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Abstract. We show that trie 2D XY-model with random phase shifts exhibits for low tem-

perature and small disorder
a phase with quasi-long-range order, and that the transition to

trie disordered phase is noi reentrant. These results
are

obtained by heunstic arguments, an

analytical renormalization group calculation, and
a

numerical Migdal-KadanooE renormalization

group treatment. Previous predictions of reel~trance are
found ta fait due ta an overestimation

of trie vortex pair density as a consequence of the mdependent dipole approximation. At posi-
tions where vortex pairs are energetically favored by disorder, their statistics becomes eoEectively
fermionic. Trie results may bave implications for

a
large number of related models.

We reconsider in this paper the 2-dimensional XY-model

7i
"

-J ~j
COS(çii #j Aij) (1)

<1,j>

with quenched random phase shifts A~j on the bonds, where1, j run over the sites of a square

lattice. For simplicity we assume that the A~j on dilferent bonds are uncorrelated and Gaussian-

distributed with mean zero and variance a.

Model (1) describes for example 2-dimensional XY-magnets with random Dzyaloshinskii-
Moriya interaction [1]. Other realizations are given by Josephson-junction arrays with posi-
tional disorder [2] and model vortex glasses [3]. In particular, in the case of the so-called gauge

glass model, one assumes A~j to be uniformly distributed between 0 and 27r. We expect, that

our model with Gaussian disorder is equivalent to the gauge glass model when a - co.

For vamshing Aç, model (1) undergoes a Kosterlitz-Thouless (KT) transition, at which the

spin-spin correlation exponent ~ jumps from 1/4 to zero [4].
Weak disorder,

a « 1, should not change much this picture. In the spin-wave approximation

one obtains ~ =

) (T/J+a), which remains now finite, even at T
=

0. The features of the KT-

transition are essentially preserved, but the transition is shifted to lower temperatures and the

jump of ~ at the transition is diminished Ill. The actual transition temperature T~(a) < T+(a)
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Fig. l. (a,T) phase diagram of trie model (1). T+(a)
are trie upper bounds for trie transition

temperatures Tc(a) and Tre(a) between the disordered and trie KT phase in the RSN-theory iii. Note,
that T--fine lies completely m trie freezing region (hatched area). Trie true phase transition fine Tc(a)

is
denoted by trie dashed fine which is bounded by T+(a) and a =

7r/8. Trie fine Tre is not shown bene.

jump of ~ at the transition is diminished [1]. The actual transition temperature Tc(a) < T+(a)

depends on the bare value for the vortex core energy Ec, here T+
=

(J[1+(1- 8a/7r)~/~] In

the limit Ec
- oo, Tc

=
T+.

Strong disorder will suppréss the quasi-long-range order of the KT phase [3]. In particular,

if
=

~j
A~j is of the order one, vortices are generated even at zero temperature. Here

27r
<P aq>

~j denotes the sum over the four bonds of an elementary plaquette.

<plan>

Rubinstein, Shraiman and Nelson (RSN) iii extended the Coulomb gas description of the

KT-transition [4] to the presence of randomly frozen dipoles arising from the random phase
shifts. Surprisingly, they found a second (reentrant) transition at Tr~(a) (< T-(a)) to a

disordered phase at low temperatures (see Fig. l). Tr~(a) bends towards higher temperatures
for increasing disorder. The two lines T+ merge at ac =

7r/8. For a > ac there is no ordered

phase. The precise value of Tr~(a) depends again on Ec. Similar results were obtained in

reference [2].

Korshunov [5] has argued, that the intermediate phase in the range Tr~(a) < T < Tc(a)
with quasi-long-range order is probably not stable, if in addition to the screening of Coulomb

charges by neutral pairs of charges, considered in iii, screening by larger complexes of charges
in dilferent replicas are taken into account.

Experiments [6], as well as Monte Carlo studies [7], indicate no reentrance. Also, Ozeki and

Nishimori [8] have shown for a general class of random spin systems, which include (1), that the

phase boundary between the KT- and the paramagnetic phase is parallel to the temperature
axis for low T. Thus they exclude a reentrant transition, provided the intermediate KT phase
exists. However, they cannot rule out the possibility that the KT-phase disappears completely,

as suggested in [5].

We will argue below that the reentrant transition is indeed an artefact of the calculation

scherne used in references [1,2] and that the KT-phase is stable at low temperatures with

Tc(a)
-

0 for a -
7r/8 (see Fig. l). Since the renormalization group (RG) flow equations (4)

(see below) derived in iii, which give rise to the reentrant behavior, appear as a subset of the
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more general RG equations for XY-systems with additonal symmetry-breaking [9] or random

fields [10], as well as for solid films with quenched random impurities il1], these systems bave

to be reconsidered, which we will postpone to forthcoming publications.
For the further discussion it is useful to decompose the Hamiltonian (1) into a spin-wave

part 7isw and a vortex part 7iv. Since the phase transition is governed by 7iv, we will omit

7iaw completely. In the continuum description, the vortex part can be rewritten in the form

(1) (for simplicity, we set the lattice constant equal to unity)

7iv
=

-J7r ~ m~(~
mj In (r~ rj + 2

/ d~ro(r) In jr r~(
~~

m;). (2)

1 J#Î
~'~

The integer vortex charges m~ satisfy ~m~
=

0. Q(r) is a quenched random charge field,

i

which is related to the phase shift A(r) by 27rQ(r)
=

-ô~Ay + ôyA~. Here we made the

replacement A~j -
A(r) by going over to the continuum description. Since

lAld
=

0, lAa(r)Ap(r')ld
=

aôap (r r'), (3)

where [...]d denotes the disorder average, the random charges are anticorrelated.

The main result of the work of RSN [1] are the RGlflow equations (4a-c) (see also [2,9,10]),
which describe the change of J,

a
and the vortex number density y after eliminating vortex

degrees of freedom up to a length scale e~

$
= -47r~(y~ (4a)

~) =
(2 7rj + 7r

~
a)y (4b)

j
=

0. (4c)

Here we use the convention that only the exchange constant J is renormalized and the tem-

perature plays merely the role of an unrenormalized parameter. For
a e 0 equations (4a,b)

behave in a well-defined fashion for T
-

0. This becomes clearer if we rewrite the vortex

fugacity as y =
e~~C/~, where F~ is the (core) free energy of a single vortex on the scale e~.

Then equation (4b) takes the form dF~ Idi
=

(7rJ 2T 7r
a)

=
2(T+ T)(T T-)/T.

For a > 0, the last term on the r-h-s- of equation (4b) blows up at low T, leading to the

reentrance transition mentioned above. Whereas for high temperatures the 1/T coefficient of

the a term is plausible, since thermal fluctuations wipe out the random potential, we do not see

a reason that this elfect could lead to an unlimited growth of the effective disorder strength at

very low temperatures. Clearly, equation (4b) cannot be valid at zero temperature. Contrary

to RSN iii,
we argue, that equations (4a,b)

are valid only for sufficiently high temperatures

T > T*(a) > T-(a).
An indication for T* follows from the flow of trie vortex entropy Sc

=
-ôfc/ôT, ôsc/ôl

=

2 7r$a
+ 7r(-@)(1 2aj). Since ôJ/ôT < 0, the entropy is reduced for T < T*

=
2Ja,

a < 7r/8, if one goes over to larger length scales. This leads finally to a negative entropy,

which we consider as an artefact of the calculation iii (see also [2,9-11]). values for T < 2Ja.

The vanishing of the entropy in
disorderd systems usually signals a freezing of the system

by approaching T* from high temperatures [12]. Similarly, the flow of the vortex energy

Ec
=

Fc + TSC, ôEc /ôl
=

(1- 2aj )7r(J T@) leads for T < T* eventually to negative values

of the core energy. Inevitably, this favours multiple occupancy of vortex positions. However,
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the resulting vortices of higher vorticity (m( > appear even in the presence of disorder much

less likely than those with (m(
=

1: since their energy cost scales as
m~, whereas their energy

gain scales only as m. This effective repulsion of vortices leads for T < T* to a much smaller

vortex density than in the RSN-theory iii, which neglects completely the interaction between

vortex dipoles.
For T < T* we expect the physics to be dilferent from that described by equations (4).

Since T*(a) intersects the RNS phase boundary at a =
7r/8 where T+

=
T-

=
J7r/4, the whole

(T, a)-range
in

which reentrance was observed belongs to the freezing region, which has to be

reconsidered.

To find the correct behaviour at low temperatures, we consider first the system at T
=

0. A

simple estimate shows, that then vortices will not be relevant if the disorder is weak. Indeed,
the elastic energy of an isolated vortex of charge +m in a system of radius R is m~7rJlnR,
which has to be compared with the possible energy gain Er from the interaction of the vortex

with the disorder. If we rewrite the second term in equation (2) as ~m~V(r~),
we find

i

[V~(r~)]d C~
27rJ~alnR. Hence the typical energy gain is -J(m~27ralnR)~/~.

In order to find the maximal energy gain, we have to estimate the number n(R) of vortek

positions r~ in which the energies V(r~)
are essentially uncorrelated. Two vortex positions r~, rj

have independent energies if [V~(r~)]d » [V(r~)V(rj)]d
,

a condition which can be rewritten

with

[(V(r~) V(rj))~]d
=

47raJ~ In (r~ rj e A~(r~ rj) (5)

as In (r~ rj( m (1 e) In R with e < 1. Thus n(R) m
R~~ and the maximal energy gain from

exploiting the tail of the Gaussian distribution for V(r~) is Er m
-2J(m~7rea)~/~ lnR. The

total vortex free energy at T
=

0 is therefore

Fc m J7r(m~ 2(m~ea/7r)~/~) ln R (6)

and hence vortices should be irrelevant for weak disorder a < 1.

In studying the behavior for T
=

0 but larger
a we have to take into account the screening of

the vortex and quenched random charges by other vortex pairs. This con be done most easily
by using the dielectric formalism. Here we follow the treatment of Halperin [13] who showed

that screening by vortex pairs with separation between R and R + dR changes the coupling
constant J(R) (which corresponds to the inverse dielectric constant)

as

J(R + dR)
=

J(R) 47r~ ~j a~n(R)J~(R)27rRp~n(R)dR. (7)

m>o

Here a~n(R) is the polarizability and p~n(R) is the probability density of a pair with charge
+m at ri and charge -m at r2, R

=
(ri r2(.

For the calculation of p~n(R) and a~n(R)
we use the fact, that the interaction energy between

a vortex pair and the disorder is Gaussian-distributed with a width A(R). If the density of

pairs is sufficiently small, we may neglect the interaction between pairs and write

-2'm'("~'~~+~~~ dV ~-fi
~

~R~ù,
(8)Pm(R)

"

/
/fiA(R) ~~ ~ ~~

where the r-h-s- of equation (8) is valid only for a, Ec/J < In R. Since pj~nj>i(R) < pi (R)
=:

p(R),
we will neglect double occupancy of vortex positions.

The polarizability a(R)
= ai (R)

can be calculated in a similar way and is found to be

a(R) m
R~ /T* at large R. With y2

=
R~p(R) and

=
In R we get from equations (7) and (8)
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forT=0

dJ
~

~J
~j " ~~pY (9a)

j
=

(2-))y (9b)

(
=

0, (9c)

where we again neglected terms of the order a/1. These are the flow equations, which replace
equations (4) at zero temperature. Within this approximation, the system undergoes a phase

transition at ac =
7r/8 from a KT to a disordered phase, which is in qualitative agreement with

our estimate (6). At ac the exponent ~ shows a universal jump from 1/16 to zero. For a > ac,

y reaches a value of order magnitude unity on the scale R m ( with

j co
e~/~~~~"/~"~. (1°)

b is a constant, which depends on the details of the system. For R > ( our flow equations are

no longer valid, since y is no longer small. We identify ( with the correlation length in the

disordered phase.
We now discuss the properties of the system at low but jinite temperatures. The T-correction

to our free energy estimate (6) are of the order -2Tln R (or smaller) and hence will not allow

a reentrance transition. A more efficient way for thermal fluctuations to influence the low-T

behavior would be the generation of uncorrelated frozen charges Q(r). However unlike to ran-

dom field systems, where uncorrelated random fields are indeed generated from anticorrelated

random fields [14], which destroy the ordered phase in 2 dimensions at all non-zero T, we

do not see such a mechanism here. The main dilference consists in the existence of a double

degenerated ground state in the random field system at T
=

0.

The physics at finite temperature cari also be captured within the dielectric formalism.

Neglecting again the interaction between vortex pairs at dilferent positions, we calculate the

normalized probability for a pair with charges +m as

-Em(R)/T
(11)p~n(R)

=
P-m(R)

" ~ ~-Em(R)/T '

m d

where E~n(R)
=

2m~(Ec + 7rJlnR) + m(V(ri) V(r2)) denotes the pair energy. At large
R holds pj~nj>i(R) m 0, since the elastic energy cost c~

m~ will be compensated with de-

creasing probability by an energy gain c~ m
due to disorder. We therefore drop occupancies

(m( > 1. Furthermore, for a given configuration of disorder, one of the two energies E+i (R) is

always so large, that the corresponding weight factor e~+1(~)/~
can be neglected. After this

approximation, the probability for a single pair reads

~~~~ ~~ ~~~ Il
+

~i(R)/T
(12)

Equation (II) thus elfectively reduces to the disorder average of the Fermi distribution function.

In other words: vortex pairs of vorticity one can be treated as non-interacting fermions. In

trie Jimit T
=

0, where this distribution function becomes step-like, equation (12) immediately
reduces to trie previous expression (Eq.(8)). At finite temperature, trie disorder average in
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equation (12) is performed by splitting trie integral over trie disorder distribution into two

contributions corresponding to Ei(R) # 0. To leading order in R, we find p(R)
~J

R~"/~" for

0 < T < T*
=

2Ja, whereas p(R)
~J

R~~"~/~(~~"J/~) for T > T*. Plugging these results into

trie definition of y, we obtain flow equation (4b) in trie whole range T > T*, whereas equation
(9b) is valid in trie whole range 0 < T < T*. Both equations coincide at trie boundary T

=
T*.

We add a few remarks: as long as
Ei(R) » T, trie Fermi distribution can be replaced by

trie Boltzmann distribution, as is usually done in trie treatment of trie KT transition [4]. Trie

disorder average of trie latter yields p(R)
~J

R~~"~/~(~~"~/~) and hence equation (4b) for ail

temperatures. However, for T < T* trie condition Ei(R) » T is no longer fulfilled for most

of trie vortex positions (see also our remarks below Eqs. (4)) and hence this approximation
breaks down. Indeed, use of trie Boltzmann distribution at low temperatures would lead

to p(R) » 1, and trie interaction between vortex pairs could no longer be neglected. It is

therefore important to calculate p(R) from equation (12). An attempt to improve upon trie

Boltzmann-approximation consists in expanding equation (12) into a power series in e~~i(~)/~.

Trie n~~ order term in trie expansion yields a contribution R~~"J/~("~"~"~/~)
to p(R). Trie

serres is divergent, 1-e-, for large R, higher order terms are more important than lower order

terms, irrespective of temperature. These higher order terms generate contributions to trie flow

equation dy Idi, which tend to blow up y even faster. One might hence expect an instability of

trie ordered phase, similarly to trie observation of Korshunov [5]. In fact, trie above expansion
and in particular trie replacement of trie Fermi- by the Boltzmann-distribution are disqualified

a posteriori.
We conclude that dy(1) Idi < 0 for ail T < T+. The polarizability at finite temperatures is

given by a =

R~/(T + T*) for T < T* and by o =

R~/(2T) for T > T*. Thus dJ/dl < 0

holds for all T < T+ which is sufficient to guarantee the absence of reentrant phase topology.
In the special case'of Ec

- oo the phase boundary is given by T+(a) for T > J7r/4 and a

horizontal line ac =
7r/8 for smaller T, as shown bye bold lines in Fig. l. This is consistent with

the prediction of Ozeki and Nishimori [8] about the existence of
a horizontal phase boundary.

We expect the critical behavior at T+(a)
as discussed in iii to be unchanged. At finite core

energies, the actual transition temperature will be renormalized to Tc(a) < T+(a). Its value

Tc(0) is given by the KT flow equations without disorder and lies only slightly below T+ (0) for

large E~. For small a, the critical RG trajectory flows completely in the domain of equation
(4b), where weak disorder induces weak additional screening. Therefore T~(a) will smoothly

decrease with increasing a. We expect this function to end up in T~(7r/8)
=

0 monotonously,
since flow equations vary monotonously in parameter space.

Dur conclusions about the absence of reentrance are confirmed also by a discretized Migdal-
KadanoIf renormalization group (MKRG) schémé [15] for model (1), which we consider in the

last part of this paper. pur technique has been shown to be similar to that of José et ai.

[16]. Their approach is based on studying Migdal-Kadanolf recursion relations for the Fourier

components of the (spatially uniform) potential.
In the discretized scheme [15] instead of allowing çi to be a continuous variable, we constrain

it to take one of many discrete values which are uniformly distributed between 0 and 27r.

Hamiltonian (1) is now defined for values of çi restricted to 27rk/q, where k
=

0,1, 2,.
,

(q -1)
and q is a number of dock states. We define

J~j(q,k)
=

Jcos(27rk/q- A~j). (13)

The recursion relations for J~j(q, k) may be found in [15]. For the random 2D system, the

numerical procedure is based on creating first a pool of Np bonds, each decomposed into q

components according to equation (13). One then picks Np random batches of 4 such bonds

(the corresponding rescaling factor is equal to 2) from the pool to generate a new pool of trie
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O.4
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0.3

m

~~ O.Z KT

o-i

O.O
O.O o-1 O.Z O.3 OA

kBT/J

Fig. 2. (a, T) phase diagram obtained by trie discretized Migdal-KadanooE RG scheme. PM and KT

denote the paramagnetic and Kosterhtz-Thouless phase respectively. In trie PM phase Jmax(q, k) scales

down monotonously, whereas in trie KT region it reaches
a fixed value at large scales. Trie critical

values aÎ/~(T
=

o) m kBTc(a
=

o) /J m o.44. One
can also demonstrate that the phase diagram of trie

random 2D Dzyaloshinskii-Moriya model bas trie same topology.

coupling variables and the whole procedure is iterated. We consider typically Np
=

2000 and

q =
100. The results depend on these parameters rather weakly.

It should be noted that Gingras and Sorensen [16] have tried to construct the phase diagram
of the 2D random Dzyaloshinskii-Moriya model (this model is believed to be equivalent to (1)
by the same discretized MKRG approach). In order to locate the Kosterlitz-Thouless phase,
they study the scaling behavior of the absolute average height of the potential, À, which is

defined as follows

h
=

((J~j(q, 0) J~j(q, q/4)() (14)

Due to errratic behavior of they could not draw the phase diagram. The reason here is that

representing only two dock states cannot correctly describe the system with many dock states.

To obtain the phase diagram one can consider the scaling of the maximal and minimal

couplings for each effective bond or the scaling of the average of absolute values of ail q

couplings. The scaling properties of these three quantities has been found to be essentially
the same, so it is sufficient to focus on the maximum coupling J~~~(q, k). The details of this

approach can be found in reference [15].
It should be noted that the discretized MKRG approach cannot rigorously reproduce the

quasi-long-range KY order
in 2D [15]. The scale invariance of J~~~(q, k) in the KT-phase is

merely approximate in this approach. In practice, the scale invariance of J~ax(q, k) persists
for about 20 iterations. Further iterations lead to an eventual decrease of Jm~~(q, k) at any

non-zero T. Having this caveat in mind, we can locate the boundary between the pararnagnetic
and KT-phase (see Fig. 2). Thus the MKRG gives us additional evidence that the reentrance

is absent in model (1).
To conclude, in the present paper we have shown by a combination of simple analytical

arguments, a
renormalization group calculation and a Migdal-Kadanolf RG scheme at finite
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T, that tbe 2-dimensional XY-model with tandem phase shifts does net exhibit a reentrant

transition.
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