
HAL Id: jpa-00247086
https://hal.science/jpa-00247086v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex Critical Exponents from Renormalization
Group Theory of Earthquakes: Implications for

Earthquake Predictions
Didier Sornette, Charles Sammis

To cite this version:
Didier Sornette, Charles Sammis. Complex Critical Exponents from Renormalization Group Theory of
Earthquakes: Implications for Earthquake Predictions. Journal de Physique I, 1995, 5 (5), pp.607-619.
�10.1051/jp1:1995154�. �jpa-00247086�

https://hal.science/jpa-00247086v1
https://hal.archives-ouvertes.fr


J. Phys. 1éYance 5 (1995) 607-619 MAY1995, PAGE 607

Classification

Physics Abstract8

64.60Ak 05.70Jk 91.30Px

Complex Critical Exponents IFom Renormalization Group Theory
of Earthquakes: Implications for Earthquake Predictions

Didier Sornette (~) and Charles G. Sammis (~)

(~) Laboratoire de Physique de la Matière Condensée, CNRS URA 190, Université des Sciences,
B-P. 70, Parc Valrose, 06108 Nice Cedex 2, France

(~) Department of Earth Sciences, University of Southem California, Los Angeles, CA 90089-

0740, USA

(Received 31 January1995, received in final form 3 February1995, accepted 7 February1995)

Abstract. Several authors bave proposed discrete renormalization group models of earth-

quakes, viewing them
as a

kind of dynamical critical phenomena. Here, we propose that the

assumed discrete scale invariance stems from trie irreversible and intermittent nature of rupture
which ensures a

breakdown of translational invanance. As a consequence, we
show that the

renormalization group entails complex critical exponents, describing log-penodic corrections ta

the leading scaling behavior. We use the mathematical form of this solution ta fit the time

ta failure dependence of the Beniolf strain on the approach of large earthquakes. This might
provide a new technique for earthquake prediction for which

we present preliminary tests on
the

1989 Lama Prieta earthquake
m

northem Califomia and on a recent build-up of seismic activity

on a segment of the Aleutian-Island seismic 20ne. The earthquake phenomenology of precursory
phenomena such as the causal sequence of quiescence and foreshocks

is
captured by the general

structure of the mathematical solution of the renormalization group.

l. Introduction

What is the nature of rupture associated with earthquakes? An important working hypothesis
[1-6], borrowed from Statistical Physics, is that earthquakes are similar to "critical" points [7,8]

a progressive correlation develops leading to a cascade of events at increasingly large scales

culminating in a large earthquake. If true, such a mechanism would constrain drastically the

properties of precursory phenomena, and ultimately olfer the potential for prediction.

There are basically two approaches to intermediate and short-term earthquake prediction.
The first is to search for local precursory phenomena associated directly with the fault insta-

bility, sucu as preseismic creep or changes in tue ground water wituin tue fault zone. The

second is to look for more spatially extended changes wuicu involve the collective behavior

of the entire regional fault network such as changes in the seismic b-value [10] or precursory

patterns of seismicity [11].

© Les Editions de Physique 1995
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Tue problem witu the first approacu is tuat local precursory puenomena have not been

consistently observed [12]. Ground water changes, for example, bave preceded some large

events but were absent before otuers. Tue second approach looks more promising. Quite a

few large eartuquakes bave been preceded by an increase in tue number of intermediate size

events [13-19]. Tue relation between tuese intermediate events and the subsequent main event

bas only recently been recognized because tue precursory events occur over sucu a large area.

Based on a simple stress analysis, it is difficult to see uow sucu widely separated events could

be mecuanically related. However, if tue seismicity in a given region is viewed as a sequence of

seismic cycles, and eacu cycle is viewed as a progressive cooperative stress build-up culminating
in some sort of critical point characterized by global failure in tue form of a great earthquake,
then the observed increase of activity and long-range correlation between events are expected

to precede large earthquakes. The occurrence of such long-range spatial correlations in a self-

organized model of the earth crust has been indeed documented recently [20]. In this sense,

trie occurrence of a large earthquake is similar to an instability, which is intimately associated

to a building up of long-range correlations. We should however caution that earthquake data

are scarse and that the above statement is still debated since some large earthquakes have been

found not to be preceded by an increase of activity for reasons not understood.

Laboratory studies of progressive failure have established a qualitative physical picture for

the progressive damage of a system leading to a critical failure point. At first, single isolated

microcracks appear and, then with the mcrease of load or time of loading, they both grow and

multiply leading to an increase of the density of cracks per unit volume. As a consequence,

microcracks begin to merge until a "critical density" of cracks is reached at which the main

fracture is formed. The basic idea is thus that the formation of microfractures prior to a

major failure plays a crucial role m the fracture mechanism. These ideas have been formalized

in dilferent ways, in percolation models il, 2, 21], critical branching models [22], hierarchical

liber bundle models [3, 6], euclidean quasi-static [23] and dynarnical [24] lattice models of

rupture. In these models, criticality can be traced back to the interplay between the preexisting
heterogeneity and the correlated growth of cracks mediated by the stress field singularities.

Application of this scenario to the temporal and spatial progression of seismicity raises a

few questions. First, what do we mean by "failure" of the earth's crust? In the laboratory,
the system is clearly defined as the test specimen and failure is defined by the inability of the

specimen to support the applied load [25]. In the crust, each earthquake represents failure of

some surrounding region tue size of which scales witu the size of tue event. Eacu eartuquake
is, at the same time, tue failure of its local region and possibly a part of the precursory failure

sequence of an even larger event. Failure in the crust can be thought of as a scaling-up process
in whicu failure at one scale is part of tue darnage accumulation pattern at a larger scale [26].
Tuis same scaling-up process also occurs in the heterogeneous laboratory samples, but the

number of scales over which the process can be observed is severely limited by the size of

the test specimen. After only one or two jumps m scale
,

the rupture reaches the size of the

specimen and the failure ensues. In the earth, the maximum scale to which the process extends

also appears to be limited to events having a magnitude m the range 8 9; these are the large
global failures which we wish to model. In elfect, these events are unique [27] in that they
lie at the upper fractal limit of the process and are not precursors to even larger events. The

physical explanation of this upper limit is not clear, but probably involves the thickness of the

brittle layer and tue nature of stress concentration at the plate boundaries. We should caution

that it is still a matter of controversy whether there is a genuine cut-off at these magnitudes

or if the apparent limit stems from the finiteness of the statistics and much larger earthquakes
could occur in the future.

An important assumption of our analysis is that a large earthquake and its procession of
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nucleation and precursory phenomena can be singled out and studied essentially as an isolated

system. This amounts to the identification of a certain regional domain as the relevant space
which can be considered as sufficiently coherent so that the surroundings only affects it in

terms of an approximately uniform driving at its boundaries.

It is clear that this hypothesis is questionable

.
earthquakes are correlated in space and time over large distances [28]. Therefore, a

partition of a given tectonic plate in sub-domains is bound to retain some arbitranness.

.
Furthermore, the tectonic deformations and fault geometrical structures seem to self-

organize themselves over a large distance [29].

However, thfphysical picture, that the earthquakes and tectonic deformations
are globally

self-organizing in time and space and present correlations up to the largest continental scales,
does not exclude the existence of characteristic time and space scales, due for instance to

geometrical scales, to a ductile couphng with the lower crust and upper mantle and to the

effect of fluid and cuemical reactions in tue crust. Tuese mecuanisms are very important since

tuey suould control tue appearance of precursory puenomena, and ultimately our prediction.
It is also possible tuat a future deeper understanding of tue self-organization of the eartu will

reunify tuese different view points. Tuis will be addressed elsewuere [30] within a general
framework based on the renormalization group theory.

If a great earthquake cari be viewed as a critical point, precursors of earthquakes should

follow characteristic scaling laws [2,4]. These powerlaws result naturally from the many-
body interactions between the small cracks forming before the impending great rupture. For

instance, the rate of elastic energy dissipated at constant average applied stress increases as a

power law of the time distance to failure time. Furthermore, one expects the rupture patterns

to be self-similar. In addition, large fluctuations from systems to systems and tueir sensitivity

to tue initial inuomogeneity configuration bave been demonstrated in specific models [23, 24]

as resulting from tue proximity to a critical point. Similar effects are found in laboratory
experiments m

tue acoustic emission associated to the progressive damage of a mechanical

system up to global failure [31].
In general, tue scaling law suould only be observable very near the cntical point, in tue

sc-called "cntical region", and take tue form

ÎÎ ~ ~~ ~' ~~~

where e represents regional strain (or any otuer measure of seismic release), if is tue time of

failure (that
one wishes to predict), and k and a are constants. a is a critical exponent, which

con often be interpreted geometrically in terms of some fractal underlying geometry. In this

context, the regional mcrease of intermediate events which have sometimes been observed to

precede a large earthquake comprises the power law increase in seismic release. Integration of

equation (1) yields

e=A+Bji~-ijm, (2)

where A, B and m =
1- a are constants. Equation (2) has been Ét to the accelerating

seismicity which preceded the 1989 Loma Prieta earthquake by Bufe and Varnes [32] and to

the seismicity increase currently occurnng in the Alaska-Aleutian region by Bufe et al. [33]. In

this later analysis, they predict that one or more M > 7.5 events will occur in the time interval

between 1994 and 1996. In tueir analysis,
e is tue cumulative "Beniolf" strain defined as
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N(t)

E(t)
"

£ El, (3)

n=i

witu q =

) and wuere En is tue energy release during tue n~~ eartuquake during tue time of

observation up to tue current time t.

In tuese papers, equations (1) and (2) are not presented as a consequence of scaling near

a critical point, but are justified in terms of run-away crack propagation and empirical ex-

pressions for "tertiary creep" wuicu precedes failure in tue laboratory [34, 35]. Tue advantage
of recognizing these equations as

universal scaling laws near a critical point is that we con

proceed to derive tue leading corrections to scahng, whicu are expected to be most important
for any realistic prediction wuicu must be made at tue earliest time possible, 1e., long before

tue impending eartuquake. We show below tuat tuese corrections take tue form of a periodic
function of log if t (, whicu is superimposed on tue power law in equation (2). Tuis addi-

tional structure in the cumulative Beniolf strain allows a more accurate prediction of if at a

significantly earlier time in the sequence.

2. General Renormalization Group Framework for Critical Rupture and Its Uni-

versai Leading Correction ta Scaling

Dur fundamental idea is that the concept of criticality in regional seismicity embodies more

usable information than just tue power law (1) valid in the asymptotic critical domain. We

argue that specific precursors outside the critical regime can lead to "universal" but nevertheless

specific recognizable signatures in the regional seismicity which precedes a large event. In order

to identify tuese signatures, we first note tuat an expression like (1) can be obtained from tue

solution of a suitable renormalization group (RG) [9]. Tue RG formalism, introduced in field

theory and in critical phase transitions, amounts basically to tue decomposition of tue general
problem of finding tue beuavior of a large number of interacting elements into a succession

of simple problems witu
a smaller number of elements, possessing effective properties varying

witu tue scale of observation. Its usefulness is based on tue existence of a scale invariance

or self-similarity of the underlying physics at the critical point, which allows one to define a

mapping between puysical scale and distance from tue cntical point in tue control parameter
axis.

In the real-space version of RG wuicu is the most adapted for rupture and percolation, one

translates litterally m tue real space tue concept that rupture at some scale results from tue

aggregate response of an ensemble of ruptures at a smaller scale. In tue eartuquake problem,
the seismic release rate (( at a given time t is related to that at another time t' by the following

transformations

xl
=

i(x), (4)

F(z)
=

g(z) + jF (#(z)), (5)

where x =
if t, if is the time of global (regional) failure for the region under consideration, #

is called tue RG flow map, F(x)
=

e(tf) e(t) sucu tuat F
=

o at trie critical point and ~t is a

constant describing tue scaling of tue seismic release rate upon tue discrete time rescaling (4).
Tue function g(x) represents tue non-smgular part of tue function F(x). We assume as usual

tuat tue function F(x) is continuous and tuat #(x) is dilferentiable.
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Tue critical point(s) is (are) described matuematically as tue time(s) at whicu F(x) becomes

singular, 1-e-, wuen tuere exists a finite k~~ denvative d~F(x /dx~ whicu becomes infinite at tue

singular point(s). Tue formol solution of equation (5) is obtained by considering tue following
definitions: fo(x)

e
g(x), and fn+i(x)

=
g(x) + j fn [# (x)],

n =
o,1, 2,.. It is easy to show (by induction) tuat fn(x)

=

f
g

#(~)
(x)j

,
n > o. Here,

~_~
~1~

we bave used superscripts in tue form "n" to designate composition, 1-e-, #(~l(x)
=

# [#(x)];
#(~)(x)

=
# [çi(~) (x)] etc. It naturally follows tuat lim fn(x)

=
F(x) assuming tuat it exists.

n-m

Note tuat tue power of tue RG analysis is to reconstruct tue nature of tue critical singularities
from tue embedding of scales, 1-e- from tue knowledge of the non-singular part g(x) of tue

observable and tue flow map çi(x) describing tue change of scale. Trie connection between this

formalism and the critical point problem stems from trie fact tuat the critical points correspond
to tue unstable fixed points of tue RG flow çi(x). Indeed, as m standard phase transitions, a

singular beuavior emerges from tue infinite sum of analytic terms, describing tue solution for

tue observable F(x), if tue absolute value of tue eigenvalue defined by =( dçildx (~=~(~)
becomes larger tuan 1, in otuer words, if tue mapping çi becomes unstable by iteration at

tue corresponding (critical) fixed point (tue fixed point condition ensuring that it is tue sonne

number appearing in tue argument of g(.) in trie series). In tuis case, tue i~~ term in tue series

for trie k~~ derivative of F(x) will be proportional to (À~/~1)~ wuich may become langer tuan

tue unit radius of convergence for sufficiently large k, uence tue singular beuavior.

Thus, tue qualitative beuavior of tue critical points and tue corresponding critical exponents

can be simply deduced from the structure of trie RG flow #(x). If x =
o denotes a fixed point

(#(o)
=

o) and #(x)
=

lx + is trie corresponding linearized transformation, then trie solution

of equation (5) close to x =
o is given by equation (2), 1-e-, F(x)

~
x~, with a solution of

ia
=

1, (6)
/1

whicu yields a =

~fi.
To get the leading correction in the critical region, we assume that Fo(x)

r-
x° is a special

solution, then the general singular solution F(x) is related to Fo(x) in terms of an apriori
arbitrary periodic function p(x), with a period log ~t, as

F(x)
=

Fo(x)P(lUgfo(x)). (7)

To get this expression, we hâve neglected the non-singular term g(x) in equation (5). The

solution of equation (7) can tuen be checked by inserting it into the equation F(Àx)
=

pF(x)
wuicu, because of equation (6), is also obeyed by Fo. Tuen we get tue periodicity requirement
p(log~t + logfo(x))

=
p(logfo(x)) as asserted. Since Fo(x)

r-
x~, tuis introduces a periodic

(in logx) correction to the dominating scaling (2) wuicu amounts to considering a complex
cntical exponent a, since Re[x"'+~~"

=

x"' cos(a" log x) gives the first term m a Fourier series

expansion of equation (7). Note that one can get directly this complex critical exponent by

noting that equation (6) can be rewntten À~ /~t
=

e~~~", where n is an integer. Its solution reads

a =

jff +1@ whicu allows us to recover exactly the previous Fourier series expansion with

o"
=

)((. A more formol derivation, using Mellin's transform applied to tue full equation

(5), will be presented elsewhere [30], wuicu furtuermore allows us to quantify the elfect of

randomness on our results presented uere.

Expression (7) tuus introduces universal oscillations decorating tue asymptotic powerlaw
(2). Note that tuis log-periodic corrections bave notuing to do witu any assumption of periodic
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occurrence of earthquakes, as has been claimed for instance in the Parkfield region in California

136).
The mathematical existence of such corrections have been identified quite early [37] in RG

solutions for tue statistical mechamcs of critical phase transitions, but have been rejected
for translationally invariant systems, since a period (even in a logaritumic scale) implies the

existence of one or several cuaracteristic scales, wuicu is forbidden in these ergodic systems

in the critical regime. For tue rupture of quencued ueterogeneous systems, tue translational

invanance does not uold due to tue presence of static inuomogeneities [3)] since new damage

occurs at specific positions which are not averaged out by thermal fluctuations. Henc~, such

periodic corrections are allowed and should be looked for in order to embody the physics of

damage in the non-critical region. Another equivalent point of view for understanding these

Log-periodic correction to scaling is to realize that the RG written with equations (4) and

(5) is discrete, 1-e-, one goes from a time t to another time t' which is at a finite (and not an

infinitely small) interval from t. This captures the fact that damage and precursory phenomena

occur at particular discrete times and not in a continuous fashion, and these discontinuities

reflect trie localized and threshold nature of trie mechanics of earthquakes and faulting. It

is this "punctuated" physics which gives rise to trie existence of scaling precursors modelled

mathematically by trie Log-periodic correction to scaling.
Similar logarithmic periodicities bave been found in the rate of acoustic emissions which

preceded rupture of pressure vessels composed of carbon liber-reinforced resm [31]. Identifica-

tion of this structure in the acoustic emission rate allowed the failure pressure to be predicted
within les~ than 51~ error when trie test pressure had reached only 851~ failure. Other examples
which present these log-periodic signatures are discussed in [31]. However, let us stress that

our results presented below on these universal periodic corrections are the first ones obtained

in natural uncontrolled heterogeneus systems.
We now show that such logarithmic periodicities also occur in regional seismicity data aria-

lyzed by Bufe et ai. [32]. We fit their data for cumulative Beniolf strain to the expression

e(t)
=

A + B(tf tl'~
1

+ C cos
2gr~°§~~~

~
~~

+ il)
,

(8)
°g

and show that equation (8) yields a more accurate prediction of if than does the simple pow-
erlaw (2). Note that equation (8) which involves 3 more parameters reduces to equation (2)
when C

=
o. Vanous criteria exist to quantify the amount of information embedded in a

given fit, such as trie Akaike information criterion [39] which has been used in many studies

of aftershock sequences. A systematic assessment of the relevance of equation (8) in this sense

will be reported elsewhere [40]. In this preliminary work, we propose that the ultimate ver-

ification of a good theory is its predictive power if a 7-parameter formula (Eq. (8)) gives

a more constrained and precise prediction on trie time to rupture that a 4-parameter theory
(Eq. (2)), we must conclude that trie amount of information gained in the 7-parameter theory
is significant.

3. Fit ta Regional Seismicity Data

Bufe and Varnes [32] fit equation (2) to the cumulative Beniolf strain release for magnitude
5 and greater earthquakes in Northern California for the period 1927 1988. They predicted
if

=
1990 for the Loma Prieta earthquake, which had a magnitude of 6.7 7.1 and occurred

on October 18,1989 (1.e., 1989.8). In Figure 1(a),
we have refit their data to equation (2)

using a'Levenberg-Macquardt algorithm and obtained a similar value of 1990.3 + 4.1 years (see
Table I). Note however that trie scanner of their data around the power law is non random,
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Fig. 1. Cumulative Beniolf strain released by magnitude 5 and greater earthquakes
m

tue San

Francisco Bay
area prier ta tlle 1989 Loma Prieta eaerthquake (from Ref. [32]). In (a), the data have

been fit to the powerlaw equation (2) as in Bufe and Vames [32]. In (b), the data have been fit to

equation (8) which includes the first order correction to scaling. Parameters of both lits are given in

Table I.

but appears to fluctuate periodically witu a progressively decreasing period as t approaches if,
exactly as predicted by equation (8). In Figure 1(b), we bave fit equation (8) to the same data.

Note tuat tue prediction of if
=

1989.9 + o.8 years is doser to trie actual value and is more

tightly constrained by trie additive structure, even though trie number of fit parameters bas

increased from 4 to 7 (see Table I). In Figure 2, we bave fit trie data prior to trie date shown

on trie abscissa. Note that beginning m 1980, trie date of trie earthquake is predicted within

about a year of its actual occurrence. Examination of trie data in Figure 1(b) shows that this

is because as early as 1980, enough of trie Log-penodic structure bas developed to constrain

trie prediction. We bave checked that these results are robust with respect to added noise on

the data corresponding to a spread of o.2 o-à in magnitude estimates, a not unusual error in

earthquake catalogs.
In a subsequent paper [33], Bufe et ai. performed a similar time-to-failure analysis by fitting

equation (2) to the cumulative Beniolf strain released by M > 5.2 events in several segments
Aleutian Islands which are currently experiencing accelerating seismic release. Based on these

lits, they predict trie occurrence of one or more M > 7.3 earthquakes in trie Shumagin segment

and trie Delarof segment sometimes between 1994 and 1996. Although trie Kommandorski

Island segment also show mcreasing seismicity, their analysis suggest that culmination is less

imminent (1996 -1997) and that tue time to failure is not so well determined by their method.
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Table1. Parameter8 round by jitting lime-to-failure. equation8 ta the cumulative Beniojf

strain.

Pararneters

Equation (2)

A ± 6.23 ± 26.9

B ,o.29 ± o.44 ,2.49 ± 19.3

~ m
o.35 ± o.23 o.26 ± 1.o

1990.3 ± 4.1 1998.8 ± 19.7

Log,pefiodic corrected fit

8.46 ± o.24 4.95 ± 2.25

B ,o.30 ± o.16 -1.88 ± 1.77

m o.34 ± o.08 o.28 ± o.14

C ,o.osa ± o-o15 o.o40 ± o.023

~ 3.13 ± o.14 2.50 ± o.26

~y
1.45 ± o.89 -3.25 ± 2.52

1989.9 ± o.8 1996.3 ± 1.I

zozo

Lama Pneta

zoio

e 2000

1
1990(

C
19sO

'970

1960

1965 1970 1975 19sO 19s5 1990

Cuto~Date

Fig. 2. Predicted date of the Loma Prieta earthquake using equation (7) to fit ail the data paon to

the date shown on the abscissa. Etron bars are found using a Levenberg-Marcquardt non,linear fitting
algonthm. Note that

a
useful prediction

is
obtained after 1980, and that the quality of the prediction

improves as
the date of tue earthquake

is
approached. The horizontal fine is the actual date of the

Loma Prieta earthquake (October 17, 1989).

In Figure 3(a), we fit equation (2) to tue data for tue Kommandorski Island segment but,
unlike Bufe et ai., we did not fix m =

o.3 and obtained tue solution summarized in Table I.

Note tuat tue predicted time of failure bas a large uncertainty, and tuat tue data do not scatter

randomly about tue power law, but show penodic fluctuations. A fit of equation (8) to tuese

data is suown m Figure 3(b) and tue fit parameters are summanzed in Table I. It is especially
interesting tuat tue Log-penodic structure evident in tue data from tue Kommandorski Island

segment allows a prediction wuicu was largely unconstrained by tue simpler power law. In

addition, we bave cuecked tue robustness of tue prediction by fitting tue data prior to a date in

tue past as
suown in Figure 4. Again, we find a consistent prediction about la years in advance

of the predicted event, 1-e-, fro~n 1986 on. Tue otuer turee segments analyzed by Bufe et ai.
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mandorski Island segment of the Aleutian Island
seismic zone

(from Ref. [33]). In (a), the data have

been fit to the powerlaw equation (2). This
is similar to the fit in Bufe et ai. except that we did not fix

the exponent m =
0.3 as m

that paper. In (b), the data have been fit to equation (8) which includes

the first order corrections to scaling. Parameters of both lits are given m
Table1.
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Fig. 4. Predicted date of an
impending earthquake

m
the Kommandorski segment of the Aleutian

islands fitting ail the data prier to the date on the abscissa to equation (8). Useful predictions are

obtained from 1988 to present.

also show Log-penodic oscillations, but tue i~nprove~nent in tue prediction is not as drarnatic

as for tue Ko~n~nandorski Island segment suown uere.
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4. Discussion

Extreme caution suould be exercized before concluding tuat tuis method is useful for predictive

purpose. At present, little is known about earthquake prediction and seismic patterns are

sufficiently varied that a devil's advocate could daim that it might be possible to present

some evidence of almost any sort of correlation. Therefore, to separate true progress from

retroactive tifs to data, any new theory of prediction needs a more systematic evaluation using

a much langer data set than presented here. Also, with respect to the Loma Prieta data, we are

making a
"postdiction" instead of a prediction, meaning that we now have a large amount of

information to draw the seismicity box in space that is used to construct the cumulative Beniolf

strain. This is not true for the Aleutian islands, however. These restrictions are important
not only with respect to the advancement of scientific knowledge but also due to the political
and financial implications

:
the seismological community has been criticized before, especially

in the United States, by repeatedly promising results using various prediction techniques (e.g.,
dilatancy diffusion, Mogi donuts, pattern recognition algorithms, rainfall, radon, the full moon,
etc.) that have not delivered to the expected level [12]. The aim of the present work, which is

to present a potential important hypothesis and some encouraging tests, will be complemented
by an extensive data analysis to be presented in a more specialized journal [40].

Some readers might find hard to accept the concept of an earthquake as a rupture critical

point, since this seems incompatible with the notion thon an earthquake is an individual "fluc-

tuation" of the self-organized globally stationary crust. Recently, a new theory of self-organized
criticality has been presented [41] which proposes a solution to this paradox. It has been shown

that a common feature of systems exhibiting self-organized criticality is that they present a

genuine "depinning" dynamical cntical transition when forced by a suitable control parameter.
Then, self-organized criticality results from the control of the corresponding conjugate order

pammeter at a vanishingly small but positive value, which thus automatically ensures that the

corresponding control parameter lies exactly at its critical value for the underlying unbinding
transition. An important consequence is that each large avalanche or earthquake can be seen

m
itself as a genuine truncated critical point, 1-e-, endowed with ail the characteristics and

signature of the global unstable critical point but truncated and round-off by its finite size.

This stems simply from the fact tuat SOC is notuing but "sitting" rigut on an unstable critical

point, controlled by driving tue order parameter. As a consequence, fluctuations of ail scales

appear as tue signature of a diverging correlation lengtu. Tuus, eacu large fluctuation is a

scaled-down representation of tue underlying unstable critical point itself.

Tue observation tuat tue cntical exponent m is found consistently close to o.3 in tue four

cases studied is in agreement witu, if not a definitive proof of~ tue concept of a critical point
for earthquakes. We note tuat it is not too far from the mean field value equal to o-à [42].

In contrast, the relative weight of the Log-periodic corrections fluctuates from one region
to another. Whereas their presence and overall structure are universal, their amplitude are

expected to be sensitively dependent upon the specific geometry and heterogeneity of the

region under study. In other words, as precursors of the large event, they constitute genuine
fingerprints of the specific mechanical structure of trie regional crust.

We should also hke to stress that their precise Log-periodic structure is intimately related

to trie simple scaling (1), and defines a more subtle form of scaling, namely trie existence of

discrete embedding scales that appear to play a similar role as trie large event, and it is through
this connection that they turn out to be instrumental in constraining the lits.

Similarly to Bufe and Varnes [32], we con also obtain an estimation of the size of the impend-

mg earthquake from the dilference between the ultimate strain e(t
=

if)
=

A and the value

at the present time e(t). In fact, this procedure only provides an upper bound, smce further
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precursors which would give additional Log-periodic oscillations are possible between now and
trie impending earthquake and will accomodate a fraction of trie cumulative Beniolf strain that
needs to go to its final value e(t

=
if)

=
A. For the Loma Prieta eartuquake, tue magnitude is

correctly predicted, essentially because tue final observation time taken into account is sufli-

ciently close to tue main event so tuat no otuer significant earthquake occurs before tue main

event. However, if fitting tue data prior to tue date suown on tue abscissa in Figure 2 allows

a good determination of tue actual date of tue eartuquake, its size is less constrained. One

possible procedure would be to define tue size of tue impending eartuquake from tue cumu-

lative strain integrated from a time if T to if, wuere T denotes a cuaracteristic correlation

time scale over which no significant large earthquake (of magnitude say > Mjarge 2) would

be possible without triggering themselves trie great one. This corresponds to tue view that

during trie propagation of tue rupture front, an eartuquake "does not know" if it Will be small

or large and tuis property suould be controlled only by tue state of stress-stress correlation

and tue geometrical structure of tue region, 1.e. the closeness to tue critical point. This should

be constrained further by the structure of the renormalization group solution with respect to

the embedding scaling [30].
The Log-periodic corrections to scaling imply the existence of a hierarchy of characteristic

times in, determined from the equation 2gr ~@
+ 4/

= ngr, which yields in
=

if TÀ%,

with T
=

À~é For the Loma Prieta earthquake, we find m 3.3 and T ci 1.3 years. As

discussed above, we expect a cut-off at short time scales (1.e., above -n r- a few units) and also

at large time scales due to tue existence of finite size elfects. Tuese time scales if in are not

universal but depend upon tue specific geometry and structure of tue region. Wuat is expected
to be universal are tue ratios ~( =

Ài. Tuese time scales could reflect tue cuaracteristic

relaxation times associated witu~tu/ coupling between stress (or strain) and between tue brittle

and lower ductile crusts.

TO finish, we suould mention a few open problems. First, wuat is the theoretical justification
for taking trie cumulative Benioff strain as the renormalizable variable? Other moments witu

q # ),
as defined in equation (3), could aise be used since q controls trie relative weight of

"small" with respect to "large" earthquakes [40]. Second, trie precursors that trie present
renormalization group method makes use of are localized on faults dilferent from trie one

wuicu carries tue large event. How is it possible to incorporate trie actual fault geometry
and define objectively a coherent regional domain? Thirdly, our method is based solely on

temporal patterns m
trie mcreased intensity. Its development should take into account other

signatures that bave been recognized as potentially important, such as the patterns of increasing
fluctuations, clustering m space-time and spatial correlations [11]. Finally, the large event in a

given domain is smgled out as tue critical point. A coherent theory suould treat ail significant
eartuquakes on tue same footing. We suall come bock elsewuere on tue development of sucu a

renormalization group tueory of complex critical exponents in ueterogeneous systems [30].
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