "quasi fluctuation dissipation theorem" is obtained

from the marginal condition: m =
(p 2)(1/q -1) with q given by (8) with

z = z~.
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We note that the free energies calculated in this paper for different E are ail higher than free

energies calculated in the replica approach for different m. They coincide only for the IRSB

solution. In Figure 3 we report f(T)
as a function of T for p =

là and different values of E.

The free energies calculated in the replica approach are all below the IRSB free energy. The

free energy computed in this paper for the marginal solution corresponds to the correct free

energy of the dynamical solution. It gives, in fact, the correct dynamical energy £, while the

corresponding quantity derived from the replica free energy for the marginal m gives a much

lower energy.

In presence of an extemal field the scenario could be more complex since it is not a priori
clear if there exists a consistent free energy corresponding to the dynamical state.

We conclude by noting that quite recently Marinari, Parisi and Ritort found, in a dilferent

model, numerical evidence of the scenario discussed in this paper [18].
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Appendix A

In this appendix we sketch the derivation of equation (4). The functional r2(m, G) is given by
the sum of ail vacuum diagrarns of a theory with interactions determined by flHjnt la; m) and

propagators G,j. The interaction term is defined by the shifted Hamiltoman

HjOE + Ill) Hl~) ~j ~~ ~ÎÎÎ~
~~=m,

Î~ ~~ ~~~~ ~~~ ~~ ~ ~~~ ~~~ ~~ ~~ ~~

This procedure corresponds to a dressed loop expansion with vertices which depend on a, and

can exhibit non-perturbative effects even for small number of dressed loops. From (1) and

(A.l) we obtain

and

àHint(°1m)
"

~ ~

~

~ Jki;. ,kp-n,hi, hn mki mkp-n°hi °hn (A.3)
~3

~'~ ~
ki; kp-n

hi- hn

The interaction term contains (p 2) vertices with 3, 4,.
,

p a-leg and p- 3, p- 4,
,

0 m-leg,
respectively. To evaluate r2(m,G) we have to consider all possible two-partiale irreducible

diagrams obtained joining together the a-leg. The general structure is a serres of "bubbles".

We are interested in diagrams which contribute to the free energy in the thermodynamic limit

N
- co. In this limit the leading contribution comes form the diagrams shown in Figure 1.

For N
- co we can replace J(

__,,

by its average value, the correction being of order O(1IN).
Thus after some algebra the c/nlÀbution of the diagrams of Figure 1 is:

r21m, G)
=

~/ lq
+ g)P qP vqP~~ g

~~~ ~~ qP~~
~j

lA.4)



812 JOURNAL DE PHYSIQUE I N°7

where Nq
=

£, m) and Ng
=

Tr G. From the stationarity of (3) with respect to variations of

G,j we get that G,j obeys a Dyson-type equation

Gj~
=

Gj~ô,j E,j (A.5)

with

Gji
=

-àr
~P

jjp + q)P-i qP-i iv i)qP-2gj jA.6)

~~~ ~~~~~~~~~~

z;j
- iv

~~
~~,i~~

Jki. k»2~J ~ki ~~P~ ~~~~

In the liniit N
- co the lines E,j correlate only together, thus we can replace

ç§o(Go)
=

lk In G~~
=

Tr In(Gj~ E) (A.8)

by the partially averaged one over disorder ç§o(Go) for fixed Go (12]. This Ieads to

ç§o(Go)
=

-)(TrG)~ ln(Gj~ aTr G) (A.9)

where the r-h-s has to be evaluated at the stationary point with respect to Tr G, and

a " EÎj "

$
P(P -1)qP~~ (A.10)

Similarly in the limit N
- co we have

lkG=
_~

~
(A.Il)

Finally we have

~~

~

~~~
ki,

.1~2,1,j
~~~~ ~~~ ~~~~~

~~~ ~~~
~

~~ ~ ~ ~ ~~ ~~~ ~~ ~~~

Inserting equations (A.2), (AA), (A.9) and (A.12) into (3) equation (4) follows. The resulting
equation is stationary with respect to variations of m, and g.

Appendix B

Here we derive equation (II) of the text. The TAP equations are obtained by differentation of

the free energy functional equation (7) with respect to m,, and reads

Ii
+ /1iP i)11

)~P~l
mi = iv

~

i~. ~~i~_~
Jki kp-ii mki mkp-i + flh iB.1)

where we bave induded an externat magnetic field, and
~1 =

fl~p/2. The number of solutions

tif(q) of trie TAP equations (B.l) for a given value of q is given by

tif(q)
=

N
/ fl dm, fl à(G,)( det A(à(Nq ~j m)), (B.2)
1

~ ~
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where

Gi
=

Ii
+ /1iP i)11

)~P~l
mi iv

~

i~. ~~,j~~
Jki kp-ii mki mkpi flh

(B.3)
and A,j

=
ôG,/ômj. We calculate Àf(q), which means averaging over trie bond distribution,

following reference [14, Iii. We do not report all trie details, trie interested reader con
find

them in reference iii]. Trie final equation reads

Àf
= c

/
d# dB dà e/~~ (BA)

where c is a constant and

E
=

1#q (B + à)(1 q) + )(B~ à~) + In
1)

+ B) + In I (B.5)
q

I
=

/ ~ll~
exP 1~~Î~ @')~ + i'

Iii ~l m

lirt <m~l
iB.6)

where
=

2~1(p -1)qP~~ Performing trie integrals on #, B and à we finally bave

3Î(q)
"

e/~ ~(~l (B.7)

glq)
=

inli q) + Î + lin
q 1lnl~1qP~~)

+ ~iip~
~

Ii
/1ii

)qP~l ~

~~ii -i~~~p~
i~.~~

Equation (11) follows by eliminating q as a function of
z

through equation (8).
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