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Résumé. Un traitement général est proposé pour résoudre le problème des chaînes ferri-

magnétiques constituées de deux sous-réseaux (S,s) et caractérisées par des couplages isotropes

entre premiers voisins ainsi que deux paramètres d'échange. En conséquence, deux cas physiques
intéressants sont examinés : 1) les chaînes sont exclusivement composées de couplages ferromag-

nétiques ou antiferromagnétiques ii) les chaînes présentent une alternance régulière de ces deux

types de couplages, Des expressions littérales sont données pour la fonction de partition
en

champ nul, les corrélations spin-spin ainsi que la susceptibilité. Le comportement basse tem-

pérature de la susceptibilité est étudié
au moyen de la longueur de corrélation. En particulier,

dans le cas de la compensation des moments magnétiques, il est montré que ce comportement

est principalement décrit par la compétition entre la divergence de la longueur de corrélation et

l'annulation du moment magnétique de la cellule élémentaire. Pour finir, nous rappelons un test

expérimental qui a
initié ce modèle théorique

: il concerne le composé Mncu(obp)(H20)3.H20
[où obp=oxamidobis(propionato)]

Abstract. We propose a
general treatment for solving the case of ferrimagnetic chaius made

up of two sublattices (S,s) and characterized by isotropic couphngs between nearest neighbors,

as
well as two exchange pararneters. Therefore, two cases

of physical interest are examined:

i) the chains
are

exclusively composed of ferromagnetic or antiferromagnetic couplings; ii) trie

chains show
a regular alternation of these two types of couplings. Closed-form expressions of

trie ?ero-field partition function, trie spiu-spin correlations,
as

well as the susceptibility, are

given. The low-temperature behavior of the susceptibility
is

studied by means of the correlation

length. In particular, in the magnetic moment compensation,
we

show that this behavior is

mainly described by the competition between the divergence of the correlation length and the

eva~lesce~lce of the mag~letic moment per unit cell. F1~lally
we

recall an experimental test which

bas imtiated this theoretical mortel: it co~lcer~ls the compound M~ICU(obp)(H20)3.H20 [where
obp=oxamidobis(propionato)].

(*) AU correspondence should be addressed to Jacques Curély
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1. Introduction

Oue-dimeusioual maguetism is a field where theoretical and experime~ltal studies have stimu-

lated each other [1-4]. The reason for this stroug interest is that the specific behavior of such ID

materials (notably with an infinite critical-temperature domain) and its ability to sometimes

be solved exactly, allow for a possible check of experimental results with the proposed specific
models [5-7]. To briefly sum up trie history of this field, we can say that, at first, trie stud-

ied compounds were regular homometallic airains, in which trie magnetic centers are equally
spaced along trie chain [8-10]. Then alternating homometallic chains characterized by two

intrachain exchange parameters appeared [11-13]. More recently, the first bimetallic chains

were described [14-18] and, because of the new possibilities offered by molecular chemistry
engineering, alternating bimetallic chains were synthetized. Among these materials, the so-

called ferrimagnetic chains offer many interesting features: their solid-state structure exhibits

well-separated magnetic chains along which two cationic species occupy host sites, generally
with antiferromagnetic nearest neighbor couplings, thus providing the main basic conditions

for ferrimagnetism and considerably increasing the number of nontrivial situations [19-21].

From a theoretical point of view, the necessity of interpreting the experimental magnetic
properties of the chains described above begins with the determination of the eoEective spin

Hamiltonian. In a previous paper [22] we have established the general conditions which must

be obeyed by the chain Hamiltonian for allowing an analytical recurrent treatment: in partic-
ular the basic condition is that all the involved spm operators commute. Then the isotropic

or anisotropic nature of coupling with nearest spin neighbors plays an important role. In this

paper we exclusively locus on chains showing isotropic couplings. When the chain is only com-

posed of quantum spin moments, trie Hamiltoman always contains non-commutating spin oper-

ators; therefore approximate techniques are required: spin-wave theory [23], high-temperature

serres expansions [24-26], Green's function approaches [27], or numerical extrapolations from

exact calculations on finite length chains [28-32]. However, for trie purely classical case, trie

commutation condition is fulfilled. Taking into account this aspect, Fisher bas given closed-

form expressions for trie main thermodynamical functions of interest [33] and Stanley bas gen-
eralized this work to classical spins of arbitrary dimensionality [34]. Following a scheme similar

to Fisher's, Seiden [35] bas solved trie problem of a chain showing an alternation of a quantum

spm s =
1/2 with a classical one: trie presence of classical spins allows one to separate each unit

cell operator exp(-flH~) and a relevant rotation in trie spm space authorizes the calculation of

the trace for each operator.

At the end of the eighties we generalized Seiden's model to arbitrary spm quantum num-

bers [19,36,37] but, so far, only the broad outlines have been presented; more recently, using the

sanie principles, we have proposed a model in which whole quantum subsystems alternate with

classical spins [38]. In this paper, m Section 2, we recall the basic principles but now we detail

the method. In Section 3 we study the low-temperature behavior of (S, s)N chains. In particular

we examine the cases where the chain is exclusively composed of ferromagnetic
or

antiferromag-
netic couplings or is characterized by the regular alternation of these two types of couplings.

We specifically discuss the compensation case (no net moment in the ground state) which also

reveals subtle aspects of both short- and long-range orderings. Finally, we recall the interpre-
tation of the experimental results obtained on the compound Mncu(obp)(H20)3.H20 [where
obp=oxamidobis(propionato)] because it has imtiated the present theoretical work [19, 37].
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2. General Cousiderations

Let us consider a Heisenberg exchange coupling chain submitted to an externat magnetic field

B applied along the z-axis of quantization (see Fig. l). Thus for a (2N +1) spin chain Soso
S~s~ SNSN the most general Hamiltonian may be written

N-1 N

H
=

£ H)~ +
£Hf~~, (1)

1=O i=O

with

H)~
=

JS~.s~, S~
=

(1+ a)S~ + (1- a)S~+1, (2)

HÎ'~~
=

-(GSI + gs/)B. (3)

S~ is the z component of trie classical vector operator S~ (trie spin quantum number S is large
enough for [SIS)] to be negl1glble compared to S$Sf-classical spm approximation); g and G

are trie associated Landé factors: they characterize trie magnetic ions of trie unit cell. J refers

to trie exchange interaction between trie nearest neighbors only: in our writing J > 0 denotes

an antiferromagnetic coupling. Note also that we shall restrict the discussion to the positive

Si-1

' ,'d

Fig, i. Structure of a
quantum-classical sp1~l cha1~l.

values of a without loosing generality: this is due to the fact that changing the sign of all the

a's is equivalent to reverse the order of the magnetic ion seque~lce; consequently the magnetic

chain properties are unchanged.
Trie partition function ZN(B) for trie (2N +1) spm chain may be written

ZN (B)
=

/
dsoTrs~..

/
ds~Trs~

/
dSNTrs~ exp (- fl (f(H)~ + Hf~~ +

(~~l)
,

~_~
(4)

where Trs~ represents trie trace operation applied to trie matrix associated to trie spm op-

erator s~. Trie knowledge of trie partition function ZN(B) allows one to define trie parallel
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magnetization Ji4N and trie zero-field susceptibility XN as

~~
~ ~ÎÎ ~~~' ~~

IZÎÎ(0) ~~Î~Î~~

~_~
'

~~~

where ZN(0) is trie partition function expressed for B
=

0. Note that, in order to bave a

clearer insight, we shall preferably consider X, trie susceptibility referred to trie unit cell, and

trie product XT normalized to its infinite temperature value (tue Curie constant): (xT)n.
First we focus on tue calculation of tue zero-field partition function. Tuer, in equation (4),

trie Hamiltoman involved in trie exponential argument is reduced to trie exchange one H/~;

moreover because of trie commutativity property of trie operators H/~ we bave

N-1 IN-1exp -fl £ H)~
=

fl
exp (-flHf). (6)

i=o 1=0

Consequently, for each site1, we bave to evaluate trie trace of trie operator exp(-flH)~). Using
trie fact that vector Si defined in equation (2)

can be chosen as a local axis of quantization we

bave

Trs~ (exp (-flH)~))
=

~
exP (aÀ/1+

~Î C°S Ôi,~+l)
'

~~~

~

~~

s

with

~ i ~2
=

-PJ 2(1+ a2),
1J = ~ (8)

(note that, as S is a unit vector, S bas been dropped). As this trace only depends on tue angle
8~,~+i between vectors S~ and S~+i, it becomes possible to expand it on tue infinite basis of

spuerical uarmonics

+ce +é

Trs~(exp(-flH1~)) =L L Aé(À,~,s)G~(Si)n~~(Si+1), (9)

with

Ag(À,1~, s)
=

27r £
exp

(aÀfi) Pg(z)dz (10)
~~ ~

wuere Pg(z) is a Legendre polynomial. Tuer using equation (9) in equation (4) expressed in

tue zero-field limit as well as tue ortuogonality condition to wuicu tue spuerical uarmonics

obey, tue values m =
0 and t

=
0 are selected and we bave finally

ZN(0)
=

4R(Ao(À, ~, s))'~+~ (II)

with

~~~>,~,~~
=

) f £ ~
(u«,~ i) exp (u«,~) >u«,~ =

«Àfi.
~~~~

~
~~-~ ~=+i

«

At this step it must be noticed that trie calculation of ZN(B) involves a further contribution

(1.e., trie magnetic one described by Hf~~) in each exponential argument: thus trie square
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root which appears in equation (7) now contains other terms exclusively depending on B and

trie
z components of S~ and S~+i (as trie externat field is applied along trie z-axisi. Conse-

quently it becomes impossible to expand each trace of exp(-flH~)
as in equation (9) and trie

magnetization Ji4N uas no closed-form expression.

However, for calculating tue susceptibility x, it is always possible to express it witu tue uelp
of spin-spin correlations. Considering equations (1)-(5) and using tue fact tuat we deal witu

an isotropic excuange coupling between nearest spin neigubors, tue susceptibility x referred to

tue unit cell can be written as

x = jG~ < (si )~ > +g~ < (si )~ >

+
£ (G2 < sjsj > +g2 < sjsj > +Gg j< sjsj > + < sisj >j) (13)

j#i

Tue calculation of < (SI )2 > and < (SI )2 > is obvious; as for tue various correlations

< SIS] >, < s)sj >, < SIS] > and < s]Sj >, tue work is similar to tuat one encoun-

tered for evaluating tue zero-field partition function ZN(0); it just dioEers by trie introduction

of extra terms at rows1 and j. If SI is introduced at row1 we expand it as

SI
=

~~f°(S~). (14)

Then, trie orthogonality condition and trie specific properties of spherical harmonics allow one

to select trie values m =
0 and t

=
1. Trie introduction of operator sj imposes trie evaluation

of trie trace of trie operator sjexp (-flHj~). In a first step we express trie operator sj on

trie orthogonal basis (i'j,j'~,k'~) in wuich k'j is orientated along trie direction of vector Sj
(cf, Eq. (2)); let §(, @j

and §j be trie new operators; noting that §( and §j bave no diagonal
elements and owmg to equation (2) trie calculation of this trace reduces to

Trs~ (sj exp(- flJSj sj ))
"

kj k'jT~SJ (~~ ~~P (~fl~~J ~Î~
'

~~~~

with

,

(1+ o)Sj + (1- a)Sj~i
kj k

j
=

(16)
/2 (1 + 02 + (1 a2 cas 8~,j+i

Then expanding Sj and Sj~i with equation (14) we bave

Trs (sj exp(-flJSj sj))
=

-PJ
~~

(l + a)Yi°(Sj + (1 a)Yi°(Sj+1)
? 3

x

f
«~~P 1"~~/~ + ~ ~°~ ~JIJ+~ (17)

~~_~

~/i + ~ Cos e~,~+i

In this expression trie summation over a only depends on trie angle 8j,j+i between vectors

Sj and Sj+1 Tuerefore, as for equation (7), it can be expanded on tue infinite basis of

spuerical uarmomcs. We obtain an expression similar to tuat given by equation (9) in wuicu
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trie coefficient Ag(À,1~, s) is now replaced by a coefficient Bg(À,1~, s) defined
as follows

Bé(À1/ S) =
2Sr

Î
«~ /l~ ~~ilw~

Pé(z)dz. (18)

Then, tue orthogonality condition and tue specific properties of spuerical uarmonics allow one

to select tue values m =
0 and t

=
1. Finally we uave

< SIS] >= PJ-~, < SIS( >= QIPJ-~,

< sis] >= Q-IPJ-~-i, < sis] >= QIQ-IPJ-~-i, (19)

wuere

p
~

Ai(À>11> S)

Ao(À>11> Sl'
(i + ea)Bo(À, ~, s) + (i ea)Bi (À, ~, s)

~~
"

~~~
Ao(À,~, s) '~ "

*~' (~°)

with

~il~~~l~ ~~ "

A ~Î~

~

+i1 ~~~'~ ~~~~ ~~~ "~~~~~~~~ ~~~

x exp (u«,~)
,

(21)

BO (À,1~, s =

~ f £
e exp (u«,~

,

(22)
~ ~l

«=-s~=+1

Bi (À, ~, s)
=

j £ £ j
lui,~ 2u«,~ + 2 «~À~) exp (u«,~ (23)

~Î~

~=+~

In these previous expressions, À,1~, Ao(À,i~, si and u«,~ are given by equations (8) and (12),
re-

spectively. Then using trie expressions of trie various spin-spin correlations in trie susceptibility
definition (cf. Eq. (13))

we bave for a unit cell

where
r is trie ratio of trie magnetic moment magnitudes per unit cell

r=

~
(25)

95

Finally it must be noticed tuat trie evaluation of trie susceptibility just necessitates tue knowl-

edge of tue four coefficients Ao, Ai, BO and El Previously defined, wuatever tue value of

tue spin quantum number s.
Note also that all tuese coefficients can be easily calculated in



N°4 THERMODYNAMICS OF ALTERNATING SPIN CHAINS 491

trie classical-spin approximation by assuming trie following transformation

However, when s becomes infinite, in order to keep a physical meaning, trie quantum spin
moment magnitude gs as well as trie exchange energy Js are constrained to remain finite

through a convenient adaptation of g and J, respectively.
Another parameter of significant importance, in trie present context, is trie correlation length

defined as follows

+ce
~/2

£'l~ Î< ~Î~Î+n >Î

" j ~fl~c (27)
£ Î~ ~Î~Î+n >Î
n=0

Then, taking into account trie expression of < SI S/~~ > (cf. Eq. (19)) it is easily shown that

i jpj(i + (P(i 1/~
(~~)f= à (i-ipi)2

3. Study of the Low-Temperature Behavior

The low-temperature study is mainly conditioned by trie classification of trie parameter a with

respect to unity. When a < 1, trie exchange interactions J(1+ a) and J(1- a), involved

per unit cell, uave tue same sign (1.e. tuat of J); if J < 0 ail tue couplings are ferromagnetic
and, at 0 K, ail tue spin moments are oriented towards tue same direction (see Fig. 2a); on

tue contrary, if J > 0 all tue couplings are antiferromagnetic and, at 0 K, two consecutive

spin moments are oriented along opposite directions (see Fig. 2b). Wuen
a > 1, tue involved

excuange interactions J(1+ a) and J(1 ai
now uave opposite signs (1.e. tuat of J and -J);

in other words we uave a regular alternation of ferromagnetic and antiferromagnetic couplings
and trie chain shows a vanishing global moment at 0 K (see Fig. 2c). Note that, when a =

1,

we deal with a dimerized chain.

J<0 a<1 J>0 a<1 j>0 a>1j/[°. j/
*'~'"'

C~Î))
~-fi ho

~_j
oeil S'-' oeil si.,

a b
c

Fig. 2. Structures of the chair grou~ld states for
o < i (Fig. 2a: J < 0; Fig. 2b: J > 0) a~ld for

a > 1 (Fig. 2c: J > 0).
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The low-temperature behavior study of trie susceptibility necessitates trie evaluation of quan-

tities P, Qi and Q-i
m

that range of temperatures; more exactly, because of their respective
definitions, their behavior is given by that of trie ratios Ai /Ao, Bi/Ao and Bo/Ao which bave

been introduced in tue previous section (cf. Eqs. (12), (21)-(23) ). As tuese coefficients contain

exponential terms, tueir low~temperature beuavior is mainly given by tuese factors cuaracter-

ized by tue maximum argument 2fl( J(s (note tuat, as two consecutive arguments only differ by
tue quantity -2fl(J(, tuis approximation remains valid wuen tue temperature is plainly lower

tuan (J( ). All tue main results of interest uave been summarized in Table I.

Whatever tue value of o with respect to unity, in trie low-temperature range, (P( tends to

unity according to a T-law. Consequently, trie examination of equation (28) allows one to say
that trie correlation length ( behaves as

(1- (P( )~l and thus diverges according to a
T~l-law

(see Tab. I). Tuis aspect uas been previously encouutered [19, 33, 36, 38] aud appears as tue

signature of isotropic coupliugs iuvolviug classical spiu moments alteruatiug witu quantum

ones (or dioEerent classical ones). Note tuat, wuen a =
(case of dimerized cuains), P vanisues

and the correlation length uas no more physical interest. Thus the low~temperature behavior

of trie susceptibility is mainly given by that of Il P)~l
on condition that trie numerator of

trie fraction containing trie term P (cf. Eq. (24)) does not vanish; at this step it must be

noted that, in trie low-temperature domain, this numerator is neither more nor less than trie

square of trie magnetic moment M per unit cell. In other words trie low~temperature behavior

of XT is mainly given by that of (M2. Therefore trie chain can be considered as an assembly
of quasi-rigid quasi-mdependent blocks, each one of length ( and moment M per unit cell.

Table I. Low-temperature behauior of the s~sceptibility and the correlatiue q~antities of main

interest for uario~s significant values of the eichange parameter a.

a<1

~
~ fllJls (1~ °~)

~
fllJls ~

(2fllJlS)~
~ ")

'
~~ ~

~ ~'

Q~ J (1
eo 1

Î ~ (J( 1 + eo
2fl(J(s ~ (2fl(J(s)2 ~

' ~s
li'o

f+~~')'~li-a~), aST-°;

x r~

~ )~~
lJls Ii a~) (r

j)~ ~ ~

+$ 3r~ Ii a~) + 4(r13a~ 1) 2 lsa~ i))
,

asT-0.
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Table I. (continued)

OE#

P=0 VT;

~~ --j~)~,
e=+1, asT-0.

(=0 VT;

X '~ ~~)~~
r~

+
~ 2jr)

,
as T

-
0.

o>1

P-(i-o~~~iù+...l aST-0.

~~
- -5

~ (l +
~~ +,.,)

,
5 #

+1 aS T
-

0.
s (J( 1 + en

2afl(J(s '

(
m~

~~~~~
(a~ 1)

,
as T

-
0;

20

~ ~

~ÎÎ~~
~

ÎÎ~Î~~ ~(~(~

'
" ~

~
~'

When a < 1, all the couplings are ferromagnetic (J < 0) or antiferromagnetic (J > 0); for

r # 1 the chain shows a global moment. If we examine the general low-temperature expansion
of the susceptibility given in Table I, the first term appears to be the dominant one; thus the

product XT behaves as

XT
+~

~i~~~
iris(i a~) (r ll~

aS T
-

° a < i> r
# 1 (29)

This behavior is illustrated by the curves of Figure 3 where we have considered the value

a =
0.50; as expected trie divergence law is enhanced if couplings are ferromagnetic (the factor

r -1 is replaced by r
+1). For antiferromagnetic couplings, in trie compensation case

(r
=

1),

trie chain bas no net moment at 0 K: The behavior of XT is given by trie competition between

the divergence of trie correlation length ( (T~14aw) and trie evanescence of M, trie magnetic

moment per unit cell (T.law). As the factor r
J/(J( involved in equation (29) vanishes, it

is necessary to consider further terms of the low-temperature expansion of the susceptibility
(Tab. I). Then, under this condition, it appears that the product XT shows a constant limit
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ix T)~
~x

m

O.50

r

J

i.o

O.O 1,O 2JO kaT/'Jl

Fig. 3. Thermal variations of the product (xT)n for
a

(S,1/2)
N

chai~l show1~lg isotropic coupl1~lgs
for several values of

r
a~ld J (g

=
2, a =

0.50).

XT
- ))~~ +

~~~~j)jj °~~T
+..

,
as T

-
0, a < 1, r =

1. (30)
BS S

At this step it must be also noted that the T~vamshing law of M is characteristic of isotropic
coupled spm chains showing an alternation of classical and quantum spin moments (or dioEerent

classical ones). This behavior which recalls a Curie law has no common point with trie param~

agnetic behavior of free moments. In particular trie possibility of confusion with paramagnetic
impurities must trot been ignored when one tries to interpret experimental data. Practically,
trie rigorous moment compensation (r

=
1) is seldom encountered but trie examination of trie

curves of Figure 4 allows oue to say that, for observiug a very differeut behavior with respect to

the Curie law, it is necessary to consider temperatures doser and closer to 0 K if the ratio r of

lx T)n
OE o.so

O,60
~

O.gO

o.95

1.oo

o.50

O,40
'

O.Oo o,10 O,20 kaT/J

Fig. 4. Thermal variations of the product (xT)n for
a

(S,1/2)N chain show1~lg isotropic couplings
for several values of

r
(J > 0, g =

2, a #
O.50).
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the magnetic moment magnitudes is closer to unity. When
a > 1, the couplings with nearest

neighbors are alternatively ferromagnetic and antiferromaguetic. Whatever the sigu of J, the

chain ground state at 0 K is characterized by a vanishing moment. This case appears to be

very similar to the previous one where a < 1, J > 0 and r =
1. Thus, in the low.temperature

range, we hàve

~~
~ ÉÎ~ ~

~Î(~~~
)ÎÎÎ~

~ ~
'

~~ ~
~

~' ° ~ ~' ~~~~

Therefore, the product XT follows a Curie law in spite of the absence of free magnetic moments

and whatever the sign of J. Moreover the T~vanishing law of XT is due to the fact that, in

the low-temperature domain, XT precisely behaves as
(M~, where ( diverges as

T~l (see Tab.

I) and M vanishes as T. However, in contrast with the case o < 1, the ratio r has no major
effect. It must be only noticed that the initial slope of the thermal variation of XT vanishes

without any change of sign if r =
lia. All these aspects are illustrated by the curves of

Figure 5 where we bave considered trie value o =
1.50. At this step it is of gieat interest to

detail trie deep reasons which are responsible for such a behavior because they involve a more

subtle mechanism. By using trie low~temperature behavior of P, Qi and Q-i (see Tab. I) in

equation (24) it is easily shown that (1 P)~l
no longer diverges; in addition, if we consider

all trie correlations concerning trie different classical moments, they exactly compensate trie

classical self correlation. But, for trie quantum moments, trie self correlation s(s +1) is not

exactly compensated by ail trie correlations involving different quantum spin moments (-s~).
Therefore we deal with a purely quantum effect, the importance of which weakens when s

becomes infinite (1.e, if we tend to the classical spin approximation).
Nevertheless it remains to determine if the classical moments (which alternate with the

(X TIn TIn a= I.So a
=

1.50

r=1.o r=2~o

s

i-o

O.O '

O.O ig kaT/J

Fig. 5. Thermal variations of the product (xT)n for a
(S,s)N chain showing isotropic couplings

for several values of
s

(J > 0, gs =
1, o =

1.50,
r =

2.0); the dashed fine corresponds to the value of

(xT)n
in

the classical spm approximation (inset: J > 0, gs #
1, a =

1.50, r =
1.0).
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quantum ones) play an important'role in this effect. For examining this specific point, we

have achieved trie exact numerical calculation of trie properties of a tetramer made up of four

quantum spin moments (see inset of Fig. 6) [36]; the exchange term is described by equation
(2) in which S~ and S~+i are here replaced by si and s2 (respectively s2 and si) if s~ is

S'i (respectively s'2). As the exchange energy J is positive and a > 1, one cari say that trie

coupling is ferromagnetic for pairs (si, s'2 and (s2, s'i ), and antiferromagnetic for pairs (si, s'i
and (s2,s'2). Trie spin quantum numbers are such as s =

1/2 for si and s2i S'i and s'2 are

cuaracterized by s' (wuen s' becomes infinite classical spin approximation this numerical

work uas been adapted conveniently). In Figure 6 we uave reported tue thermal variations of

xn for varions values of SI and for a =
1.50 and r =

2.0; note tuat trie Landé factors as well as

tue exchange energy J bave been adapted so that g's' and Js' respectively remain unchanged
wuen s' is modified. Tuus we deal witu a short cyclic cuain tue cuaracteristics of wuicu are

very close to tuat of tue previous (S,1/2)N spin cuain wuen s' becomes infinite. Trie tetramer

ground state is a singlet one but, when trie value of s' increases, trie density of multiplet

states increases in trie close neighborhood of trie ground state. Under these conditions, trie

susceptibility shows a more and more narrow maximum for a temperature which is doser

and doser to 0 K, as
s' increases; trier xn rapidly decreases to a constant value, at 0 K,

which corresponds to trie Van Vleck contribution. When s' becomes infinite (classical spin
approximation) x is maximum at 0 K. This cari be directly observed on trie curves of Figure 6.

Under addition, one cari notice that trie non-vanishing value of x increases when trie ratio s'là
strongly deviates from unity. Therefore, for trie infinite spin chain, trie divergence of x con be

interpreted as an enhancement of trie Van Vleck contribution to trie susceptibility, due to trie

fact that trie quantum spin coherence occurs at lengths which become infinite. Tuus, though

we uave considered a finite lengtu cuain, tuis low temperature study confirms tuat tue classical

cuaracter of spin moments altemating witu quantum ones can deeply modify tue susceptibility
beuavior.

Now we briefly recall below an experimental illustration previously publisued wuicu uas

imtiated tuis tueoretical model [19]. It concerns tue interpretation of tue magnetic properties
of trie compound Mncu(obp)(H20)3.H20 where obp is an abbreviation for trie ligand oxa-

~n
~l lo5Ô ~'

S~~
S~

1/2

0E5 kaT/Jss'

Fig. 6. Thermal variations of the susceptibility xn for a
(s',1/2) tetramer showing isotropic cou-

plmgs for several values of s'(J > 0, g =
2, g's'

=
2, a #

1.50, r #
2.0); the dashed fine corresponds

to the value of xn in the classical sp1~l approXimatio~1 (1~lset: tetramer structure),
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Fig. 7. Structure of the ferrimag~letic chairs in the compou~ld Mncu(obp)(H20)3.H20 (Fig. 7a

from Ref, [19]); experimental results (dotted fine) and theoretical curve for the thermal variations of

trie product (xT)n for
a

powder of Mncu(obp) (H20)3.H20 (Fig. 7b from Ref. [37]).

midobis(propionato). Trie structure of this compound is shown in Figure 7a. It cari be described

with the help of well.isolated chains (from
a magnetic point of view) characterized by the

alternation of cations Mn~+

(s'
=

5/2) and Cu~+ (s
=

1/2); note that, as soon as a spin quantum number reaches the

value 5/2, trie dassical spin approximation is usually employed; consequently, one cari say that

the present compound is characterized by (S,1/2)N chains. Within trie chain, the Mn and

Cu atoms are bridged by an oxamido group Oi-02-Ci-C2-Ni-N2 with a Mn.Cu separation
of 5.452 À and by a carboxylato group 04-C8-06 with a Mn-Cu separation of 6.066 À. Two

distinct exchange parameters are expected; moreover the nature of host sites, on the one hand,
and trie involved ions, on the other hand, allow one to consider that trie interactions between

nearest neighbors are of trie Heisenberg type. Trie best fitting of susceptibility measurements

(see Fig. 7b) is obtained for trie couple of values J(1+ a)
=

46.8 K and J(1- a)
=

8,6 K,

thus leading to a =
0.69 and J

=
27.7 K. It is reasonable to attribute trie strong value of

the exchange energy to trie oxamido bridge [7, 14, là, I?i. It is remarkable that trie value of

the exchange energy between Mn~+ and Cu~+ has already been determined in structures for

which these ions, considered in the same host sites, are bridged by oxamato (36 K) and oxalato

(26 K) groups, deduced from oxamido by respectively substituting one or both NR groups by

oxygen atoms [7,17,39,40]. Therefore, these values are in perfect agreement with that precisely
obtained for trie oxamido group (46.8 K) if we consider that there is a simple linear variation

of the exchange energy with respect to the number of oxygen atoms involved in the bridge
between Mn~+ and Cu~+

JOURNAL DE PHY%QUE I T 5, N° 4, JIARCH 1995 18



498 JOURNAL DE PHYSIQUE I N°4

4. Conclusion

In the present work we have set a general formulation for solving the statistical problem of a

very large class of one-dimensional ferrimagnets made up of two sublattices (S, s)N and char-

acterized by isotropic couplings between nearest neighbors as well as two exchange parameters.

We have shown that it is only possible to derive simple dosed-form expressions of the zero-field

partition function, tue spin-spin correlations as well as for tue susceptibility. We uave exam-

ined tue cases wuere tue cuain is exclusively composed of ferromagnetic or antiferromagnetic
couplings, or shows a regular alternation of tuese two types of couplings. In all cases, in the low-

temperature range, the chain can be described as an assembly of quasi-independent quasi-rigid
blocks, eacu one of lengtu (, tue correlation length, and moment M, tue magnetic moment per

unit cell. Tuerefore tue product XT beuaves as
(M~; in particular, in tue magnetic moment

compensation, its beuavior is mainly described by tue competition between tue divergence of

j and tue evanescence of M. Tuis uas allowed us to show subtle aspects of botu suort~ and

long-range orderings. Finally we uave recalled tue interpretation of tue experimental results

obtained on tue compound Mncu(obp)(H20)3.H20 [wuere obp=oxamidobis(propionato)] be-

cause it has initiated the present theoretical work. Tue problem of isotropic chains showing
randomly distributed pararneters has not been examined; the present mortel cari be easily
generahzed by taking into account these aspects. So far we have just considered the case of

exchange couphngs randomly distributed [19]; but, from an experimental point of view, the

important problem of cationic vacancies can also be considered in a wider generalization of

the present work. Tuerefore we believe that this theoretical work can be of great help for fu-

ture experimental data discussion and the further investigations of interesting one-dimensional

compounds.
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