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Résumé, Nous étudions la dynamique d'un réseau de neurones à temps discret, dont les

couplages sont asymétriques, aléatoires, et les seuils aléatoires. L'évolution des neurones est don-

née à la limite thermodynamique par un
jeu d'équations de champ moyeu dynamique obtenues

via une hypothèse de chaos local. Nous étudions l'évolution de la distance quadratique moyenne

entre deux trajectoires, et montrons qu'il existe deux régimes selon la valeur des paramètres de

contrôle. Dans le premier (régime statique) deux conditions initiales arbitrairement proches con-

vergent vers le même point fixe, alors que, dans le second (régime chaotique), elles divergent avec

une vitesse exponentielle et évoluent vers une distance constante non
nulle. La condition critique

de transition est obtenue dans
un cadre général, mais pour un cas particulier nous retrouvons

l'équation de la ligne AT suggérant
une

forte analogie avec le modèle SK. De plus, la distance

quadratique limite
en

régime chaotique est la même, quelles que soient les conditions initiales,
montrant que notre modèle présente

une structure ultrarnétrique. Nous montrons numénque-
ment que cette propriété n'est cependant pas associée à un

morcèlement complexe de l'espace
des phases comme pour le modèle SK. En outre, nous montrons que le processus d'évolution des

neurones est, à la limite thermodynamique,
un

bruit blanc. Le comportement de notre modèle

à la traversée de la ligne AT peut être illustré
en

étudiant l'entropie de Kolmogorov-Sinài qui

présente une transition brutale à la limite thermodynamique. Elle est nulle en régime statique

et infinie
en

régime chaotique.

Abstract. We study trie dynamics of a discrete time, continuous state neural network with

random asymmetric couplings and random thresholds. Trie evolution of trie neurons is given

m the thermodynamic limit by a set of dynamic mean-field equations obtained by using a

local chaos hypothesis. We study the evolution of trie mean
quadratic distance between two

trajectories, and show there exist two dioEerent regimes according to the value of trie control

parameters. In the first Que
(static regime) two initially close trajectones evolve to the sanie

fixed point, wlùle,
in

the second one, (chactic regime) they diverge with an
exponential rate, and

evolve to a constant, non zero distance. Trie critical condition for the transition
is

obtained in a

general frame, but, in a
specific case, we recover the equation for the De Almeida-Thouless line

suggesting strong analogy with trie SK model. Besides, trie hmit for trie quadratic distance is
trie

same
for all initial conditions choice, showing that ultrametricity

occurs m our model. However,

we show numencally that this property is not associated to a
complex breaking up of the phase
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space like
m

trie SK model. Besides, trie queuched stochastic process giviug trie evolution of the

neurons is a
white noise iii trie thermodyuamic lirait. Trie behaviour of

our
model wheu crossing

trie AT line can be characterized by studying trie Kolmogorov-Sinai entropy, which exhibits a

sharp transition in the thermodynamic limit. This entropy is zero in trie static phase, while ii

becomes infinite in the chaotic regime.

The emergence of complexity in disordered systems with many degrees of freedom has been

the subject of many works for the last decades. In this context, spin-glasses, and more partic-
ularly the Sherrington-Kirkpatrick model iii, have been the focus of interest of a large number

of studies. Indeed, this model has shown a very rich structure in the low temperature regime,
below the De Almeida-Thouless line (AT line) where the replica symmetry has to be broken [2].
In this phase, the model exhibits complex features, such as the existence of many equilibrium

states and breaking of ergodicity [3], ultrametricity [4], and lack of self-averaging. However

these characteristics are not specific to spin-glasses. Other models such as the Kauffman

model [Si, or the generalized Hopfield neural network model [6] exhibit similar features.

Neural networks with asymmetric synaptic weights also exhibit a complex behaviour. One

of the most striking features, is the existence of a chaotic regime in a given range of values

for the gain parameter [7]. However, for finite size, they have a wider diversity of dynamical
behaviour. For a large dass of neural networks with random asymmetric synaptic weights,

in the finite size case, it has been shown in [8, 9] that the generic way leading to chaos by
increasing the non-linearity of the transfer function is a quasi-periodicity one. When the gain

parameter increases, the system goes from a static to a periodic regime by a Hopf bifurcation.

A second Hopf bifurcation then occurs giving rise to a biperiodic regime and the dynamics lives

on a T2 torus. Frequency locking occurs on this torus leading to chaos. The intermediate range
of parameter values corresponding to the quasi-periodicity route shrinks to zero when the size

tends to infinity, leading to a sharp transition from fixed point to chaos in the thermodynamic
limit.

Recently, we have numerically shown that the occurrence of chaos in a given dass of neural

nets is given by the equation of the AT line, suggesting a close relationship between the spin-
glass phase for the SK model and the chaotic phase in these neural nets [loi. In this paper

we inspect this relationship more deeply. The evolution of the neurons is given in the ther-

modynamic limit by a set of dynamic mean-field equations. These equations can be obtained

by using a local chaos hypothesis iii], whose justification is given in appendix, for asymmetric
couplings. We first derive these equations and expose some of their consequences, such as the

breaking of ergodicity for certain regions in the space of control parameters. Next, we study
the evolution of the mean quadratic distance between two trajectories in the thermodynamic
limit, and show that there exist two different regimes according to the value of the control

parameters. In the first one, corresponding to a static regime, two initially close trajectories
evolve to the same fixed point. Hence, they are finally identical with a zero distance. In the

second regime, there is a sensitivity to the initial conditions, namely two initially close tra-

jectories diverge with an exponential rate, and evolve to a non zero distance. The cntitical

condition for the transition is obtained in a general frame, but, in the particular case of the

model studied in [10], we recover the equation for the AT line. The hmit for the quadratic
distance is the same for ail the choices of initial conditions, showing that tlltrametricity occurs

in this model. However, we numerically show that this property is not associated to a complex
breaking up of phase space like in the SK model. Besides, we show that the quenched stochas-

tic process giving the evolution of the neurons is a white noise m the thermodynamic limit.
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The behaviour of our model, when crossing the AT fine, can be characterized by studying the

Kolmogorov-Sinai entropy, which exhibits a Sharp transition in the thermodynamic limit. This

entropy is zero in the static phase, while it becomes infinite in the chaotic regime. We suggest
that there may exist a relationship between this entropy and the exponential rate of growth

for the number of TAP solutions in the SK model. In these two cases, the crossing of the AT

line corresponds to an increase in complexity.

Mortel

We consider the following discrete time neural networks(~), with dynamics:

xi(t
+ 1)

=
f(111(t + 1))

~~(t + i)
=

f
J~~z~(t) + ô~

~~~

~=i

The net is fully connected. The J~j's are independent, identically distributed random vari-

ables with expectation E(J~j
=

ÎÎ/N and variance Var(J~j
=

J~ IN. They are not symmetric,
1.e., J~j # Jj~. The thresholds [ are independent, identically distributed Gatlssian random

variables with expectation E([)
=

à and variance Var([)
=

a(. The disorder is quenched, 1.e

the couplings and thresholds do not change with time. f is an arbitrary (derivable) sigmoidal
function of slope g. As an example, it can be f(x)

=
tanh(gx)

or f(x)
=

(1+ tanh(gx))/2.

Local Chaos Hypothesis

The system (1) may be viewed as a N-dimensional stochastic process with quenched disorder

induced by the couplings J~j and the thresholds 1. The probability law of the x~(tl's and

t1~(tl's may be obtained by using the "local chaos hypothesis" initiated by Aman iii] in the

field of neural networks(~). It is the assumption that, when N is large, the system behaves

as if the random variables x~(t) were mdependent of each other and of the random variables

Jki, Vk, [12,13]. This hypothesis allows us to state conjectures about the behaviour of large

systems of randomly coupled equations.
However, this hypothesis was shown to be false m many models with symmetric couplings.

For example, applied to the Sherrington-Kirkpatrick model, it leads to the replica symmetric

SK solutions and predicts a Gaussian distribution for the local field. Such a result is known

to be wrong in the low temperature regime [14]. This is because the mean-field equation for

the ith spin obtained under this assumption does not take into accourt the "reaction term"

which is the contribution due to the influence of the ith spin on the others ils]. In the field

of neural networks, the same objection can be formulated. For example the ngorous results

obtained in [16,17] for extremely diluted models, or in [18,19] for the Little-Hopfield model

with parallel dynamics, show that the feedback effects due to the symmetry of the couplings

have a
dramatical influence on the distribution of the local field by adding a non-Gatlssian

contribution. Then, from a general point of view, the main defect of the local chaos hypothesis

is that it neglects these feedback effects.

(~ This kiud of model
is

also called the (fully) asymmetric SK model.

(~)The terminology "local chaos hypothesis" is a
bttle bit confusiug

m
this paper, where we

also

deal with dynamical chaos. However, by reference to Aman, to trie molecular chaos hypothesis of

Boltzmann and to what trie probabilists call "chaos propagation" we will keep this terminology.
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However, we argue in the appendix that the local chaos hypothesis leads to correct results

when the couphngs are asymmetric because the feeback ejfects uanish in the thermodynamic
limit. From a mathematical point of view, some results in favour of the local chaos hypothesis
have been given by Geman [12], Geman and Hwang [13] and more recently by Guionnet and

Ben Arous [20] for linear models with asymmetric couplings. Applied to the continuous time

neural network of Sompolinsky et ai. [7], the local chaos hypothesis leads to the cclrrect mean-

field equations, 1-e- the sonne as those obtained by these authors by using a dynamic mean-field

theory il 2,21]. We have widely numerically checked this hypothesis for our model in a previous
article [9]. Additional evidence for its validity will appear in this paper.

Mean-Field Equations

The network law is symmetric, 1-e-, ail the weights (resp. all the thresholds) have the same dis-

tribution. So if we suppose, without loss of generality, that the initial conditions are identically
distributed, ail the x~'s will have the same distribution at each time step. Then, by the central

limit theorem(~), the consequence of the local chaos hypothesis is that the t1~(tl's become, in

the thermodynarnic limit, mdependent, identically distribtlted random processes with
a

Gatls-

sian distribtltion. Let p(t)
=

(t1(t)) and u(t)
=

(t1~(t)) p~(t) be the mean and variance of the

t1~(tl's, m the thermodynamic hmit, where denotes the average over the quenched disorder.

Knowing p(t) and u(t), ail the moments of the x~(tl's together with their probability density

con be obtained. By using the local chaos hypothesis, one obtains the evolution equations for

p(t) and u(t), namely:
»(t + i)

=

Jm(t) + J (2a)

U(t + i)
=

J~q(t) + aÎ (2b)

The quantities m(t) and q(t) are respectively the first and the second order moments of the

x~(tl's in the thermodynarnic limit, given by:

m(t)
= /~°° Dhi(/Th

+ »(t)) (3a)

q(t)
= /~°° Dh12(ôTh + »(t)) 13b)

where Dh
=

fi exp
( dh is the Gaussian measure.

To charactenze the Gaussian process t1~(t) completely, one also needs to compute the evo-

lution equation for the covanance Ait, t')
=

(t1~(t)t1~(t')) (t1~(t))(t1~(t')). By using the local

chaos hypothesis one obtains:

Ait + 1, t' + 1)
=

J~C(t, t') + a( (4a)

where

Clt,t')
=

lxi(t)xilt'))

+ +/ ~ / "

DhDh' /
/Ult)U(t') A2(t, il) aji 11)

~~ "

ôT ~ ~ fiÙ~' ~

l~))
f (h'ôT

+ pli'))

14b)

(~)The u,'s bave
a

finite
variance because of trie scaling law for trie coupbngs and because each x,'s

is
bounded.
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The set of equations (2), (3a, b), (4a, b) allows us to know the evolution laws of the quenched
Gaussian process il ). These equations have been previously obtained by Molgedey et ai. [22]

by using a dynamic mean field theory, for the restricted case
à

=
0, a(

=
0, J

=
0, f(x)

=

tanh(gx), and in the presence of
an

externat white noise.

Fixed Point Equations

After a certain transient, the dynamics flows towards a stationary state that may be a static

fixed point or a more complex attractor [9]. We are mamly interested in this stationary regime.
The convergence towards a stationary state for il) is firstly materialized by the convergence
of (2a, b) towards a fixed point. The following fixed point equations give the instantaneous

distribution of the t1~'s (resp. the x~'s) m the stationary regime(~).

p=ÎÎm+à (Sa)

u =
J~q + a( (5b)

where:
~~

m =
Dh f

hfij
+ Jm + à (6a)Îoe

q =
/~~ Dh f~

(hfij
+ Jm + #) (6b)

-ce

More general information con be gained by studying the covariance A(t, t') in the stationary
regime. This point will be discussed below. First we shall note some interesting features

revealed by (Sa, b), (6a, b).

Breaking of Ergodicity

The self-consistent equations (Sa, b), (6a, b) can have several solutions. This corresponds to the

existence of several attractors m the phase space of il [9]. This allows a critical manifold to be

computed in the (4-dimensional) space of the control parameters g,
à, a(, ÎÎ, (J is a redundant

parameter), that divides this space into 2 regions. In trie first region trie system (1) admits

only one attractor, while in the other region several attractors exist simultaneously whose

attraction basins divide the phase space(~). Hence, the crossing of this manifold corresponds

to a breaking of (global) ergodicity for (1). It has been computed in [9] for the case
ÎÎ

=
0,

f(x)
=

il + tanh(gx))/2, a(
=

0 and in [23] for the case
ÎÎ

=
0, f(x)

=
il + tanh(gx))/2.

In this particular case, the crossing of the cntical (twc-dimensional) manifold in the space (g,
à, a() corresponds to the appearance of a second attractor, corresponding to a saddle-node

bifurcation for (2a, b).
The general case is more diflicult to study. For J # 0, one has to look for ail the fixed points

of the non-linear, twc-dimensional system (3). On the contrary for J
=

0 we only have to seek

the fixed point of a one-dimensional recurrence. In this paper, ail the ntlmerical investigations

(~)As
a consequence of trie local chaos hypothesis these equations are trie SK repbca symmetric

solutions. This point is discussed below.

(~) Notice that this second region may a
priori be divided into sub-regions, each

one
corresponding to

a
dioEerent number of attractors. For trie moment we bave only looked at trie

case
ÎÎ

=
0, and we bave

non encountered ibis situation. Notice however that trie solutions of (6a, b)
are

genencally isolated

and in a
finite number.
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will be restricted to trie model where f(x)
=

tanin(gx), ÎÎ
=

0, a(
=

0, J
=

and à > 0 (but
the theoretical results will be given in trie general frame). In this case, there is always only

one
attractor(~), whatever the gain pararneter value.

Evolution of trie Mean Quadratic Distance

We now study the evolution of the mean quadratic distance between two trajectories u~(t)
=

(u)(t))~_~
~,

u~(t)
=

(t1)(t))~_~
~

in the stationary regime, and in the thermodynamic
limit, 1.e tlië evolution of:

£~12 (1) "
/1$ ~

l'~I (1) i~Î(1)j ~ (~)
~l

This method is similar to that used by Derrida and Pomeau for the Kauffman model [24].
Under the local chaos hypothesis the t1](tl's (resp the t1((tl's)

are identically distributed, so

it is suflicient to study the distance between one component of each trajectory t1~(t), u~(t),
namely:

d(~(t)
= [u~ il) u~(t)]~) =

2 lu Ai,2(t)] (8)

where u is given by (5b) and where Ai,2(t)
=

(u~(t)t1~(t)) (t1~(t)) (t1~(t)).
u~ il), u~(t) being Gaussian, the equation giving the evolution of Ai,2(t) in the stationary

regime is:

Ai,2 Ii + 1)
=

H(Ai,2(t))
=

+ce +ce v2 Ai ~(t) à
~~~ ~g~

=

J~
/ / DhDh'f

~p
' h +

) h' + »
f(h'vP + p) + «j

-ce -ce

In the particular case
a(

=
o, ÎÎ

=
o, à

=
o, f(x)

=
tanh(gx)

one recovers an equation obtained

by Molgedey et ai. [22].
This one-dimensional map admits, for euery value of the control parameters, the fixed point

Ai,2
= u; Indeed, H(u)

=
J~q + a(

= u. This simply means that two imtially identical

trajectories remain equal forever m this quenched model.

We expect u to be a stable fixed point for (9) in the static regime for (1). This means that in

this regime two arbitrary close trajectones converge to the same fixed point. On the contrary
the situation may be reversed in a chaotic regime. Hence, the entry into chaos for (1) may be

seen by the destabilization of u for the mapping (9).
~fhe critical condition for the destabilization is:

~fl (Ai,2
"

u)
=

(la)

This denvative can easily be computed by writing H(Ai,2) as a Fourier transform:

+ce

j+°°
dkdk'

~k'~~ik~ /(k) /j k')e-lv(k~+k'~~+~~~.~~~~~~~ + ~Î ~~~~H(A1,2)
"

~~
j

~ _~

27r27r
~

(~) For à
=

0 the model admits two attractors symmetric with respect to trie origm, but
one can

select

one attractor or trie other, Orly by inverting trie sign of trie initial conditions. For à
< 0, there exists

a region in
phase space where two attractors coexist [9].
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where /(k) is the Fourier transform of f. One then obtains the cntical condition:

~fl lai,2
"

u)
=

J~ /~~ Dh f'~
(hfi

+ ÎÎm + à) =
il 2)

1,2
-ce

where f' is the derivative of f. This equation is general because it depends on ail the control

parameters of our model (namely g, J, Ù, a() and because f is arbitrary.
In the particular case f(x)

=
il +tanh(gx)) /2, J

=
o, equation (12) is identical to the cntical

condition for the entrance to the dynamical regime (1.e. the destabilization of the fixed points)
found in [9]. For f(x)

=
tanh(gx), J

=
o, a(

=
o, we recover the critical condition for the

entrance to the dynamical regime found in [loi. In these two papers, we have only given the

theoretical value for the destabilization of the fixed points we have then checked numerically
that the destabilization line and the line for the entrance to the chaotic regime become doser

and doser when the system size tends to infinity, suggesting that they are identical in the

thermodynamic limit. Here we give a proof of this identity.
For f(x)

=
tanh(g~), J

=
o, a(

=
o, (12) is the equation of the AT line, where g plays the

role of the inverse temperature fl, and is an externat field. In the general case, equation (la)
does not correspond to a hne, but rather to a manifold in the space of control pararneters.
However, by analogy with spin glasses and because our numerical investigations are only made

for the model f(x)
=

tanh(gx), J
=

o, a(
=

o, the case
@(Ai,2

"
u) < 1 will be referred

to as "above the AT hne". Indeed, g is equivalent to the inverse temperature fl and the slope
@(Ai,2

"
u) increases with g. The case

@(Ai,2
"

u) > will be referred to as "below

the AT line".

The destabilization of
u

implies that Ai,2 Il) converges to another stable fixed point, corre-

sponding to a non-zero qtladratic distance d". As an example, the curve
H(A) for the model

f(x)
=

tanh(gx), ÎÎ
=

o, a(
=

o, and à
=

o.l is drawn in Figure 1 in the two situations.

This result implies that in this regime two arbitrary close initial conditions diverge with an

exponential rate, corresponding ta a chaotic regime.
Another interesting feature is that ail trajectones converge to a stationary state where the

mtlttlal distance between trajectories is always eqtlal ta d". This means that the space of

trajectories of il) is tlltrametric [25]. In the chaotic phase ail trajectories evolve towards

a stationary, chaotic state where the average distance between two arbitrary trajectory is

constant. Explanations of this property are given below.

REMARK. When several attractors exist, corresponding to dilferent solutions for equations
(5, 6), one has to solve (12) for each attractor. This case has been studied in [9], for the model

f(x)
=

il + tanh(gx))/2, J
=

0. It has been shown that, in
the region where two attractors

coexist, corresponding to two sets of solutions (m, q), equation (12) has a solution for only one

of these sets. In this case, that means that only one fixed point leads to a strange attractor by

increasing the gain parameter while the other fixed point remains stable forever.

NUMERICAL CHECK. To check our result numencally we have studied the evolution of

the Hamming distance between two configurations, in the same net, after a sufliciently long

transient to
"

loo0 time steps, insunng that the dynamics lives on the attractor. A strange

attractor carnes an ergodic measure [26]. Thus we averaged the Hamming distance over time,

namely:
~ ~

DNIU~, U~)
=

jj ~ ~ l~Llit) ~Llit)l~ i13)

t=i i=i

where T
=

lo0, and N
=

500. DN(u~, u~) is drawn uerstls g for various values (Figs. 2, 3).



416 JOURNAL DE PHYSIQUE I N°3

H([ ~)

i Me

1 7;

s lie

x

6 lie

3 IIe

i i@e

3 @3 @> @1 @1 @1 1 3a)

H(Aj ~)

6

4

4

> S@e

>

i

~I,2
,

b) ' " ~

Fig. l. Fixed points of trie fuuction H(Ai,2), for g =
0.7 (Fig. la) and g =

2. (Fig. lb).



N°3 INCREASE IN COMPLEXITY IN RANDOM NEURAL NETWORKS 417

lie

i.&@e

,

S

i

is iii full

i @e

s SSe

o @@e

i lS*

@@e

5 @@e

3 SSO

1

i @@e

S SS

Fig.

at g =



418 JOURNAL DE PHYSIQUE I N°3

The numerical results follow the theoretical curve with a
good accuracy. The critical transition

is very close to the theoretical value predicted by (12).

Nature of the Chaotic Phase

DISTRIBUTION OF THE OVERLAPS. Equations (6) are identical ta the SK equations while

(12) is the equation of the AT-line. This suggests a strong analogy between the SK model and

our neural net. In particular we expect a close relationship between the spin-glass phase and

the chaotic regime of il ). We now inspect this relationship.
Below the AT line, the SK model presents a very rich structure. Many equilibrium states

coexist, separated by free-energy barriers whose heights diverge in the thermodynamic limit,

and whose number tends to infinity with the system size [27]. As a consequence the ergodicity

is
broken in the spin-glass phase according to a verj, complex scheme [28, 29]. The distribution

of overlaps between the pure states for a given sample is given by:

T

WJlq)
=

jjrn /jrn p
~ ôlq Q(t)) (14)

N

Q(t)
= ~ ~111(t)11](t) lis)

In these formulae t1](t), t1)(t) are two distinct spins trajectories and Q(t) is the overlap be-

tween these trajectories. The quantity Wj(q) is not self-averaging and fluctuates from sample

to sample even m the thermodynamic limit; this is because the weights of the pure states

(corresponding to the contribution of a pure state to the Gibbs state) are not self- averaging.
This situation is consistent with the replica symmetry breaking scheme of Pansi [28, 29] and

the average distribution W(q)
=

(Wj(q))
can be analytically computed under this scheme [4].

It has a complex land non-Gaussian) shape.
By analogy with spin-glasses, we expect a similar behaviour in our model. One may expect a

priori a complex breaking up of the phase space for il ), when the model is in the chaotic phase
(below the AT line). The analogy between il and the SK model is more relevant in the case

f(x)
=

tanh(gx), J
=

0, a(
=

0, J
=

1 and > 0. In this case, our theory predicts that only

one attractor exists. This attractor is chaotic and the theory of chaotic systems asserts that

the dynamics on a strange attractor is ergodic. Thus, with our theory'we do not expect any
breaking of ergodicity. In the general case (in particular J # 0) several attractors exist leading
to a breaking of ergodicity. However, these attractors are genencally in finite number, so the

situation is
far much simpler than in the SK model. This raises a first opposition between the

expected analogy with the SK model and our predictions based on the local chaos hypothesis.
Another straightforward contradiction can be seen on equations (6a, b). These equations

are the SK solutions. In the SK model, these equations, corresponding to replica symmetry,

are unstable below the AT hne. On the other hand, the local chaos hypothesis implies the

replica symmetry(~). Thus we are faced with the followmg alternatives: either our mean-field

equations are incorrect, or our model has a structure different from the SK model.

To decide what is the correct alternative, we use a numerical method developed by Young [31]
for spm-glasses. For t > to

#
1000 time steps, m the case

f(x)
=

tanh(gx), J
=

o, a(
=

o,
à > 0, we

calculate the probability distribution W(q)
=

(Wj(q)) where Wj(q) is given by (14).

(~) The opposition between the local chaos hypothesis and the rephca symmetry breaking below the

AT line bas been previously noticed by Crisanti et ai. [30].
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Fig. 4. Histogram of W(q) for N
=

64, 128, 256, 512 aud à
=

0.

If replica symmetry breaking occurs m
the chactic regime, we expect W(q) to have a complex

shape. On the contrary, the replica symmetric solutions (6a, b) land (9)) predict that W(q) is

m the thermodynamic limit a Dirac distribution located at q = q12 =
Ai

~
+ m~, where Ai

~

is the stable fixed point for (9) and m is given by (6a). We numerically liok for the shape if
W(q), when the size N increases in the case g =

2.5,
=

0, 1.e., under the same conditions as

Young's experiments il /g
=

0A). In all the experiments T
=

10000 while the sample average

is made over 20 nets. For these parameter values, our mean-field theory predicts Ai
~ =

o

and
m =

0. Hence, W(q) may have, for finite size, a Gaussian shape centered at zero
ÎÎÎith

a

vanance decreasing proportionally to 1IN. We observe such a behaviour. We have computed
W(q) for N

=
64, 128, 256, 512 (Fig. 4). The evolution of the vanance with N is shown

Figure 5. We bave a decrease of this vanance with a power law N~", and with a computed
exponent u =

1.104 + 0.041 in good agreement with our prediction.
These experiments show that no replica symmetry breaking

occtlr in otlr
model, below the AT

line. They also answer the question of self-averaging raised in [loi. It has been argued in this

paper that the characteristics of the ergodic measure carried by the strange attractor in il are

expected to depend widely on trie dynamics of a particular net. Therefore, this measure might
depend on the pectliiar realization of the cotlpiings J~j, and so it might be sample-dependent,

euen in the thermodynamic hmit. The quenched randomness generates a family of random

measures carried by random strange attractors in the chactic regime. In this case, a sample

averaging might be diflereni from a quenched averaging. Hence (1) is expected not to be self-

averaging below the AT-fine. On trie contrary, the local chaos hypothesis implies self-averaging
(by the law of large numbers).

Our expenments show that trie crossing of trie AT fine in
iii does not lead to this loss of

self-averaging. This is a very surprising result, because it implies that the strange attractors

are almost surely identical (1.e. carry the same ergodic measure) in the thermodynamic limit.

This behaviour will be darified in trie following section.
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-4

QI 5 1@

Fig. 5. -Plot of trie loganthm for the computed width of W(q)
uerstls

log(N) for N
=

64, 128, 256, 300, 512. In fuit fine the regression fine is drawn.

NATURE OF THE GAUSSIAN PRocEss. These experiments show that our neural net has

simpler properties than the SK model below the AT litre. To further characterize the dynamics
of this model, we study the evolution of the covariance Ait, t'), given by (4a, b). However, this

is not a simple task. For example the covariance Ait + i, t) between two successive time steps
is given by:

Ait + i, t)
=

=

ai + J~
£Î £Î

DhDh'
h

~/~~~~~~~ )~~
~~

+ ~'l(i~-1)~ +

li))

x f (h'fi
+ pli 1)) (16)

To obtain the dynamics for A(t +1,t) one has to iterate simultaneously (2a), (2b), (16).
However, the Gaussian process evolves towards a stationary regime where vit)

= u, mit)
= m,

Ait, t')
=

Ait t'), with:

Ait t')
"

HlAlt t'))
"

=

J2 j~" j~" DhDh'/
h ~~~ jl~ ~'~

+
~'~) ~'~

+

)
/ (hi w + ~j + ai

-ce -ce

(17)
where H is the same function as that giving the evolution of the mean quadratic distance

between two trajectories (Eq. (9)). Then, Ait, t') evolves towards Ait t')
=

A", which is a

stable fixed point of H.
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According to the position of the system in the control pararneter space, with respect to the

AT line, one has two different situations. Above the AT line the stable fixed point is A"
= u.

Then each neuron state is a Gaussian process with mean ~t and covariance u.
The covariance

u. u

matrix for the n time step vector (t1~(1),
..,

u~(n)) has the form: Such a

ssian
s

lfi = X

(
~ (18)

$+1
$

where X
is

trajectories are to the static regime for (1). The of the
fixed points are distributed

ccording
to a N(~t, u) stribution. When there are several

points,
corresponding

to several solutions of
(Sa,

b) ~ti, vi ), (112, u2), each fixed

charactenzed
by its own Gaussian stribution N(~ti, vi ),

(~t2,
2), . . .

Below the AT line, the stable fixed
point

is A" <

Gaussian vector (u~(1), .. , u~(n)) becomes:

lu,A",......,A" u-A",0,... . .,A"

",u,......,A" 0,u-A",0.... ".... ....... .,A"
... . . .u.....

0......u-A".
..,0

~0,.
. .. ,u-A*

The

ocess

Zt

lZo " X

Zt : (20)

Zt+i
Zt

where Bt
is a entered

dom
ariable. his

eans
that Zt is the superposition of process

with lmost all

trajectories
and of a centered hite oise. The trajectory of a given neuron oscillates tochas-

tically around a
ixed

value X; for a sample of the X values spread

distribution
with

ean
~t and ariance A".

For
f(x) = tanh(gx), ÎÎ = 0, a( = 0, à

equal to 0
and

the trajectory of a given
neuron

oscillates
around zero

[7, 22].

This
result

alls for
several

remarks.
First, it explains the property of ultrarnetricity observed

above. It is the usual ultrametricity observed ver a set of entically distributed random

variables (
[32]

page SI). In fact, to
any

ltrametric
appeanng in an

dimensional ce, under certain general
nditions, it is

possible
to assign a tochastic process

[25]. The one associated to our odel is given by (20).
As a

consequence,

we find that the hactic" regime btained
in

rather In fact all the roperties observed here are
mplied

by the local haos

which, in turn is orrect only for asymmetric
cotlplings. Indeed,

we
show

in the appendix that,
for

couplings, here is no eedback effects in the limit. In this case,
the state of the euron 1 at time t +1 depends only on the local

t (see Eq. (9) of he pendix). The
oss

of feedback effects implies
that the system has no

of its past, and is a
Markovian process.
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So an important conclusion of this paper is that all the properties observed in our model

(Gaussian distribution for the local field, replica symmetry, self averaging, Markovian evolu-

tion) are due to the asymmetry of the couplings. On the contrary, the situation is expected

to be drastically different for partially symmetric couplings. In this case, the evolution of the

neurons and the stationary state reached after the transients depend on the whole history of

the network (see Eq. (9) of the Appendix). This stationary state is then expected to be sample
dependent. Obviously the local chaos hypothesis fails in this case.

Maximal Lyapunov Exponent

Our mean-field theory allows the average maximal Lyapunov exponent to be computed, in the

thermodynamic limit. Let t1) (t), t1)(t) be two initially arbitrary close trajectories. The average
maximal Lyapunov exponent is:

Ii j~lj~) ~2 (~)j2
~~~ /ÎÎ$

j~j~o)
~$(o)

j-o 2t~°~ [t1Î(0)
1)

(0)]2 ~~~~

where the initial conditions have to be taken in the stationary regime. It is not obvious to

compute this quantity. A more straightforward computation con be done on:

~~~ /ÎÎ$ di/ÎÎÎÎ-o Ît ~°~ ÎÎÎÎÎÎ ~~~~

where d(~(t)
=

([t1)(t) t1)(t)]~) is the mean quadratic distance at time t in the stationary
regime. Indeed:

~~~ /~Îi ~IÎÎÎ-v
t~°~

lÎ~
ÎÎÎÎ~ÎÎ

"
/~Îi AIÎÎÎ-v

t~°~ ~~~Î~ ~ÎÎ~ÎÎ~~~~~

l dH~
/ÎÎ$ 2t~°~ dAi,2

a~ ~=v

where H is given by (9) and where H~
is H o o H, t time. By the chain rule and because

u is a
fixed point for H one has ())

=

(@(u))~. Then:
12 Ai 2=v

~ 2

(uJ) = )log ~fl (23)
1,2 a~ ~=~

(uJ) is interpreted by Molgedey et ai. [22] as the average maximal Lyapunov exponent. But it

is not a priori evident that (À) and (uJ) are equal. Indeed, even if one admits that the limits

and the expectation commute in
(21), one only has, by Jensen inequality:

là) 1 lLd) 124)

In fact, in a general model, the equahty has no reason to hold, in particular if the model is

not self-averagmg. However, the particular nature of the quenched stochastic process m the
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thermodynamic limit (Eqs. (18, 20)) allows for some simplifications. First, this process is

ergodic, so the time average is almost surely equal to the expectation, 1.e.:

i j~lj~) ~2(~)j2
~~~ ~lla

j«i(o) ~$(o)j-o 2t
~°~ ~1Î(0)

~IÎ(0)l~ ~~~~

where T signify almost-surely equal, according to the probability mduced by the disorder (joint
probability for the couplings and thresholds). Second, the self-averaging property for d12 (see

previous Sect.) implies that its value obtained for one sample is almost-surely equal to its

expectation over trie disorder in trie thermodynamic limit. Namely:

~~~
~ lfls

((vi (0) ~$Î0))~j-0
Ît ~~~

ÎÎÎÎÎÎ ÎÎÎÎÎÎ
~ ~~~~

Then, trie equality between (uJ) and (À) occurs only because of the particular behaviour of our

model. The mean maximal Lyapunov exponent is given by:

(À)
=

log (J~ /~~ Dh f'~
(fi

+ ÎÎm + à) (27)
2

-ce

Above trie AT hne (static regime) il) < 0 while below trie AT line (chaotic regime) it is

positive.

Kolmogorov-Sinai Entropy

All these results have been obtained in the thermodynamic limit. We have shown that a sharp
transition occurs when crossing trie critical value (10) where trie system goes from a static

regime to fully developed chaos (white noise). However, for finite sized systems the situation

is different. Trie chaos occurs gradtlally by a cascade of transitions, as the gain parameter is

increased. Trie system goes generically from a fixed point to a limit cycle, then to a T2 torus,

and finally to chaos (Figs. 6a, b, c). It may be interesting to understand trie mechanism

of transition from the finite sized case with "dassical" chaos to the infinite dimensional case,

where the chaos becomes white noise.

The route to chaos observed in Figures 6a, b, c, corresponds in fact to a graduai growing
of complexity. We also expect this complexity to increase with the non-hnearities mside the

chactic regime; this is revealed by the loss of apparent structure for the strange attractor when

g increases (Fig. 6d) (see also Fig. 7). There are several ways to measure the complexity

(Lyapunov exponents, fractal dimensions or Kolmogorov-Sinai entropy). A good candidate

to measure it in the chactic regime is the sum of positive Lyapunov exponents À~
~

À~.

>,>o

Indeed, this quantity is dosely related to the Kolmogorov-Sinai entropy h(p) (where p is an

ergodic measure carried by the strange attractor [26] by [33]

h(p) § ~ [ (28)

>,>o

The equality occurs for a particular dass of ergodic measure (Sinai-Ruelle-Bowen measures)

living on axiom A strange attractors [26], but it is very diflicult to prove that a system is

axiom A. From the Ruelle-Takens-Newhouse theorem we just know that in any (C~) neigh-

bourhood of a
T~ torus exists an axiom A strange attractor [34]. SO, because in Dur model
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Fig. 6. Route to chaos for a neural net with N
=

100, fia)
=

tanh(gx), ÎÎ
=

0, a(
=

0, and

à
=

Ù-1, when increasmg trie gain parameter g. We bave drawn mN(t +1)
versus

mN(t) where

N

mN(t))
=

~j~i ii). This grues a
projection of trie attractor m two dimensions. Fig. 6a) bmit

N
.=i

cycle (g
=

1.45); Fig. 6b) T2 torus (g =1.457); Fig. 6c) Chaos (g
=

1.47); Fig. 6d) Developed chaos

(g "1.8).
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Fig. 7. Sum of trie positive Lyapunov exponent versus g for trie previous net.

trie strange attractors are generated by a quasi~periodicity route, it is reasonnable to suppose

that Dur attractors are axiom A. By the way, for the following, we assume that equality holds

in Dur model.

This quantity is always finite for the finite size model; in particular the number of positive
Lyapunov exponents on the attractor is lower than the dimension of phase space. We have

drawn the sum of positive Lyapunov exponents in Figure 7, for the net whose dynamical
evolution is represented in Figures 6a, b, c, d. The Lyapunov spectrum has been computed by

using the algorithm of Eckmann et ai. [35], with a 30000 time step long trajectory. As expected,
it is zero before chaos, and increases sharply after the transition, before saturation. However,

we must emphasize that it is diflicult to extend the numerical investigations for high gain.
Indeed, when the gain g increases, the attractor dimension mcreases, and so the embedding

dimension needed to compute the Lyapunov spectrum. In this case more and more trajectory
points are needed and the time of computation becomes prohibitively long.

In the thermodynamic limit (1) becomes a set of independent, identically distributed, monodi-

mensional stochastic processes. All these processes have the same maximal Lyapunov exponent

(À) given by (27). Above the AT line (À) < o, then, the Kolmogorov-Sinai entropy is zero.

On the contrary, below the AT line (À) is positive and the Kolmogorov-Sinai entropy becomes

mfinite. Hence, this entropy exhibits a sharp transition in the thermodynamic limit. Retummg
to the finite size case, we expect it to increase more and more accurately with the non-linearity
parameter g, when the size mcreases. Indeed, when the size increases the transition from fixed

point to chaos is faster and faster, leading to a sharp transition m the thermodynamic limit.

This situation can be analyzed by looking at the Jacobian matrix of the fixed point [8], at least

for centered couplings. The distribution of eigenvalues of this tandem matrix converges in the

thermodynamic limit to a uniform density in the complex plane, distributed aven a disk with
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a radius increasing with g [36]. The destabilization of trie fixed point occurs when at least one

eigenvalue crosses trie unity disk. For finite size trie eigenvalues cross two by two (they
are

complex conjugate for a Hopf bifurcation), leading to a graduai transition from fixed point to

chaos. In the thermodynamic limit an in finite number of eigenvalues cross simultaneously,
leading to an infinite codimension bifurcation, and then to a Sharp increase in complexity. The

chaos emerging from this bifurcation is infinite-dimensional.

It remains now to understand the relation between this transition and that occurring in the

SK model when crossing the AT line. Indeed, we have seen that our chactic phase is very
different from the spin-glass phase. In our model, below the AT line the stationary regime

is an ergodic white noise. In the SK model, the dynamics is relaxational but a multiplicity
of equilibrium states exists, leading to a complex breaking of ergodicity. However, in the two

cases the crossing of the AT line corresponds to an increase in complexity. On one hand the

Kolmogorov-Sinai entropy in our model grows proportionally to Nil) below the AT line, for

large size, because il) consists of N nearly independent, identically distributed monodimen-

sional stochastic processes. On the other hand, in the SK model the complexity is associated to

the large number of pure equilibrium states. These pure states are solutions of the Thouless,
Anderson, Palmer (TAP) equations ils]. Trie average number f of solutions for the TAP

equations grows exponentially with the size N, 1.e. with an exponent Na(T)
=

log(Ns)
com-

puted by Bray and Moore [27]. Above the AT line o(T)
=

o while it is positive below the AT

fine. Hence, a natural measure of the complexity for the SK model is the quantity No(T)(8)

Discussion

In this paper we have fully characterized the dynamics of a discrete time, continuous time

neural network with random asymmetric couplings and random thresholds. We have shown,

that it exhibits a chaotic transition, given by a general equation, reducing in a specific case to

the De Almeida-Thouless fine. Even if the chactic phase is very different from the spin~glass
phase in the SK model, the transition corresponds in the two models to a sharp increase in

complexity.
However, the situation observed in this paper depends dramatically on the couplings asym-

metry. If this asymmetry is broken, the local chaos hypothesis faits, and the mean-field equa-

tions will be far more complicated (see Eq. (9) of the Appendix). It would then be interesting

to explore the situation from totally symmetric couphngs to totally asymmetric ones, by vary~

ing continuously the parameter k of asymmetry (see Appendix). For symmetric couplings the

model il is expected to admit a simple dynamics with trivial attractors (fixed points or period

2 cycles) whatever the gain value for sufliciently low gain, it admits only one fixed point, while

a multiplicity of trivial attractors exist in the high gain regime, orgamzed into a structure that

could be similar to the spin-glass phase. On the contrary, for total asymmetry the organization

of attractors is simpler, but trie dynamics is more comphcated. The intermediate situation is

then expected to be very nch. In fact it is net diflicult to show that il admits only one stable

fixed point for sufliciently low gain, whatever is the k value (for sufliciently low gain, f is a

contraction). Then, the increase in g is always expected to lead to an increasing complexity.

It would be interesting to know whether the cntical transition is always given by an equation

like (12).
The analogy with spin glasses suggests that the SK model and il belong to the same family.

It would be worth to know whether this family incorporates other models and what are the

reasons for this analogy.

(~) In fact
a more interesting quantity would be log(average number of pure states).
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Appendix A

In this Appendix we give a heuristical argument for the local chaos hypothesis. It is based

on the cauity approach previously used by Mézard et ai. [37] for the SK model. For the

sake of simplicity, we work with centered couplings, namely ÎÎ
=

o; in this case the Jij's are

proportional to lllR. Besides, the couplings will have a uniform law; their variance being

J~ IN this means that J~j E
(-JvillR; JV5llRj, Vi, j. Without loss of generality we will

take f(x)
=

tanh(gx).
We consider a system of N neurons of internai state (u~(t))~~~

~q
evolving according to

equation (1). Then, we add, at time to, a new neuron vo,
(N'+'1) couplings Joj and a

threshold Ùo. Each neuron now feels a new influence due to the added neuron. Consequently
their trajectones become new functions (û~ il + 1))_o

~q.
We want to study the evolution of

the influence of this new spin when we iterate the dyiainics.
The evolution of this system of N +1 neurons is now given by:

l~lt+i)
=f(ii~lt+i))

û~(t+i) =fJ~~i~(t)+ôi+J~oio(t)
~~'~~

j=i

Because of the scaling law for the couplings we have:

~~~ ~~ ~ ~~ ~ ~~~~ ~~~ ~
~~

~ ~°~°~~~~' (É J~jli li) +

~j

+

f ~$Î((t) N

~~~

/(n) ~ Jqf~(t) + à

(A 2)

~ ~

~~

3"1
j

where f' is the derivative of f (and is proportional to g) and where f(")
is the n-th derivative

of f.
At time to, fi (to)

#
x~(to),1= 1. N, then:

i~jio + i)
=

x~jio + i) + J~oiojio) l'ju~jio + i)) + R~jio + i); i
=

o. N jA.3)

where:

R'lt0 +1)
"

É
~j~~~~f~~~l'Ii(10 +1))

n=2

N

Here x~(to + 1)
=

f(u~(to + 1) and u~(to +1)
=

~ Jqxj(to) + Ù~ is the local field at site 1,

J=i
at time to +1, resulting from the influence of ail neurons but the 0 netlron (cavity field). It
follows, that t1~(to +1) is independent of fo(to) and of the J~o's.
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The total local field at site1 # o, at time to + 2 is:

~~~~~ ~ ~~ ~~~~ ~~~ ~ ~~ ~ ~~ ~ ~°~°~~° ~ ~~ ~ j~ ~vJiooEo(io) /'jt~~ji~ ~ ~~~

~

~

j
+" jji~tjt~j

1

~~

~

n!
Î~"~ (ILJ (to + 1)) (A,4)

We are now interested in the behaviour of each term containing fo in the thermodynamic
limit. Because of the scaling law for the couplings the term J~ofo(to + 1) tends to zero.

Let us now have a look at the second term. The derivative f'(tlj(to +1)) is positive and is

bounded by a positive quantity g. Besides, the J~o's are independent of the J~j's and of the

f'(tlj (to + 1))'s, j # o. Then,

N
~

~j J~jJjof'(tlj(to + 1))
=

J=1

N IN
"

~J~Jj0Î'~(~J(t0+1)) +2 ~ Jç~ik~J0~k01'(i~J(t0+1))1'(tlk(10+1))
J"i J>k=1

J<k

ig~ÉlJ()lJjo)+2 É
lJio)lJko)lJ~jJikf'luilto+i))f'luklto +i))) IA-S)

~"~ l'll~

The first term converges to zero when N
- cc while the second is always zero for centered

N

couphngs. Then, ~j J~jJjof'(uj(to +1)) tends to zero (in L~ sense). In fact, by the same

J=i

argument it is possible to show LP convergence for arbitrary p > 2.

dll
The third term is much more complicated to control. Let Mn

= sup q tanh(x) or, in

~
X

other words, sup f~")(x)) =
g"Mn. Each Mn's is lower than n!. Then, the series

f
~"f~

~ ~_~
n.

~ +oe jll fil(~ù)
converges, and is bounded by ~

,
as soon as (y( < 1. Then, ~j ~° f(")(uj(to +1))

1- y
~_~

n.

converges absolutely provided that g [Jjo( (fo(to)( < 1.

Now [io(to)[ > 1, while [Jjo[ < JV5llR by hypothesis. Then, for each g, there exists Ng
=

+ce jn fnj~~)
integer part of 3g~J~, such that, if N > Ng, the series ~ ~° f~") lui (to +1)) converges

n=2
~'

absolutely. Let:

~ j~
i

j~~

f
J>~ii~°~ /~n~(~liit° + i~~

N-m
~~i n=2

~
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~'~~ ~~~~'

jsj < iim

f
iJv

É
lJi1 fil(to)' ~"fi

N-m
~ ~_~

~

~j~
~ ~~

< iln~ ~ 'JIJ
i

ÎJÎO
Îlioito)i

j#~f v5~g2J3 1
=

o~~~~~~ ~~
~Î~'~~°~~

~~~~~

iii(to+2)=(JIJXJ(to+1)+91+°lù)=~iito+2)+O(ù). ii.. N

where O (1/@) is the vanishing contribution of the three terms examined above. Then m

the thermodynamic limit:

fl~(to + 2)
=

x~(to + 2);
=

1.. N (A.6)

Now we can iterate the reasoning at ail times showing that neurons =
1. .N evolve

independently of the neuron o. Extending this argument by adding an arbitrary number of

neurons, it follows that in the thermodynamic limit ail neurons are independent.
Looking now at the neuron o we have, at time to + 2:

N

~°~~° ~ ~~
illilli[1111[

+ ~3°~°~t°)/'(~li (to + i~~ + ~~ ~i~ + ~~~ (A,7)

The xj(to + ll's are independent of the Joj's by construction and of each other by the

N

previous argument. So, by the central limit theorem, the term ~ Jojxj(to +1) becomes, in

j=i
the thermodynamic limit a Gaussian process q.

The contribution of the term in containing Rj(to +1) converges to zero by the same argu-
N

ments as above. However, the second term ~ JjoJojf'(tlj(to +1)) leads to a non~Gat1ssian

j=i
contribution in the thermodynamic limit. In fact, it converges to zero only if the cotlphngs are

asymmetrics.
Let us consider the more general situation, where the couplings are partially symmetric,

i.e. J~j
= J]~ + kJ(~, where the J]~'s are symmetric (J]~ = Jj~), the J~'s are antisymmetric

(J(~
=

-J]]) and where the Jl's and the J~'s have the sonne expectation (J[)
=

(JQ)
=

o

j2
and variance Var (J]~ ii

=
Var (J] ))

=
~.

We also assume that they are mdependent
J N 1+ k

The parameter k controls the asymmetry of the couplings; for k
=

o the couplings are symmetric
while for k

=
1 we recover the case studied in this paper. The correlation between J~j and Jj~

is given by:
1_ ~2 j2

~°~ ~~
'

~
~

~~ ~
~ l + k~ N

~~'~~
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N

Retuming to (7) we see, that the term ~ JjoJojf'(tlj(to +1)) leads,
m

thermodynamic limit,

J=i
~2

to a contribution proportional to J~
~, that vamshes only in the asymmetric case k

=
1

1+ k
In fact ùo(t) becomes a stochastic process:

where q is a Gaussian process and G(to +1) is the average linear response function to the cavity
field u(to + 1) 1-e- G(to +1)

=
f'(u(to +1))). Equation (9) is similar to that established by

Crisanti and Sompolinsky for a system~of
continuous spins [38] with continuous time dynamics.

We sec that a feedback term J~ ~~G(to +1)fo(to) appears m the case k # 1. This term
1+ k

corresponds to the fact that the neuron 0 at time to acts on the neuron at time to +1; these

neurons act in tum on the neuron o at time to +2. Then the neuron o at time to + 2 feels its own

influence at time to. This influence disappears in the thermodynarnic limit only for asymmetric
couphngs. In the other cases the dynamics is drastically diiferent from the asymmetric case(~)

because of the presence of the feedback, non-Markovian term J~
~

G(to + 1)io(to). This
1+ k

term implies that the evolution of each neuron depends on the whole history of the network.

This implies the failure of the local chaos hypothesis. This might aise lead to a loss of self

averaging.
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