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Abstract. We consider elastic reflection and transmission of electrons by
a

disordered sys-

tem characterized by a 2N x 2N scattering matrix S. Expressmg S in terms of the N ra-

dial parameters and of the four NM N unitary matrices used for the standard transfer matrix

parametrization, we calculate their probability distributions for the circular orthogonal (COE)
and unitary (CUE) Dyson ensembles. In this parametrization, we explicitly compare the COE-

CUE distributions with those suitable for quasi-id conductors and insulators. Then, returning
to the usual eigenvalue-eigenvector parametrization of S,

we study the distributions of the scat-

tering phase shifts. For a quasi-id metallic system, lriicroscopic simulations show that the phase
shift density and correlation functions

are
close to those of the circular ensembles. When quasi-

id longitudinal localization breaks S into two uncorrelated reflection matrices, the phase shift

form factor b(k) exhibits a crossover from a behavior characteristic of two uncoupled COE-CUE

(small k) to a
single COE-CUE behavior (large k). Outside quasi-one dimension, we find that

the phase shift density is no longer uniform and S remains nonzero alter disorder averagmg. We

use perturbation theory to calculate the deviations to the isotropic Dyson distributions. When

the electron dynamics is no longer zero dimensional in the transverse directions, small-k
correc-

tions to the COE-CUE behavior of b(k) appear, which are relriiniscent of the dimensionality-
dependent non-universal regime of energy level statistics. Using

a
known relation between the

scattenng phase shifts and the system energy levels, we analyse those corrections to the universal

random matrix behavior of S which result from d-dimensional diffusion
on

short time scales.

l. Introduction

The discovery of universal conductance fluctuations [1-3] (UCF characterizing trie sensitivity

of trie conductance of small metallic samples to a change of trie Fermi energy, magnetic field

or impurity configuration) bas geuerated a sustained interest in quantum mesoscopic physics

(*) Unité de Recherche des Universités Paris XI et Paris VI associée au
CNRS.
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since the mid eighties. Mesoscopic systems have a size of the order of the electron phase-
coherence length L~, 1-e- a scale intermediate between single atoms (microscopic) and bulk

solids (macroscopic). First, it is in terms of quantum interference between diiferent multiple
scatteriug paths that UCF has been understood [2, 3]. The umversality of the phenomenon
(reproducible fluctuations of order e~ /h, independently of the mean conductance) quickly lead

physicists [4, Si to understand UCF as a signature of a more general universality resulting from

the eigenvalue correlations of random matrices.

The standard random matrix ensembles were introduced in the context of Nuclear Physics
[6-9] and later found to also descnbe the statistical properties of quantum systems whose

classical analogs are chactic [10,11]. Contrary to a microscopic approach where the system
Hamiltoniau H, scattering matrix S or transfer matrix M result from a more or less arbitrary
distribution of the substrate potential, random matrix theory (RMT)

assumes for H, S or M

statistical ensembles resulting from an hypothesis of maximum randomness, given the system
symmetries (time-reversal symmetry, spin rotation symmetry, current conservation) plus a few

additionnai constraints.

A direct relationship between conductance fluctuations and RMT comes from the Thouless

expression of the conductance

~2
G

=
N(E~)

,

(1.1)

given by the number of one-electron (~) levels N(E~) which lie within an energy bond of width

E~
=

Dh/L~ centered around the Fermi energy Ef. The Thouless energy E~ is the inverse

characteristic time for an electron to diffuse through the sample (of size L). The electron

diffusion coefficient is D
=

ufl/d, where vf is the Fermi velocity, the elastic mean free path,
and d the spatial dimension of the sample. Fluctuations in the number of levels within E~ are

therefore related to conductance fluctuations. The analysis of fluctuations in the spectrum of

non-interacting electrons in metallic partides was initiated by Gorkov aud Eliashberg [12]. The

relevance of RMT was proved by Efetov [13] and complemented by Altshuler and Shklovskii [4]
who noticed non-RMT behavior for energy separations larger thon E~. Using a diagramatic
perturbation theory for the density-density correlation function in the weak disorder limit

kl » 1 (k is the Fermi wave vector), they showed that the correlation between energy levels is

correctly described by the universal RMT laws for energy scales smaller thon E~, but is weaker

(and dimensionality dependent) beyond Ec(~).
Pionieered by Imry [Si, an alternative approach relating UCF and random matrix theories is

based on the Landauer formula, which gives the conductance in terms of the total transmission

coefficient of the sample (at the Fermi energy), considered as a single, complex elastic scatterer.

For a twc-probe measurement where the disordered sample is attached between two perfect
reservoirs with an infinitesimal diiference m their electrochemical potentials, the conductance

(measured in units of e~/h) is

g =
Tr[ttt] (1.2)

The transmission matrix t con be expressed in terms of the transfer matrix M, for which a

standard random matrix theory ("global approach") has been developed [14,15]. A set of N

(~)Throughout this work we will treat spinless electrons and therefore
we

will not write spin-
degeneracy jactons.

(~) This limit oi the universal RMT laws
is

specifically denved ignonng electron-electron interaction.
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real positive parameters describing the radial part of the 2Nx 2N transfer matrix M (precise
definitions are given m the next section) are trie relevant "eigenvalues" in this approach, and

their probability distribution is

P(lÀal)
= exP (-fl7i(lÀal))

,

(13)

N N

7i(lÀal)
"

£ '°g lÀa Àbl + £ V(Àa) (1.4)
a<b a=i

This is trie usual RMT Coulomb gas analogy with logarithmic pairwise interaction, a system
dependent confining potential V(À), and an inverse temperature fl

=
1, 2,4 depending on trie

system symmetries. This distribution corresponds to trie most random statistical ensemble for

M given trie average density p(À) of radial parameters, which controls trie average conductance

(g). In this maximum entropy ensemble, V(À) and p(À) are related by an integral relation m

trie large N-limit [16]:

C is a constant, and to leading order in N this mean-field equation expresses trie equilibrium
of a charge at resulting from its interaction with the remaining charges and the confining
potential.

In this work we examine the statistical properties of another matrix related to quantum
transport in disordered systems: the scattering matrix S.

First, the relation between M and S is straightforward, since M con be expressed in terms

of the reflection and transmission submatrices which define S. This allows us to show that

the À-statistics characterizing the Dyson ensembles coincides with a "global approach" for

M, given a particular confining potential V(À). Using this equivalence, the detailed proof
of it being given in this work, the quantum transport properties associated with the circular

ensembles bave been obtained [17], including trie weak-localization eifects and the quantum
fluctuations of various linear statistics of trie À-parameters (conductance, shot-noise power,

conductance of a normal-superconducting microbridge, etc). This equivalence bas also been

derived by Baranger and Mello [18], and bas been confirmed in their numerical simulations of

chaotic billiards.

Second, smce S is unitary, its 2N eigenvalues (exp (19m)) are just given by the 2N phase
shifts (9m). In the Dyson circular ensembles, where all matrices S with a given symmetry

are equally probable, the phase shift statistics follow trie same universal level correlations thon

in the Gaussian ensembles of corresponding symmetry. The applicability of Dyson circular

ensembles for chactic scattering bas been established by the pioneering work of Blümel and

Smilansky [19], as for as trie twc-level form factor for trie phase shifts is concerned. Further

evidence comes from numerical studies of 2 x 2 matrices describing trie scatteriug through

chactic cavities [20].
However, a ballistic chaotic cavity, with a conductance of order N/2 and where the electronic

motion is essentially zero-dimensioual after a
(short) time of flight, diifers from a disordered

conductor or insulator. The introduction of bulk disorder in the dot reduces the conductance to

smaller values of order Ni IL (L »
,

metallic regime) and enhances the time interval iii which

the electron motion depends on system dimensionality. Trie diifusive motion of trie carriers

after a
(short) characteristic time Te limits (rather thon improves) the validity of the standard

RMT distributions. The subject of this study consists precisely m understanding this apparent
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paradox: the fact that the introduction in a cavity of bulk disorder drives the statistics of S

away from the circulai ensembles. For this p1÷rpose, we extensively study disordered systems

where non-interacting electrons are elastically scatterered by microscopic imp1÷rities contained

m a rectangular dot of various aspect ratios. We derive 1÷seful relations between diiferent

parametrizations of H, M and S, involving the energy levels (E,), the radial parameters (Àa)
and the phase shifts (9m).

The paper is organized as follows. After presenting the basic definitions of oui mortel and the

relationship between S and M, we derive (Sect. 3) trie metric of S in trie polar decomposition,
and therefore trie probability distribution of trie radial parameters assuming a Dysou distri-

bution for the scattering matrix iii trie time-symmetric case (the case without time-reversal

symmetry is worked in Appendix D). In Section 4 we use this parametrization to discuss the

diiferences and similarities between the circular ensemble distributions and those suitable for

quasi-one dimensional disordered systems. In Section 5 we start the statistical analysis of the

phase shifts of S for long conductors with weak disorder. In Section 6 we study the scattering
phase shifts in quasi-là insulators and show that their correlations are well described by those

of two uncoupled circular ensembles. In Section 7 we calculate by diagrammatic perturba-
tion theory trie mean values of trie S-matrix, which are needed to understand trie phase shift

anisotropy fo1÷nd outside trie weak disorder, quasi-là limit. In Section 8 we present numerical

results for geometries other than quasi-one dimensional strips (1.e. squares and thin slabs) and

show that, after trie spectrum is unfolded, there is a rougir agreement with trie circular ensem-

bles, though noticeable discrepancies are visible in trie number variance. These deviations are

analyzed in Section 9, using the known deviations of metallic spectra from the R-M.T. behavior

and exploiting a relationship betweeu scatteriug phase shifts and the energy levels (Appendix
B). Appendix A gives a summary of the methods and results of the numerical simulations,
and in Appendix C, we use a semidassical approach to complement our understauding of the

res1÷lts, induding the meaning of the Wigner time.

2. Scattering, Transfer, Transport and À-Parameters

Using only the system symmetries (current conservation, time reversai symmetry, spin rotation

symmetry) one can show that both S and M can be expressed in terms of the N radial

parameters (Àa) of M and 4 (2 in the presence >of time reversai symmetry) N x N auxiliary
unitary matrices. In this parametrization, we shall show the similarities and the diiferences

between the distributions implied by the circular ensembles and those describing in the weak

scattering limit long quasi-là disordered conductors and insulators. To make concrete our

explorations, we introduce in what follows the essential elements of the particular microscopic
mortel on which we test the validity of Dyson circular ensembles.

We consider an mfinite strip composed of two semi-infinite perfectly conductiug leads of

width L~ connected by a disordered part of same width and of longitudinal length L~ (Fig. l).
Assuming non-mteracting electrons and hard-wall boundary conditions for trie transverse part
of the wavefunction, the scattering states m the leads at the Fermi energy Ef

=

h~k2 /2m sat-

isfy the condition k2
=

(n7r/L~)2 + k(, where k is the Fermi wavevector, n7r/L~ the quantized
transverse wavevector and kn the longitudinal momentum. The various transverse momenta

labeled by the index n
(n

=
1,...,N) which satisfy this relationship with k( > 0 defiue the

N propagating charnels of the leads. Since each channel can carry two waves travelling m

opposite directions, asymptotically for from trie disordered region trie wave function can be

specified by a 2N-component vector on trie two stries of the disordered part. Iii each lead trie
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A C

B y ~

Fig. l. Typical sample geometry where the disordered scattering is confined to trie region 0 <
z <

L~ of the
wave

guide. A and D are
the amplitudes of the incomiug flux, B and C

are
the outgoing

amplitudes.

first N components are trie amplitudes of trie waves propagating to trie right and trie remainiug
N components are trie amplitudes of trie waves travelling to trie left.

i~I(x,
Yj=

( j
iA»e~kn~ + B»e-~kn~) <»(y)

,

(~.ia)

4ÎII(X, il)
=

£ £
(Cne'~"~~~~~l + Dne~'~"~~~L~)) ~b~(y) j2,ib~

~=~
kn

The transverse wavefunctions are #n(g)
=

fi sin(7rng/L~). Trie normalization is chosen

m order to bave a unit incoming flux in each channel. Trie scattering matrix S relates trie

mcomiug flux to trie outgoing flux

1$ =S (2.2)

S is a 2N x 2N matrix of trie form

S=
Î

(2.3)
~

The reflection (transmission) matrix r(t) is an N x N matrix whose elements rôa (tôa) denote

trie refected (transmitted) amplitude in channel b when there is a unit flux incident from trie

left in channel a. Trie amplitudes r' and t' bave similar meanings, except that trie incident

flux comes from trie right(~). Current conservation imphes that S is unitary. Note that, with

trie convention we bave taken, S for a perfect (non-disordered) sample at zero magnetic field

is not trie identity matrix but is characterized by transmission submatrices which contain pure

phases tôa
"

t[[
=

ôaô exp (ikôL~).
Trie 2Nx2N transfer matrix relates trie flux amplitudes on trie left-baud side of trie disorder

part with those on trie right:

l~
=M

~ (2.4)
D B

Just as for S, we can wnte M in terms of four NXN blocks

M
=

l~~ ~~ (2.5)
m3 m4

(~)Throughout this work we
shall frequently represent 2N x 2N matrices in terms of their NM N

blocks. We reserve
capital letters for 2Nx2N matrices, while calligraphic and low-case letters are

used

for NM N matrices.
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The reflection and transmission matrices of S con be expressed in terms of trie block matrices

m, of M. Introducing trie polar representatiou [21, 22] of M, we bave:

r =

-m[~m3
"

-u~~)Ru~~)
,

(2.6a)

t
=

(m()~~
=

ul~)Tu~~)
,

(2.6b)

r'
=

m2mj~
=

u~~)Ru~~)
,

(2.6c)

t'
=

ml
=

u(~)Tu(~)
,

(2.6d)

where u(~) (l
=

1,...,4) are arbitrary N x N unitary matrices. R and T are real diagonal
Nx N matrices whose non-zero elements (labeled by only one index) are trie square roots of

trie reflection and transmission eigenvalues, which can be expressed as a function of trie real

positive diagonal elements Àa (a
=

1,.
,

N) of trie NXN diagonal matrix characterizing trie

radial part of M:

à 1/2

~~ ~l +~Àa
~~'~~~

i
1/2

~
1

+ Àa
~~'~~~

Iii this À-parametrization, M and S can then be written as

M
=

[~~ ~i~~ (Iji)i~/~
~(~[(i/~ [~ ~ij~

,
~~.~~

~(3) o _~ ~- ~(l) o
~

~ ~(4) ~- ~ ~ ~(2) (~.~)

Since ttt
=

uiT~u), trie dimensionless conductance con be expressed as

~ i~
1 Àa

~~'~~~

The conductance is therefore a hnear statistics of trie radial parameters (Àa) of M. Note that

s1÷ch a simple relationship does not exist between g and trie scattering pliase-shifts (9a), since

trie relation between trie eigenval1÷es of S and those of ttt depends on trie eigenvectors of S

and on trie u-matrices.

In trie absence of a maguetic field there is time-reversal symmetry, trie S-matrix is symmetric
(S

=

S~) and trie polar decomposition bas only two arbitrary 1÷nitary matrices since

u(3)
~

~jl)T j~ 11 ~~

u14j
~

~j2)T j~ ~~~~

In this case trie number of independeut parameters is to 2N2 + N. We bave N2 parameters
for each of trie two N x N unitary matrices and N for trie diagonal matrix À. Without time-

reversal symmetry (unitary
case with spin degeneracy) trie number of indepeudent parameters

of S land M) is 4N2 (trie N extra parameters of trie polar decompositions (2.9) and (2.8) are

due to trie fact that they
are not unique ils] ). In trie symplectic case occurring when there is

a strong spin-orbit scattering m trie disordered part and no applied magnetic field, trie spin
degeneracy is removed and each matrix element becomes a 2 x 2 quaternion matrix, which

doubles trie size of M and S, but ul~) and u(~)
are also given [22] in terms of u(~) aud u(~) and

trie bave a twofold degeneracy (Kramers degeneracy).
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3. Invariant Measure of S in the Polar Decomposition

In this section we calculate trie invariant measure p(dS) of S in terms of trie radial parameters
(Àa) and trie matrices u~~) We present here trie time-symmetric case (fl

=
1), while trie

unitary case (fl
=

2) relevant when a magnetic field is applied is considered in Appendix D.

Our calc1÷lations bave recently been extended by Frahm [23] for trie symplectic case (fl
=

4).
In trie orthogonal case S is 1÷nitary symmetric and can be decomposed as:

s=wTzw=uTru=YTY. (3.i)

The first equality simply means trie diagonalizatiou of S and introduces trie 2N phase shifts

of S through trie diagonal elements exp(19m) of Z and a 2N x 2N orthogonal matrix W

containing trie eigenvectors of S. Trie second equality results of trie polar representation of S

where trie real matrix r and trie block-diagonal unitary matrix U are giveu by equation (2.9)
with conditions (2.Il). Trie last decomposition holds for any unitary symmetric matrix and

introduces a 2N x 2N unitary matrix Y which is not unique, but specified up to an orthogonal
transformation. Following Dyson [7], trie measure of

a
neighbourhood dS of S is given m

terms of trie infinitesimal variations dÙ~j of trie matrix elements of a real symmetric matrix

dû defined by:

dS
=

Y~ (idù) Y
,

(3.2)

2N

p(dS)
=

fl dM~j (3.3)

>ij

This definition is independent of trie particular choice of trie unitary matrix Y and we use this

freedom of choice to take a convenient Y for expressing
dû in trie À-parametrization. To this

end, we note that r is real symmetric and unitary, with eigenvalues +1 and diagonalizable by

an orthogonal transformation O:

r
=

oT D o, (3.4)

D
=

~
°

-

Il
(3.5)

The NXN blocks of O are diagonal matrices given by

~~ v5~
'

~~ Vi~ ~~~~

Writing trie diagonal matrix D as
F2, with

F
=

.j
,

(3.7)
~

one can write 5 as
Y~Y, with

~ ~ ~ ~ Î~ÎÎ~~I -iÎÎ~~~ ~~'~~
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Since Y is unitary, its infinitesimal variations can be expressed as

dY
=

ôY Y, (3.9)

where trie matrix ôY is antihermitic. Analogously, for trie block components of U we can write

du(~l
=

ôu(~) u(~)
,

ôu(~)
=

da(~) + i dsl~)
,

1=1, 2. (3.10)

da(~) (ds(~)) are real antisymmetric (symmetric) Nx N matrices. Trie Haar measure p(du(~l)
for trie unitary matrices u(~l satisfies p(du(~))

=
fl~ dsl) fl~~~daf/dsf/. Therefore trie in-

finitesimal variations of Y and S are given by

~ i (dQ P d~' ~~
+ôY

" j (dQ P dP Q) ~

~
i

Q~ÎÎÎ~~IÎ-Î'~ÎÎÎ~~)~)
~ ~Î~ôÎÎÎ~~~~ÎÎÎÎÎÎ~Î'~~

'

~~'~~~

dS
=

Y~(ôY ôY*)Y
=

Y~(idù)Y (3.12)

This gives us trie real symmetric matrix dû in terms of the radial parameters (Àa ), the unitary
matrices u(~) and their infinitesimal variations (dÀa) and ôu(~). We just need to calculate a

Jacobean which can be decomposed as the product of three determinants,

(3.13a)
p~ N

1
~ ~~

,

§ dÙa,a+N §
2/Ç(1 + ~a~

ama>à+N
dmôa+N =1 2

Il Il
da~~~da~~~ (3.13b)

j~~~'~
~~~~~'~~~ ij ~ Î~~~~~~~ j~ ~

~Î
~

Î~
~~~~~~

'

~ ~ ~~

(3.13c)
which eventually gives for the invariant measure of the symmetric unitary matrix S

~~~~~ §
(l +

a)3/~ §
l

/
Àa 1

/
Àô

~~~~~ ~~~"~~~~ ~~'~~~

in terms of the measure p(dÀ)
=

fl$~~ dÀa of the matrix and of the Haar measures p(du(~))
of the matrices u(~)

4. Dyson Circular Ensembles and Quasi-lD Disordered Systems

For the Dyson circular ensembles the number of S-matrices in a volume element dS of measure

p(dS) around a given S is just proportional to p(dS):

P(dS)
=

)
p(dS)

,

(4.1)
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V is a normalization constant. Using the À-parametrization,
one obtains that the matrices

u(~)
are independent of each other (except by symmetry relations) and distributed according to

the invariant Haar measure on the unitary group, while the N parameters Àa are statistically
mdependent of the u-matrices and have a joint probability distribution which can be expressed

m
the usual Coulomb gas analogy as a Gibbs function

P(lÀal)
= exP (-fl7i(lÀal)) 14.2)

The symmetry parameter fl plays the role of an inverse temperature and the effective Hamil-

tonian 7i is characterized by a logarithmic pairwise interaction and a one-body potential:

N N

7i(lÀal)
"

£ f(Àa> Àb) + £ V(Àa) (4.3)

a<b a=i

/(à~, à~)
=

-iogjà~ à~j
,

j4.4)

VIA)
- IN + ~ù~l '°~ ii + À) 14.5)

This Coulomb gas analogy characterizes the orthogonal, unitary and symplectic ensembles

which ailler not only by the value of the "temperature" fl~~, but also by the presence of
a

small fl-dependent correction to the leadiug behavior of VIA) in a large N-expansion. It

is remarkable that the pairwise interaction for the À-parameter is the same as in the global
maximum entropy approach to the transfer matrix ils], while V(À) diifers

m two important

aspects: it is essentially proportional to log instead of log~ [24] for large values of À, and the

prefactor is just the number of modes N instead of the classical conductance Nl/L~. These

diiferences are not surprising since forward and backward scatterings are essentially put on the

same footing in the circular ensembles, leading to a total transmission intensity of the order of

the total reflection intensity, T m R m
N/2 (up to weak-localization corrections) [17,18]. For

a disordered conductor or insulator, the refection R is much larger than the transmission T.

Clearly, bulk diffusion characterized by an elastic mean-free-path cannnot be described by the

circular ensembles, which are appropriate for systems where an injected carrier is subjected to

a chactic dynamics before finding (with equal chance) one of the two injection leads. However,

as shown by Beenakker [25], in the large N-limit, the density-density correlation function

(and therefore the variance of any linear statistics hke the conductance) depends only on the

pairwise interaction, and net on the particular form for V(À). Consequently, bath the circular

ensembles and the global maximum entropy approach to the transfer matrix yield identical

UCF [26] values 2/(16fl), slightly diiferent from the perturbative microscopic result [2,3] for

quasi-là disordered conductors 2/(lsfl).
In the polar representation of S, one can precisely see the diiference between the circular

ensembles and those appropriate for quasi-one dimensional disordered systems. For this, we

just need to recall what we know from another statistical approach introduced for arbitrary N

by Dorokhov [27] from microscopic considerations and by Mello et ai. [21,28] from
a maximum

entropy assumption for the infinitesimal transfer matrix of the building block of a quasi-là

serres. These works are based on an isotropy hypothesis: it is assumed that the u-matrices

are distributed with the Haar measure on the unitary group and statistically independent from

the radial part of M (see Eq. (2.8)). This limits their conclusions to quasi-one dimension and

yields a
Fokker-Planck equation for P((Àa )) which implies the same UCF and weak-localization

corrections for quasi-là conductors as those given by diagrammatic calculations. The evolution
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of P((Àa)) witl the length L~ of the disordered part is given by a heat equation where the

Laplacian becomes trie radial part of the Laplace-Beltrami operator on a space of uegative

curvature. Using Sutherland's transformation, Beenakker and Rejaei [29] have mapped this

diffusion equation on to a Schrôdinger equation (with imagmary time) of a quantum set of

point-like partiales free to move on a half fine (the positive part of the real axis) within a certain

potential. For arbitrary values of fl, these partiales have a pairwise interaction, attractive for

fl
=

1 and repulsive for fl
=

4, making it diilicult to find the solution. Fortunately, this

interaction vanishes for fl
=

2, and the solution of the diffusion eq1÷ation is red1÷ced to an

exactly solvable quantum N-body froc fermion problem. This gives for the unitary case a

pairwise interaction

f(Àa Àô)
"

In )Àa Àô) In ~arcsinh~
(/~) arcsmh~ (fi)

,

(4.6)
2 2

which reduces to the usual logarithmic interaction assumed by the global approach for )Àa

Àô) < 1, but which is halved if )Àa Àô) » 1 in the quasi-là dilfusive or localized limit. This

discrepancy is responsible for trie slightly diiferent UCF values characterizing ballistic quantum
dots with chaotic dynamics and quasi-là disordered conductors.

In the localized regime, the global and local approaches give identical symmetry dependence
of the localization lengths, though the (log) conductance fluctuations ailler by a factor 2 in

the quasi-là localized limit [30]. The latter point again is consistent with the halving of the

pairwise interaction f(Àa Àô) for large eigenvalue separations given by the local approach. For

metals aria insulators far from a quasi-one dimensional shape, a more dramatic shrinkage of the

validity of the universal RMT-correlations has been observed [24]. This means that transverse

diffusion (or
even more transverse localization [31]) yields a more significant reduction of the

RMT pairwise interaction than that obtained in quasi-one dimension by Beenakker and Rejaei.
To address this problem, we return to the study of the more familiar scattering phase shifts of

S.

5. Scattering Phase Shifts in Quasi-lD Metals and a Single Circular Ensemble

As discussed in the previous section, when applied to quasi-là conductors, trie circular ensem-

bles give trie right statistics for trie u-matrices, and locally trie correct interaction f(Àa, Àô), but

certainly not trie appropriate confining potential V(À). Using now trie eigenvalue-eigenvector
parametrization of S, we study trie phase shift distribution in trie case of weak disorder and

quasi-là samples. We first introduce trie basic notation, then write trie expected universal

correlation for Dyson ensembles, which we compare to our numerical results.

Since the S-matrix is unitary, its 2N eigenvalues are given by 2N phase shifts 9m. Following
Blümel and Smilansky [19] we write the phase shift deusity as

M
co

p(9)
=

~ (ô(9 9m)j
= ~

~
exp (-in9)jTr S"1

,

(5.lj
m=1

~
n=-co

where the angular brackets mdicate average over the ensemble of disordered sarnples and M
=

2N is the dimension of S. The two-point corielation function R2 is defined by

M

R2(61,62)
=

~j (à(61 6m)à(92 6m,)) (5.2)

m#m'
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When the phase-shift distribution is uniform (p(9)
=

M/27r) the two-point correlation function

depends only on the diiference
J~ =

92 91,

R2(11)
"

) f
((()Tr S'~)~) l) exp (inJ~) (5.3)

The twc-level cluster function is defined, for the reduced variable r =
J~M/27r, in the limit

where the number of phases M goes to iufinity,
as:

Y2(r)
=

lim É~~(r)
,

(5.4)
M-ce

~~~~ ~ÎÎ~ l~Î~ ~~
~ÎÎ~~

~~'~~

Using expression (5.3) we bave

t'~(r)
=

ù
Ii 2

É
se

Cos (~]~)
,

(5.6)

»=1

where Fourier components se are giveu by

se
=

((jTr snj2) -1 (s.7)

The argument r of trie cluster f1÷nction goes from -co to +co, and trie Fourier transform of

Y2, trie two-level form factor (TLFF), is given by

b(k)
=

j~
dr Y2(r)exp(27rikr) (5.8)

Comparing trie Fourier transform of Y2 and trie Fourier coefficients of É~~ in trie large M limit,

we can identify

se
m

b(n/M)
,

M » (5.9)

For matrices S belon#ng to Dyson ensembles, trie distribution of phase shifts is given by
trie Co1÷lomb gas analogy:

P(19al)
=

j
exP (-fl7ilÙal) (5.i°)

where trie effective Hamiltonian is

M

7i((9a))
=

£ log )e'°a e~°b) (5.Il)

a<b

The d1÷ster f1÷nctions of trie circ1÷lar ensembles bave 1÷niversal forms which depend ouly ou

trie system symmetries. For trie 1÷nitary and orthogonal ensembles là is an even f1÷nction of its

argument and bas trie form [9] (~)

(~)We follow the standard notation: Si(z)
=

/~ "~~ dy; Ci(z)
=

C + Inz + /~ ~°~~ ~
dy;

o
Y o

Y

e(z)
=

-1/2, 0,1/2, for
z < 0, z =

0, z > o respectively; C
=

0.5772.. is
the Euler constant.
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~~
sin 7rr

~

5 12a)y~ (r)
=

7rr

~Î~(T)
"

~~))~)
(~ll'~T) ~'~~(T))

~~~)~ )~(Î) (~.~~~)
~

The corresponding form factors are also even functions of their argument, and bave trie

universal forms:

b~~(k)
=

Il k if k §

° if k 2 '

(5.13a)

Il 2k + k In (1 + 2k) if k § 1

boE(k)
= ~ j (2k

+
1j ~ ~

(5.13b)
~ 2k 1

We check for a quasi-ld metal (Fig. 2) trie agreement between trie numerically generated
Fourier components se and trie universal two-level form factors b(k) of equation (5.13),

assum-

ing equation (5.9). Trie S-matrix of disordered strips described by a tight-binding Anderson

model of 34 x 136 sites (trie detail is given in Appendix A) are numerically eval1÷ated. Averag-
iug involves sooo diiferent impurity configurations. Trie Fermi energy in units of trie constant

off-diagonal hopping term is E
=

-2.5, trie number of propagating modes is N
=

14 and

therefore the dimension of S is M
=

28. A relatively low wave-vector (k
=

1.32 in Anderson

units) is taken in order to avoid lattice eifects, since we will be interested in the comparisou
between our simulations and analytical approaches (diagrammatic perturbation theory and

semidassical approximation) assuming a continuum limit. One finds a rather good agreemeut
for the time-reversai symmetric case

(run Rl, no magnetic field, COEl-like) and for the non

time-reversal symmetric case (run Fl, with magnetic field, CUEl-like). The distribution of the

t~~fi

u Ri
~~ô Fi

*a
Ri~

p' £
~ >o.5

pi,? ~à
~

n~
'

°o
o.5 t-o

à/zn
~l.°o

o-s io là
n/M

Fig. 2. Phase shift form factor (Eq. (5.7)) for quasi-là conductors (Upper inset) without magnetic
field (R1) and with <I<D

=
2 (Fi). The large-M OE and UE values are given by thick solid and

dashed fines. The number of impurity configurations
is

NS
=

5000, the aspect ratio
is

AR
=

4, the

disorder
is

W =1 and the uumber of propagating modes is
N

=
M/2

=
14. Lower inset: histograms

oi the phase shift distribution normahzed by trie uniform value po #
M/2~. The R1 distribution is

off-set by -1/3, while the Fi distribution
is

off-set by -2/3.
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phase shifts (inset) is quite uniform with and without magnetic field. The disorder in the

samples is very weak (W
=

1 in units of the hoppmg term) giving an elastic mean-free-path

=
o.7L~, and an average conductance (g)

=
4.1.

We condude that the phase-shift density and correlations for a quasi-ld conductor are well

approximated by the corresponding COE-CUE density and correlations. Since it is clear m

the À-parametrization that a quasi-ld conductor cannot be seen as a member of a COE-

CUE ensemble, we suspect that this numerical result merely indicates a good approximation,
and that the main non-COE-CUE behavior of S for a quasi-ld conductor must occur in the

distribution of its eigenvectors. As we will see iii the following sections, the good agreement
with the universal correlations gets poorer as we increase the disorder, enter the quasi-ld
localized regime, or go outside the quasi-ld geometry.

6. Scattering Phase Shifts in Quasi-lD Insulators and Two Uncoupled Circular

Ensembles

The approximate COE-CUE behavior which we found in the previous section cannot remain m

the presence of quasi-ld localization for obvious reasons: g < 1 and a typical matrix element

of the reflection matrices r and r' is much larger than those of t and t'. The matrix S can

then be thought as two diagonal blocks, r and r', weakly coupled by t and t'. Using the polar
decomposition, equation (2.9), and the fact that the radial parameters (Àa)

are exponentially
large m the localized regime, one can write

r =

-u(~)u(~) + O(À~~)
,

(6.la)

r'
=

u(~lu(~l + O(À~~) (6.lb)

A strong quasi-ld localization imphes that S reduces to two uncoupled N xN unitary (sym-
metric in the presence of time reversai symmetry) matrices and isotropy means that each of

them is invariant under orthogonal (unitary) transformation. The phase shifts associated to r

and r' will then be described separately by two uncoupled COE-CUE ensembles. For a weaker

quasi-ld localization, we have a cross-over behavior between a set of 2N phase shifts with

approximately COE-CUE correlations to two uncoupled sets of N exactly COE-CUE phase
shifts. We underline that the observed COE-CUE phase shift distribution for the quasi-ld

conductor is less trivial than the COE-CUE character of the reflection matrices for strong
quasi-ld localization which only results from the isotropy assumption. A similar decouphng of

the S-matrix in two nearly independent blocks have also been discussed recently by Borgonovi
and Guarneri [33].

If Y2(r) and b(k)
are the two-level duster function and the two-level form factor of two

independent ensembles, the corresponding functions for the combined ensemble are given by [32]

YJ(r)
=

Y2(r/2)
,

(6.2)

b~(k)
=

b(2k) (6.3)

This expected crossover situation towards two uncoupled COE-CUE, for sample lengths of

order of the localization length, is indeed observed in Figure 3 where we show the Fourier

components se with and without magnetic field. For the very long, weakly disordered samples

(Rlo, diamonds, AR
=

30, W=1, N=14) the phase-shift distribution (inset) is as homogeneous

as for the quasi-ld conductor. The low harmonics of Y2 (small n values of se) behave as

those of two uncoupled COE-CUE, reflecting the statistical mdependence of the short-length
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Filled ircles to strong
localization,

while iamouds represent a quasi-id
tal-insulator

crossover (L~ m () with weak disorder. Histograms in
the

insets show

distributions with an ff-set
of -1/3 for the troug

disorder
case and an off-set of -2/3

The thick solid and
dash fines in a (b) represent

respectively
the

large-M

form
factor

of one OE (UE)

and of the uperposition of two
OE (UE).

rajectories to reflection.
harmonics

behave more like

CUE, mdicating that localization is not suilicient for ecoupling
trie

long trajectories.

better understanding of this
ifect, one can use trie

emidassical picture developed in

C, where for
relatively

small values of n, se is given in
terms

of

ample which bit n times trie ertical
imiting hard

alls: small alues of n are related with

short-reflection trajectories which stay
close to each of trie sample edges and do

not explore

trie other extreme of trie ample (two coupled OE-CUE behavior). On trie ontrary, for

trie large values of n, trie ontribution of trie transmission rajectories cannot be guored,

removes
trie statistical of trie two

eflection
atrices.

Increasing trie system length is time
consuming

for trie

can more easily achieve by mcreasmg trie
strength

of trie disorder
potential

keeping trie geometry fixed. In this case we are able to obtain a more

extending to higher harmonics trie haracteristic behavior of two ndependent
OE-CUE

(R4-

F4,
filled

cirdes, AR = 4, W = 4, N = 14).
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disorder, we note an additional eifect: trie phase-shift density is no longer uniform. We will

discuss this departure from isotropy in detail in trie next section. For trie purpose of trie present
discussion we only indicate that we numerically unfold trie phase shift spectra to a rescaled

spectrum of uniform density. Then, one can see in Figure 3 a rather complete statistical

decoupling of trie two sample edges. Let us also note that trie small n behavior of se is now a

little above what we expect from two uncoupled COE-CUE, a point which will be considered

in Section 8.

In order to study more precisely how trie transition from trie metallic case (COE or CUEl-like

cases) to trie localized regime takes place, we calculate trie number n(r) of levels contained in

an interval of length
r

for trie unfolded spectum of trie phase shifts and its variance (number
variance)

z~(r)
=

((n(r) r)~)
,

(6.4)

which can be obtained directly from trie numerical data and compared with universal forms

of trie standard ensembles. Using equation (5.12), one gets for trie unitary and orthogonal

cases [9]

Z[~(r)
=

(ln (27rr) + C + 1 cos (27rr) Ci(27rr)) + r Il ~ i(27rr))
,

(6.5a)
7r 7r

~àE(~)
"

~~~E(~) +
~~~)~~) ~~)~~

,

(6.5~)
~

with trie large-r behavior

Zj~(r)
=

[
(In j27rr) + C + 1) + O(r~~

,

(6.6a)

Z$~(r)
=

(ln (27rr) + C + 7r~ /8) + tJ(r~~ (6.6b)
7r

For trie superposition of two independent ensembles, one gets [32]

zj(r)
=

2 z2(r/2) (6.7)

Since our original phase shift spectrum is bounded between 0 and 27r, 22(r) folds bock to 0

for
r =

M as trie number of phases in o < 9 < 27r (or o < 8 < M) is always M. Hence our

comparisons between our numerical data and equations (6.5) (6.7) are meaningful for
r « M

and we focus our attention to intervals o < r < M/3.
Iii Figure 4 we show how trie number variance 22(r) changes from trie metallic to trie

localized regime when we increase disorder or trie sample length. If disorder is increased, we

obtain a continuous transition from trie COE case towards less rigid spectra and trie phase shift

density develops a more and more non-uniform structure. Trie strength of trie local disorder

Dot only decouples trie right and left reflections, but also introduces in trie transverse direction

a
dimensionality-dependent dynamics, which breaks isotropy. Trie number variauce cari trier

exceed that of two uucoupled COE.

When disorder is small, and localization is achieved by increasing trie system length, trie

transverse dyuamics remaius essentially zero dimensional, S is isotropic and trie number vari-

ance mdicates a cross-over from approximately a single COE for trie 2N phase shifts of S

(quasi-ld conductor) to two decoupled COE-like sets of N phase shifts associated to right and

left reflections.
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Fig. 4. Number variauce, with (a) and without (b) time-reversai symmetry, as we
approach trie

localized regime by increasing the disorder or the system length. Thick solid fines correspond to

the number variance
in

the orthogonal (unitary) ensembles, equation (6.5), while thick dashed fines

correspond ta the number vanance of the superposition ensembles, equation (6.7). White symbols
show the approach to the quasi-id localized regime by mcreasing the length keeping the disorder weak

(W
=

1): AR
=

4 (squares), 10 (circles) and 30 (diamonds). Filled symbols show the approach to the

localized regime by mcreasmg the disorder keeping the geometry fixed (AR
=

4), W
=

2 (triangles),
4 (circles), 6 (squares).

When a magnetic field is applied, we obtain similar results, with a slightly improved agree-

ment with the CUE-like character: the applied magnetic field suppressing coherent interfer-

ences betweeu time reversed trajectories shifts trie sample towards trie metallic regime and

doubles trie locahzation length [30].

7. Average Scattering Matrix and Isotropy Hypothesis

Quasi-ld distributions are partly based on the isotropy hypothesis: 1-e- the unitary matrices
u(~l

are uncorrelated with trie radial part of S and distributed with trie invanant measure on

trie unitary group. This implies that trie ensemble average of S must be zero. This property
does not hold for high disorder and nov-quasi-ld geometry. For instance, a non-uniformity of
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trie phase shift distribution was noticed in trie previous section for a large disorder and occurs

for weaker disorder in shorter samples (squares and thin slabs). This source of discrepancy
with trie circular ensemble is studied in this section.

In trie circular ensembles, trie pliase-shift density is uniform and equal to po =
M/27r. This

means that (Tr S"i
=

o for all n # o. We will see that this is trot trie case for disordered

systems. Trie first harmonic of trie Fourier expansion of trie phase shift density p(9) is:

Pi(9)
=

Re lexp (-19)(Tr S)1
,

(7.i)

and (Tr Si
=

o is a necessary condition to obtain a uniform phase-shift distribution. Since

N

i~~ Si
"

L(iTaai + (~ia))
,

(7.2)

we can calculate pi (9) by evaluating trie mean values of trie diagonal reflection elements in

perturbation theory.
Trie transmission (reflection) amplitude from a mode a on trie left to a mode b on trie right

(left) for electrons at trie Fermi energy Ef
=

h~k~/2m is given by [34]

tôa
"

-ih(vavô)~/~
/ dg' / dg #( (g') #a (g Gk (L~, g'; o, g) (7.3a)

rba " ôa,b là(Vavb)~~~ /à§' /à§ ~ÎÎ(Ù') ~la(Ù) Gk(Ù,Ù'iÙ,Ù) (~.3~)

where va (vô) and #a (#à) are trie longitudinal velocity and transverse wavefunction for trie

mcoming (outgoing) mode a (b). For hard-wall boundary conditions, trie transverse wave func-

tions bave trie sinusoidal form presented in Section 2, un =
hk~z/m, k(

=
k~ (n7r/L~)2,

n =
a,b. We denote by m trie el§ective mass of trie electrons. For trie transmission (re-

flection) amplitudes Gk(r';r) is trie retarded Green function evaluated at trie Fermi energy

between points r =
(x,g)

on trie left lead and r'
=

(x',g')
on trie right (left) lead. Similar

expressions hold for trie transmission (reflection) amplitudes for modes coming from trie right
by usmg Gk(o, g'; L~, g) in equation (7.3a) and Gk(L~, g'; L~, g) in equation (7.3b) instead of

Gk(L~, g'; o, g) and Gk(o, g'; o, g) (and placing trie g abscissa at x =
L~, and g' at x =

o (L~)).
For a given impurity configuration, trie unaveraged retarded Green function Gk for electrons

at trie Fermi level in trie absence of a magnetic field satisfies

~~
i7) +

~~~~
+ V(r) +

rl)
Gk(r'; r)

=
à(r' r)

,

(7A)
2m 2m

with rl -
o+ We will assume that trie impurity potential V(r) is given by Ni uncorrelated

à-function scatterers (of strength u) randomly distributed in trie disordered strip.

V(r)
=

£
u

à(r Ra) ~
j~°'~

~ (~ a =
1,..

,

N, (7.5)~i
~

"'~
~

~

The standard technique used in disordered systems is to solve equation (7.4) in perturbation

theory and take trie ensemble average at each order of trie perturbation expansion [35,36]. As

indicated diagramatically m Figure 5, we merely expand to second-order in trie perturbation

expansion.
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Fig. 5. Diagrams of second-order perturbation theory for the average Green function used to

calculate the average of the reflection matrix elements.

The unperturbed Green functiou Gi~(r';r) for an infinite strip can be expanded iii the

base of trie transverse wavefunctions #~z, and trie n~~ coefficient is a oue-dimensional Green

function with an effective wave vector kn
=

k2 (n7r/L~)2 (k~z is real when n corresponds
to a propagating mode and pure imaginary otherwise),

G?~(x',~'>x,~)
"

ù ùexP(ikn'x'- x')<n(Y')<n(Y) (7.6)

The inclusion of Gf~ in (7.3b) just caucels trie ôa,à factor since in trie absence of disorder

trie modes propagate without auy reflection. Trie first aud second-order corrections are given
respectively by

(~(l)j ~~i(1)j _~
~

'llU "1
~~ ~2ikaLz (~ ~~j

~~ ~~ ~~ 2à~ kÎ

(2)j i(2)j ~ 'llU
~

"i
~~ 2ikaLzj (~ ~~j~~~ ~~~ ~ ~'~

2&~~
k] ~

'

where n, =
N,/(L~L~) is trie impurity density. For trie second-order correction we are only

giving trie leading term (in trie impurity paranieter un,, and in trie inverse mode number

1IN), and we bave cut trie sum over trie mternal momeutum (as usually clone for à-function

potentials). Trie highly oscillating phases e~'~a~z would be suppressed by inelastic scatteriug.
For translationally invariant (after averaging) systems trie perturbation theory is usually done

m momeutum representation; trie first-order term gives rise to a real self-energy that merely
renormalizes trie Fermi energy, while trie second-order term gives rise to an imagiuary self-

energy which is respousible for an exponential damping of trie average real space Green function.

For trie reflectiou amplitudes from finite disordered re#ons, we take perturbation into account

up to trie second-order term only. This calculatiou neglects trie multiple scattering processes
characteristic of trie diifusive re#me. However, we are ouly interested in trie average value of

trie reflection amplitude, where single scattering dominates multiple scattering, as we will see

m our semiclassical approach, and equations (7.7) #ve trie main features seen in trie numerical

simulations. They are proportional to trie strength of trie disorder aud show a non-zero average
only for trie diagonal elements of trie S-matrix. Trie denominator ka indicates that trie absence

of self-averagmg is more pronounced for trie higher modes. Trie breakdown of perturbation
theory for small ka is understandable since at trie thresholds we bave complete reflection, which

cannot be obiained perturbatively. Clearly, those threshold eifects, wheu new conduction

channels appear (N
-

N +1)), drastically hmit trie validity of trie isotropy assumption.
Up to second order perturbation trie average diagonal reflection amplitudes are

jjrjj'~ljj
=

jaj j ~/2(1-
cos (2kaL~jj

,

(7.8j
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where a =

~~ (-l +1 ~~ For trie lowest modes equation (7.8) gives a correction
2h 2h

vanishing as 1/k~ (or (L~/N)~), but trie correction remains important for trie highest modes.

On trie other baud, in our numerical simulations in a lattice mortel, N will always be finite

and not very large. In Figure fia we show trie values of )(raa)) obtained from
our numerical

simulations, as a function of trie mode number a. Trie average reflection amplitudes of trie

sample described in trie Section 5 (Rl, squares, AR
=

4, W
=

1, N
=

14) are close to trie

functional form 1/ka (solid thick fine) and to those of a longer sample (R8, circles, AR
=

la,
W

=
1, N

=
14). Trie average value of trie nondiagonal reflection amplitudes (not shown)

are zero within trie statistical error. Since this perturbation calculation is performed in trie

continuum and yields a rapidly oscillatiug phase we do Dot expect to get full agreement with

trie numerical simulations on a lattice. We are mainly iuterested iii trie mean behavior of trie

diagonal reflection elements as a function of trie channel number a, trie number of modes N

~
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Fig. 6. Average values of trie diagonal reflection amplitudes
as a function of trie mode number for

the samples scketched in the insets. The solid thick fines are guide-to-the eye with the functional form

1/k( and N=14 modes. (a) Ri: AR
=

4, W=1; R8: AR
=

10, W=1; R2: AR
=

4, W
=

I.à. (b) R12:

AR =1, W=1, N=14; R11: AR
=

4, W=1; R13: AR
=

1, W =1-à, N =14; R18: AR =1, W=1.5,

N=28. For the last sample we show the average diagonal reflection amplitude for only the first half

of the mode numbers.
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and trie strength of trie disorder W. Increasing trie disorder (R2, filled triangles, AR
=

4,
W

=
1-S, N

=
14) enhances trie correction. Keeping trie number of modes N

=
14 (Fig. 6b)

while going to a square geometry (R12, squares, AR
=

1, W
=

1, N
=

14) decreases trie

Fermi momentum and gives a larger correction for trie average reflection amplitude than for

the sample of Section 5. The correction for a square geometry is of the same order as that of a

long sample (Rll, circles, AR
=

4, W
=

1, N
=

14) with the same number of modes and cross

section (same Fermi momentum). Increasing the disorder (R13, diamonds, AR
=

1, W
=

1-S,

N
=

14) enhances the correction, while increasing the number of modes (R18, fuit triangles,
AR

=
1, W

=
1.5, N

=
28) decreases the correction.

The mean values of the scattering matrix elements have been considered by Iida, Weiden-

miiller and Z1÷k [37] who st1÷died the iuterplay between 1÷niversal conductance fluctuations

and the statistical properties of the Hamiltonian spectr1÷m of a disordered strip. They define

the sticking probability Ra
=

)(raa))~, measuriug the weight of the fast processes (where
the partiale is refiected after a few scattering events in the disordered region) versus the long
trajectories. Sticking probabilities smaller than 1 give corrections to the universal quasi-lD
value of the variance of the conductance fluctuations, which can be calculated with the aid of

equation (7.8).
This non-zero average of the diagonal reflection elements is in disagreement with the stan-

dard maximum entropy approaches where one assumes that the matrices ul~)
are uniformly

distributed in the unitary group, giving zero average values of the S-matrix. Recent work

by Mello and Tomsovic [38] has relaxed the isotropy assumption, making possible a non-zero

mean for the transmission amplitude (diagonal in mode number and exponential in 1/L~). Our

results show that a non-zero average for the diagonal reflection amplitudes is needed in order

to describe systems outside the weak disorder and quasi-one-dimension.
In the large N-limit we approximate the second-order perturbation calculation of (Tr Si by

converting the sum over modes mto an integral, the phases exp (2ikaL~) give rise to higher-
order terms in 1IN, and from equations (7.7) we obtain (away from the thresholds)

~~ ~~~~~~~ " ~ ~Î~ ~~ ÎÎÎÎÎ~ " ~ ~~~
Î

~~ ~~~~ ~~'~~

It is important to notice that equation (7.9) does not depend on the length L~ of the sam-

pie (or the aspect ratio) but only depends on the properties at the entrance of the sample
(transverse cross-section L~ and Fermi momentum k). Its logarithmic dependence

on N indi-

cates that there is homogeneity
m the phase distribution only for very large N aud very small

transverse cross sections.

From equations (7.1) and (7.9)
we can see that the phase-shift distribution will Dot be

uniform, unless we have a narrow sample with weak disorder and a large number of propagating
modes. A non-uniform density is often the case for Hamiltonian spectra (or for the radial

parameters of Mi, and one studies the correlations of the unfolded spectra [11, 39]. Instead

of studying the bare phase shifts 9m, we have to consider the rescaled variable em
=

tif(9m),
where tif(9) is the number of levels below 9, 1-e- tif(9)

=

J/ p(9')d9'. Since our interval of

phase shifts is bounded between o and 27r, for the numerical study, we repeat twice each phase
shirt sequence and calculate the two-point correlation function m the second interval (M to

2M for the unfolded variables ami. Trie Fourier components se can then be compared with

trie universal two-level form factors of equation (5.13),
as is clone in the following sections.
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for N 14 propagating modes. The sample with a
disorder strenght of W = 1 is

represented

squares (R12) for
B = 0 and triangles (F12)

for
</<o " 2.

Circles
a

ample
with W

and no agnetic
field (R13).

he large-M OE and UE values are
iven by solid

and

dashed fines.

Lower inset: histograms of the phase shift istribution
normahzed

by the
uniform value po = M/2gr.

The distribution R12
(F12)

is off-set by -0.5 (-0.75),
while

the distribution of
R13 is

off-set
(b) Phase shift form

actors
after

nfolding
the raw data

(circles)
and cording to uation (5.7)

(filled
squares) for slab-shape samples (upper inset)

without magnetic
field (R19).

Triangles:
Form

factors according to equatiou (5.7) for <I<D # 2 (F19). The large-M OE

by sohd and dashed fines.
Lower

mset: of
the phase shift istribution ormalized by the

niform value po " M/2gr. The R19 distribution is off-set by -0.4, while the F19 istribution

by -0.8.

8. Unfolded

We now tum our attention to samples

(Fig. 7a) the
phase-shift

densities are non-uniform m the of magnetic field (iuset).

The egree of nonuniformity is
consistent

with
quations

(7.1) and
(7.9),

1-e- it becomes

important
for igher disorder

and
a smaller number of ropagating

channels.
The

ourier
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components se (after unfolding) are m relatively good agreement with the COE-CUE twc-

level form factors, but the correspondence becomes poorer when we iucrease disorder. For

the large-n Fourier componeuts, we are probing the correlations for small separations, where

we can take the phase-shift density as constant, This approximate translational invariance

makes that only the term with n =
-n' survives in the expansion of the delta functions of

equation (5.2). The Fourier componeuts of the two-point correlation fuuction are still given
by ()Tr S'~)~), through equation (5.7). For squares with magnetic field aud low disorder the

phase-shift density is relatively uniform (lower histogram of the inset) aud we use equation
(5.7) instead of unfolding the spectrum.

In Figure 7b, a disordered slab is considered (upper inset, the incoming electron flux is along
trie direction of the shortest dimension). The phase shift distributions (inset)

are strongly
non-uniform (L~ in equation (7.9) is very large), but trie unfolded spectra, with (triangles)

and without (filled squares) magnetic field, are relatively well described by equation (5.13),
except for small n

values where a careful look indicates values above trie COE-CUE behavior.

This is another important source of departure from trie universal behavior related to trans-

verse diffusion, in addition to trie cross-over mentioned in Section 6 coming from longitudinal
localization.

Trie approximate agreement of trie numerical data with trie twc-point form factors of trie cir-

cular ensembles is somewhat surprismg in these geometries. Given the approximate agreement
of the unfolded spectra with the standard ensembles at the level of the twc-point correlatiou

function, we might ask at this stage whether the unfolded phase-shift spectrum of metallic con-

ductors is well described by the circular ensembles, independently of the shape and strength
of the disorder. However, a check at the level of the two-point correlation function is not very

accurate, as we bave learned from statistical studies of chaotic Hamiltonians [11] and trans-

mission matrices [24]. A better test is provided by integrals involving trie twc-point correlation

function. As in Section 6, we now cousider trie number statistics n(r) and trie number variance

(Eq. (GA))

In order to analyze systematic departures from trie random matrix correlations we plot in

Figure 8, for various geometries, degrees of disorder and uumbers of propagating modes, trie

diifereuce of trie number variances between trie numerical data and trie COE-CUE values

(6.5). We consider a~(r)
=

22(r) Z[~(r) for samples without magnetic field and a2(r)
=

22(r) -1[~(r) for samples with nonzero magnetir field. Like in section 6, we only show trie

interval o < r < M/3 where trie comparison is meaningful. One can see very dearly now that,

even after unfolding, trie accuracy of trie random matrix description strongly depends on trie

shape and degree of disorder of trie samples. Trie diiference a2(r) in number variances grows
approximately linearly with r. Trie magnitude of trie slope of a2(r)

measures trie validity of trie

random matrix description. Squares with low disorder (after unfolding) are well represented
by trie standard ensembles, trie agreement becomes poorer when mcreasing trie disorder, and

improves wheu augmenting trie number of modes N. However, slab-shaped samples also show

large deviations with respect to trie COE-CUE values. Trie conditions for having a good
COE-CUE distribution coincide with trie conditions for diminishing )(Tr S)) and obtaining a

more uniform distribution (Eqs. (7.1) and (7.9)). Notice however that Figure 8 is drawn for

unfolded spectra, where trie nonhomogeneous phase-shift distribution
is in principle already

accounted for. Our task in trie remaining section is to quantitatively study trie deviations to

trie random matrix behavior m
disordered conductors, giving trie slope of trie curves

a2(r)
as

a function of trie aspect ratio, degree of disorder and number of propagating modes of trie

disordered sample.
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=
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I.à, N
=

20. Thick fines are for thin slabs, R19,
F19: AR =1/4, W=1, N=14.

9. Deviations From the Universal RMT Behavior

The statistical properties of trie spectia of small disordered systems bave been considerably

more studied thon those of the scattering phase shifts. It is then appropriate to establish a

connection between the two in order to understand our numerical results. The relatiouship
between phase shifts and energy levels bas been investigated in trie semiclassical limit by

BogomoIny [40] and by Doron and Smilansky [41]. Their approach is not completely applicable
to our case but provides some guiding concepts. Iii Appendix B, we reproduce their main results

and discuss trie points where trie correspoudence does not hold.

Under trie assumptions discussed iii Appendix B of neglecting trie evanescent modes and trie

nonuniformity of trie phase-shift distribution, trie energy level density is given by

d(E)
=

$(nv(E)1
,

(9.i)

where nv(E) is trie Wigner time

7v/(E)
=

~
Tr St E)dS(E)

~M dE '

(9.2)

whose physical interpretation is discussed in Appendices B and C. Assumiug that trie density
of states of our disordered rectangular samples is the same as without disorder d(E)

=
1là

=

mL~L~ /27r&~, we can check the validity of equatiou (9.1) against our uumerical simulations.

As indicated in Table I of Appendix A, there is agreement within 5 to 25 % in most of the

cases, which is reasonable given trie various approximations involved.
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The quantity most often calculated in metallic spectra is trie density-density correlation

function

K~ (E, E + e)
=

~j (à(E En )à(E + e En, )) d(E) d(E + e) (9.3)

Scaling trie energy separation with trie mean level spaciug (e
=

ed(E)) and trie phase-shift

separation with trie mean phase-shift distance (r
=

J~M/27r) we bave, from equation (B.8), in

trie large M limit,

K2(e/d(E))d~~(E)
=

à(r) Y2(r)
,

(9.4)

As stated before, we will put aside trie fact that trie two above-mentioned assumptions are

not quite true in our systems and we will pursue trie consequences of equation (9.4).
Trie density-density correlation function for disordered systems bas been obtained in pertur-

bation theory by Altshuler and Shklovskii [4]

~2
K2(e)

=
-~Re £ (e +1&Dq~ + irl)~~

,

(9.5)
~

("P)

for energies e large compared to trie level spacing /h, and small compared with trie energy
scale h/T~, associated with trie elastic scattering time T~. Trie factor s accounts for trie spin
degeneracy of each level (s

=
1 since we work with spinless electrons), and rl is a small

energy cutoif (to account for inelastic scattering). For simplicity we will work in trie case of

zero magnetic field. Trie sum is over trie diffusion modes in trie sample, assumed to be a

d-dimensional parallelepiped with sides L~, that is, q~ =
7r~ £(_~(n~/L~)~. Trie diffusion

coefficient is D
=

vfl/d. Trie Thouless energy E~,~
=

AD IL( is inversely proportional to trie

time that takes an electron to diffuse across trie sample in trie p-direction- For samples with ail

L~ equal (hypercubes) we just bave one Thouless energy. That will be trie case of our square
samples while, for quasi-one-dimensional samples, we bave in principle two Thouless euergies,
but we will reserve this name for trie smaller one, that is, that associated with trie length L~.

Trie mean-square fluctuation in trie number of levels (number variance) is given in terms of

trie density-density correlation function,

E+£/2 E+e/2
(lôN(E)l~)

"

/
dEi

/
dE2 K2 (El, E2)

,

(9.6)
E-e/2 E-e/2

which from (9.5) can be written as

1 ~2
([ôN(e)]~)

= ~
£ In +1 (9 7)

7r 16'f + àDq~)~
l"Pl

For energies e < E~,~ the sum (9.7) is dominated by the term with all n~ null and [4]

~2
((ôél(E)j~)

" $
În

$ + (9.8)
~ 'f

The perturbation theory of reference [4] is valid for energy separations e
larger than the in-

elastic scattering rl or the level spacing /h. In our case there is no melastic scattering and we sub-

stitute rl by /h obtaining the standard raudom matrix theory result ([ôN(e)]~)
=

2/~2 In (e là)
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for /h < e < E~. For energies e » E~ the summation over (n~)
can be replaced by an integral

over dq~ and

d/2
(lôN(~ll~l

" ~d

())
(9.9)

c

where cd is a dimensionality-dependent numerical coefficient [4]. The asymptotic results (9.8)
and (9.9) have recently been rederived by Argaman, Imry and Smilansky [42] using a more

intuitive semiclassical method for electrons iii the diifusive regime. The small-energy universal

regime is obtained for times long enough to allow a diifusing electron to ergodically explore
ail trie sample, while for energy intervals larger than trie Thouless energy (short times) trie

correlations depend on trie diifusing, unbounded dynamics of trie electron, which is dimension-

ality and disorder dependent. Trie universal character of trie short-range eigenvalue correlation

and trie long-range non-universal (dimensionality and disorder dependent) part bave also been

obtained in numerical simulations by Dupuis and Montambaux [43] who studied trie crossover

between trie two regimes in an Anderson model.

Given equation (9.4), and trie above results for trie number variance predicted by pertur-
bation theory, we expect trie correlation functions of trie phase shifts to bave a COE-CUE

behavior for phase-shift separations smaller than

y~c =

(~~ (9.io)

Our numerical data summarized in Table I of Appendix A indicate that for the studied samples
the critical angle

J~~ is smaller than the mean phase-shift spacing (r~
= J~~

/(27r/M)
=

(g) /27r <

1). Therefore they are in the transition regime between the two asymptotic limits (9.8) aud

(9.9).

In Sections 6 and 8 we have studied the number variance of the phase shifts a2(r)
=

22(r)
Z[~(T). In particular, from Figure 8 we can see that a~(r) grows almost linearly from

r m

r~. To check our prediction, it is interesting to look at trie value of the slope. Within trie

perturbation theory of reference [4] trie diiference between the number variance for trie real

energy levels and the R-M-T variance is obtained by excluding the term n~ = n~ =
0 from the

sum (9.7). For a two-dimensional sample the slope of the diiference evaluated at e~ =
E~ là is

given by

Ii
~iôN~~~i~i

iE~~~l il »~,»ij~,~~
i +

r4(/1
+ ni)~ ~ °.°2141 ~9.ii)

For a
quasi-one-dimensional sample the sum is over n~ ~ o and the slope is approximately

o.oo451e~. Given the relationship between the statistics of phase shifts and energy levels, wè

expect that the slope #~
=

£a2 (r))r=r~ also scales linearly with 1/r~. In Figure 9 we show the

value #~ versus the inverse Thouless energy 1/r~. The linear relationship predicted by equation

(9,11) tutus out to be approximately valid. The slope obtained for the two-dimensional case

(squares geometries in Fig. 9) agrees within 50$lo with the coefficient of (9.11) and is a factor of

4 larger than the slope obtained for quasi-one dimensional geometries (roughly the same ratio

as for the eigenenergies). Obviously, in those samples, the quasi-one-dimensional limit is not

achieved and the approach to this hmit depends on the aspect ratio of the sample.
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Fig. 9. Slope of a~(r) (obtained from Figs. 6 and 8)
as a fuuctiou of the inverse of the reduced

critical angle rc =
(nvEc/h) (M/2~). The symbols used for the various runs are
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labels of Table I of Appendix A. Samples R1-R11 are quasi-one dimensional, while sarnples R12-R17

represent the two-dimensional case
(square geometries). The dashed straight fines

are
guide-to-the-eye

through the two groups of data points aud illustrate the approximate validity of equation (9.Il).

10. Conclusions

In this work we have considered scattering in disordered systems. We calculated the invariant

measure of S in the polar decomposition and compared the COE-CUE distributions with those

of the global and local approaches to the transfer matrix of disordered systems. We then turned

to the study of the scattering phase shifts for diiferent geometries and degrees of disorder. For

quasi-one dimensional samples in the metallic regime the deusity and the twc-point correlatiou

f1÷nctions are close to those of the circ1÷lar ensembles. Increasing trie length with fixed disorder

or the disorder with fixed geometry, we break S into two uncorrelated reflection submatrices.

Deep in the quasi-ld localized regime the decoupling is almost complete and the two-point
correlation function of the phase shifts is that of a superposition of two independent circular

ensembles (COE or CUE).
Outside weak disorder and quasi-one dimension, the phase-shift density diifers from the uni-

form distribution characteristic of Dyson ensembles. This anisotropy comes from short-time

processes which yield a non-vanishing ensemble average of S, and is strongly enhanced in the

vicinity of an energy threshold where a new conduction charnel appears. Usiug diagrammatic
perturbation theory, we calculated the average value of the reflection amplitudes, finding good
agreement with the numerical simulations and establishing the conditions for having the uni-

form phase-shift distribution of the circular ensembles. There are several requirements: energy
far from a threshold, weak-disorder, small transverse length and a large number of propagating
modes. When this is not the case, anisotropy is important and we have to unfold the spectrum

m order to study its correlations.

For large transverse lengths the electron diffusion iii the perpeudicular direction grues rise

to small-k corrections of the twc-level from factor b(k) of the (unfolded) phase-shift spectrum.
This non-universal behavior is related to the longe-energy (non-ergodic) behavior found by
Altshuler and Shklovskii for the energy-level statistics of small metallic partiales. This lead

us to relate under certain assumptions the scattering phase-shift and the energy-level form

factors. We checked this relationship numerically for the number variance (fluctuation of the
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Fig. 10. Energy dependence of the phase shifts for one of the quasi-id conductors studied in Figure
1 (aspect ratio AR

=
4, disorder W
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1) iii an energy range where there are N

=
14 propagatiug

modes.

number of states within a given interval). We verified that the non-universal discrepancies
become increasingly large as the Thouless energy decreases, m a geometry-dependent fashion.

One of the most important problems remaiuing in trie random-matrix theory of electron

transport in disorder systems is trie extension of trie standard approach outside trie quasi-
one-dimensional case. We bave shown iii this work that anisotropy is an esseutial ingredient

iii higher dimensions. The precise form of the decoupliug of the S matrix into independent
reflection blocks iii the one-dimeusioual localized regime is another interesting problem left

for futures studies. Given the recent progress in the theory of parametric correlations [44-
46], the euergy dependeuce of the scattering phase shifts deserves further studies (e. g. trie

correlations of trie characteristic times Tm(E) (Eq. (B.4), slopes in Fig. lo) which we are

presently developing.
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Appendix A

Summary of the Numerical Simulations

In this appendix wè summarize trie results of trie uumerical simulations aud we briefly indicate

trie way they were obtained. Trie simulations were performed in a tight-binding model with a

number of sites L~ x L~ and a random on-site disorder of amplitude W by using a recursive

Geen function method [47, 48]. In a magnetic field we use trie Peierls substitution to relate

trie hopping matrix element to trie vector potential. Trie magnetic field is taken to be linearly

increasing in trie leads from zero to its fuit value in trie disordered region over a distance of

trie order of trie transverse dimension L~. For trie small fields that we work with trie statistical

results are independeut of trie way trie field is introduced.
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Table I. Runs with zero magnetic jield are indicated by R, ruas with a nonzero flux # through
trie sample are

indicated by F (#o
"

hcle is trie elemental jluz). NS is the number of samples
(impurity configurations) considered. AR

=
L~/L~ is the aspect ratio of trie samples and N

is trie number of propagating modes. Ef and k are trie Fermi energy and trie wavevector in

Anderson units (Ef
=

-2 2cosk). W is trie amplitude of trie on-site disorder of trie run.

nv is trie Wigner time and /h is trie level spacing of a perfect (non-disordered) rectangle with

sides L~, L~. Trie column showing
°'~~~ ~

checks trie approximate ualidity of equation (9.1).
h 7r

is trie elastic-mean-free patin and rc is trie critical angle
J~~

(Eq. (9.10)) scaled with trie mean

phase shirt spacing. #~ is trie slope of a~ eualuated at r~ obtained from Figure 8. (g) is trie

auerge dimensionless conductance and (ôg~) its uariance. )(Tr S)) is trie auerage trace of trie

scattering matriz.

run
#/#o NS AR Ly N E, k W rc #c (g) (ôg~) ((Tr S)(

Fi 2 5000 4 23 0 09

0 1400 4 34 14 -2 5 1.32 1 5 24 13 0.32 0.028 2 13 0.13 0 38

F2 2 1400 2.23 0 08

F3 2 700 1.26 0.08

4 4 1.68

F4 2 2500 0.03 4.25

0 700 4 14 -2 5 1.32 6 0.34 1.8 24.9 3 60

F5 2 700 2 x10~? 24 8

0 34 160

0 500 7 34 20 90 1 53 27 0.025 0.13

14 28 1.91 13 0.20

F8 5 1400 2.07 0.07

34

0 700 34

F10 15 700 0.69 0.22

Rll 0 600 4 14

14 -3.56 1.12

F12 2 1400 5.55 0.15

0 700 63

14 -2.5 0.68 2 0.97 5.9

20 -3 17 0 95 1.5 1.14 13 0.021

0 0.95 2.0 1.16 7.1 0.54 0.060 3.27 0.17

0 500 68 6.86 1 00

1 68

F19 2 ~oo

14

~ ~~ ~_~~

Runs 1-11 in Table I are m trie quasi-one-dimensional limit, while runs 12-18 are for square
samples and runs 19 for thin slabs. The time limitation for the numerical simulations is the

transverse size and that limits the number of samples (NS) considered for large L~. The number
of modes N was kept small (14-20 in most cases) in order to have small Fermi energy (Ef) and

wavevector (k) avoiding lattice eifects. The Wigner time nv is calculated from equation (9.2)
and provides, through (9.1), the value of the mean level spacing. Using the free-space two-

dimensional density of states to give the Weyl term of our disorder region, the level spacing is

à
"

mL~L~/27rh~, and the column showing (nv/h là) (N/7r) checks the approximate validity
of equation (9.1) under the hypothesis that the level spacmg does not change by the eifect
of confinement or trie disorder. In most cases we obtain an agreement within 5-25% which is

quite reasonable given trie various approximations involved.

Trie elastic-mean-free patin is calculated in trie Born approximation [49] using samples of
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transverse dimension L~ and a few lattice sites on the longitudinal dimension. In the metallic

regime it agrees very well with trie mean free path obtained from trie Drude formula for trie

dimensionless conductance (g)
=

N17r/2L~. Trie Thouless energy m Anderson units is given
by E~

=

1/L] sink. Trie reduced critical angle r~ is obtained by scaling trie critical angle

J~~ =
TWE~ là (Eq. (9.lo)) with trie mean level spacing 27r/M. Trie factor #~ measuring the

discrepancy with the standard ensembles is obtaiued from Figure 8 by taking the slope of a2 (ri
between r =

o.7 and r =
7. This is not completely equivalent to the slope at r~ since r~ and the

range of linear behavior of a2 varies from sample to sample, but has the advantage of providing

a consistent definition for all the cases.

Conductances for individual samples are obtained from Landauer's formula, equation (1.2),
and then averaged over impurity realizations yielding the average (g) and the variance (ôg2).
According to the Thouless formula (g)

=
27rE~ là in the metallic regime, and by using the

approximate /h of the perfect square we obtain an agreement of 25% with Landauer's formula.

It is important to notice that r~ is obtaiued from and nv, directly extracted from trie simula-

tions (without any assumption over the form of the conductance). In the localized regime (runs
4, 5 and loi the average conductance and its variance are dommated by special configurations
with anomalously large values. Therefore averaging over log is the meaningful [30] thing to do.

In Table I we give as (g) for these runs the typical conductance exp (log g) and (à(log g)~) in

the column of the variances.

In the metallic regime the diiference between the average conductance without and with

magnetic field is the weak localization correction. Mello and Stone [Soi have calculated this

correction m
the quasi-ld limit by diagrammatic and random matrix approaches and found a

value of1/3, which is somehow larger than that obtained from Table I. It is rather diilicult to

reproduce the theoretical value in numerical simulations on disordered strips since getting to

the regime of validity of the theory (diifusive, quasi- ld, metallic and magnetic field large enough
to kill the time reversai symmetry but small enough not to alter the dassical electron paths)

requires extremely large sample sizes [51]. The values of the conductance fluctuations (ôg2)
for zero magnetic field in the metallic regime are iii good agreement with the diagrammatic
values [2,3] and previous numerical simulations il, 52]. Halving the variance by the eifect of

the magnetic field is not quite obtained for #/#o
"

2, but for ratios of the order of 5-la the

factor of 2 is always found. This is somehow surprising since for #/#o
"

2 we have already a

complete transition towards the unitary ensemble (see Fig. 2).

The mean
values of )(Tr S)) are m

qualitative agreement with the perturbation result of

equation (7.9), mcreasing with disorder and decreasmg with the number of modes N.

Appendix B

Relation Between the Scattering Phase Shift and Energy Level Statistics

In this appendix we preseut, following BogomoIny [40] and Doron and Smilansky [41], a re-

lation between the statistical correlations of the phase shifts and the energy levels in a form

appropriate to the scattering which we consider.

Close to the entrance cross sections (x < o and
x > L~) the scattering wave functions are

given by the asymptotic expressions (2.1) plus the contribution of the evanescent modes:
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q~~~(~, ~~ =

( ]
(cne~kn(~-L~) + D»e-~~"~~-~~~l <n(Y)

~=i
~»

+
~

jk

1/2~'l~
~~"~~~~~~~#n(Y) (B.lb)

t=Î+i

'~

In reference [41], trie contribution of trie evanescent modes for trie evaluatiou of ~I(x
=

o, vi
and ~II(x

=
L~, vi is neglected in trie semidassical limit. This sharp'cut off at N +1 in trie

sum over n is dearly not exact in trie case of our numerical simulations, where N is typically 14

and higher transverse harmonics are needed in order to represent trie scattering wavefunction

at trie entrance. Neglecting trie evanescent chanuels, trie scattering wave function vanishes at

trie boundaries (x
=

o and x =
L~) if B

=
-A and C

=
-D, implying that trie scattering

wave function comcides inside trie sample with au eigenfunction of trie Hamiltonian (assuming
hard-wall boundary conditions). Therefore, an energy E is an eigenvalue of trie dosed system
whenever S(E) bas an eigenvalue -1 [41]

det(I + S(E))
=

o (B.2)

As illustrated in Figure la, trie energy levels can be obtained by trie intersection of trie curves

9m(E) with horizontal lines at 9
=

(2n +1)7r. Trie accuracy of this quantization condition bas

been recently tested numerically [53] in trie Sinai billiard. Away from trie mode thresholds,
the errors in the determination of trie energy levels are of the order of only a few percent, and

they are greatly reduced when a few closed channels are kept. On the other hand, we are not

interested in the precise energy levels but in the relationships between their statistics and that

of the phase shifts. Towards this end, we have calculated the nearest neighbour distribution of

the energy levels determined from (B.2) and found, in the metallic regime, a good agreement
with the corresponding Wigner distributions. From the above quantization condition (B.2) (5)
the level density con be expressed as

M
co

d(E)
=

~(ô(E En))
= m

L L (-il'~(Tm(E) exP (in9m(E)))
,

(B.3)

where the time associated with the m~~ phase shift is

Tm(E)
=

h ~~[fl~ (B.4)

Ignoring correlations between 9m and Tm and in the hypothesis that trie phase shift distri-

bution is uniform ((Tr S"i
=

o for ail n ~ o) we bave equation (9.1) of trie text

d(E)
=

$
(Tw(E))

,

(B.5)

(~) If
we use the convention É

=
and we ignore the evanescent modes, the condition

to have
an eigenenergy of the closed system with periodic boundary conditions is that É has the

eigenvalue 1, that is, det(I É(E))
=

0. It is easy to see
that É

=
SU, with U

=

Therefore, for Dyson Circular Ensembles where the probability distribution
is given by the invanant

measure in
the appropriate space, we

do not expect a
difference between the statistical properties of

S and É.
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where the Wigner time nv(E) is given by (9.2)
or

~

~w(E)
= p

j ~~iEi (B.61

The Wigner time is the mean slope of the curves 9m(E) in Figure la and has the physical
interpretation of the mean time spent by the partiales in the scattering re#on, as can easily be

seen from our semidassical analysis of the transmission amplitude (Appendix Ci. Notice that

the Wigner time resulting from our convention for the S matrix is not the usual delay time

but an absolute (always positive) time. jn particular, for a pejfect
(non-disordered) sample

it is not zero, but given by Tw "
2h/M £ d(knL~)/dE

=

j £ L~/vn, that is, the average

»=i »=i

over the propagating modes of the ballistic traversai times.

From its definition (9.3) and the relationship (B.3) we can write the density-density corre-

lation function of the energy levels as

~~ ~~'~ ~ ~~
2iÎh)2 ~~~ ~~Ù

~~
~~~~~~

(Tm(EjTmi (Ej exp (1(9m(E)n 9mi (Ejn' Tm(Ejn'e/h)j d(Ejd(E + ej
,

(B.7j

where we have used 9m,(E + e)
m 9m> (E) + Tm,(E)e là for

e < E and we assumed that the

Tm(E) are smooth functions (in trie scale ofe ) which con be taken outside trie ensemble auerage.
If the phase shifts are uniformly distributed only the terms with n =

n' survive the ensemble

average and [40,41]

K2(e)
=

d(E)à(e) + d~(E)
l~~

R2 (~~ed(E))
)

(B.8)
M(M 1) M

Scaling the energy diiference with the mean level spacing (e
=

ed(E)),
m the large M limit

we obtain (9.4) of the text implymg that trie phase shirts and trie energy leuels houe trie same

two-point correlation functions when expressed in terms of their respective reduced variables

(r and e). Notice that the relationship between the phase shift correlations (given by R2(r)

or Y~(r)) and the energy level correlations (given by K2(e)) is obtained in two steps: first, the

quantization criterion (B.2) (which neglects trie evanescent modes) and second, assumptions

on trie homogeneity of trie phase shift distribution and trie smooth character of Tm(E).

Appendix C

Semiclassical Approach

In this appendix we present a semiclassical treatment of the scattering in a wave-guide geometry
with disorder, for understanding the non-zero average of the diagonal reflection amplitudes and

the various time scales m
the problem. The semidassical approximation to the transmission

and reflection amplitudes can be obtained by replacmg the Green functions Gk of equations
(7.3) by their semidassical path-integral expression [54]

~~~~~" ~~
27rÎÎ)3/2 ~~,~ ~~~~ Î~~~~"~'~~~

~Î~~l' ~~'~~

y,y
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The sum is over dassical trajectories s between the arguments of the Green function (we shall

omit the x dependence since it will be assumed that x =
o or L~ depending whether we are

considering reflection or
transmission), Ss is the action integral along the path s at energy

Ef
=

&~k2/2m
=

mv2/2, the stability prefactor is Ds
=

(v) cos9')/m)~~ (69/ôy')~ ), 9 and

9' are the incoming and outgoing angles, and p is the Maslov index #ven by the number of

constant-energy conjugate points [54]. Performing the transverse integrations by stationary-
phase approximation, valid in the

-
o limit applicable to the many-channel case that we are

interested in, we obtain [55]

TII'
=

~ri~Î
~~~(~) Sgn(b) fi

~

i~~ ~
~~

i~~~~'~~
~fl -1]às)

,

~c~~

where trie sum is taken over trajectories s between trie cross-section at x =
o with incoming and

outgoing angles 9 and 9' such that sin 9
=

à7r/kL~ and sin 9'
=

b7r/kL~ (à
=

+a, b
=

+b). Since

à aàd are integers, we see that trie semidassical approximation yields trie intuitive result that

only trajectories which enter and exit at discrete angles corresponding to the allowed quantized
transverse momenta contribute to reflection. The reduced action (virial) is

É(b, à, Ef)
=

S(y[, go, Ef) + h7ràyo/L~ h7rby[ /L~
,

(C.3)

the new pre-exponential factor is

~~
" mvj Îosà'j

(Î)~
'

~~~~

and the Maslov index ji is given by p and the signs of the second derivatives of the action

(see Ref. [55] ). A similar expression holds for the transmission amplitudes, but the trajectories

are now taken from the cross-section at x =
o to that at x =

L~. The Kronecker ôa,à of the

reflection amplitude, equation (7.3b), has been taken care of by trajectories going from y to y'
along the cross section x =

o (without entering the disordered region) not included in equation
(C.2) [55]. The rapid increase of the mean value of trie reflection amplitude for high modes

can be traced to trie cos 9' of equation (C.4) since 9' approaches 7r/2 as a increases towards N.

When taking trie average of trie matrix elements of S over diiferent impurity configurations,
the long trajectories will have a rapidly varying phase which leads to zero average, while

the short reflection trajectories which do not explore the bulk of the sample will survive the

average. In particular, trajectories corresponding to high mode numbers will have a large
injection angle which makes very likely their reflection within a mean free path from the

entrance. The absence of selfaveraging to zero for the diagonal reflection elements subsists m

the limit of L~
- co of a semi-infinite strip, siuce it is a consequence of fast (short trajectory)

processes. These short processes are trie only ones contributing to (Tr S) in trie large N-limit

and this is trie reason why in trie numencs and in equatiou (7.9) trie trace of trie scattering
matrix depends only on trie properties at the entrance of the sample. However, trie reflected

trajectories have a wide distribution of lengths, and we do not bave as iii Nudear Physics [56]

a dear-cut separation between direct (or fast) and long processes.

In order to put these ideas on a more quantitative level, we calculate trie semidassical ap-

proximation to Tr S'~. For n =
1 we only need trie trace of trie reflection matrices r and r',
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which cau be evaluated with the aid of Poisson summation formula,

Tr r~~'
=

(
raa =

@ f ~~~~~
du exp (27rimu) £ sgn(ù) sgn(ù)

a=1

~
~

m=-co
~/2 s~g,ù)

~
Î~~~~

~Î~~~'~'~~~
Î~~~

'

~~'~~

where ù, ù
=

+u, not necessarily an integer. The stationary-phase condition for the integral

over u is

sgn(ù) vi sgn(ùl vo =
2mLy (C.61

Since o < go, Vi < L~ the only solution is ù
=

ù, vi
= go, and

m =
o, 1-e-, the trajectory closes

itself at the entrance cross-section with a specular reflection, where the transverse momentum

(in the y direction) is conserved. Keeping only the
m =

o term corresponds to trie approxi-
mation of replacing the sum over a in Tr r~~' by an integral; the stationary-phase argument
mdicates that this is mdeed the leading term in h. We then have

Tr r~~'
=

j( L Î
exP

)Ss(Yo,
go, Ef) il s)

,

(C.7)
Y s(yo,uo;yo,uoi

Ss is the action integral along the dassical path s, the stability prefactor is

~~ ~~ ~~
b

~ ~~~
a

à=1=ùo

~~ ~~

and trie new Maslov index fis is given by fis and trie sign of trie second derivative of trie

reduced action. For trie semidassical approximation to Tr r'
we bave a similar expression,

given in terms of trajectories which bave a specular reflection at the x =
L~ cross-section.

Higher powers of S involve products of the matrices r, t,T',t'. For instance, the reflection

submatrix of 52 is TT + t't, and represents the two possible ways of returuing to trie entrance

cross-section touching only once one of trie vertical boundaries. Trie matrix products of trie

reflection and transmission amplitudes can also be obtained with trie aid of Poisson summation

formula, resulting in a stationary-phase condition very similar to equation (C.6) (but now trie

terms with go and vi
come from actions of diiferent trajectories, 1e. one from t aud trie

other from t') which indicates that we also have specular reflections at each bounce with trie

vertical walls. Once we take the trace we arrive at the intuitive result that Tr S'~ is given in a

semidassical approximation by closed trajectories, of a system with hard walls at the extreme

cross-sections, with n bounces with the vertical walls.

Blümel and Smilansky [19] expressed Tr S'~ semidassically m terms of periodic orbits of the

Poincaré scattering map, while in reference [41] it was shown that a periodic orbit of order n

of the mapping corresponds to a periodic orbit of the dosed system which hits n times the

extreme cross-sections. This is precisely our statement of last paragraph.
Trie semidassical approximation to Tr S'~, given by dosed orbits hitting n times the vertical

hard walls, is very useful smce we con identify high values of n with long trajectories. Trie

lower harmonics of p(9)
are given by trie ensemble average over short orbits, which is not

zero in general; while the higher harmonics are given by long orbits leading to self averaging.
This explains why p(6) is relatively smooth and justifies the usefulness of our diagrammatic
approach yielding only pi (9).
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According to equation (5.7) the twc-level form factor is given by the ensemble average of

)Tr S'~)~, therefore the semidassical approach also allows us to understand the phase shift

correlations. The diiference in the semidassical approaches to the mean density and the TLFF

is that trie former is expressed as a one-phase sum while trie latter a twc-phase sum given by

products of two periodic orbits of order n. In a diagonal approximation we would take both

trajectories to be trie saine or symmetrically related. This yields a factor of two diiference

between the cases with and without magnetic field, which we obtain for small values of n (or m

the slope at the origen) in our numerical simulations (see Fig. 2). Since the two curves for the

TLFF must have the same area, they have to cross at one point, indicating that the diagonal
approximation ceases to be valid for long trajectories. Therefore, for relatively low n we con

approximate the Fourier components se as simply given by periodic orbits hitting n times the

vertical cross sections.

The semidassical approach allows us to give an intuitive interpretation of the Wigner time.

According to equations (9.2) and (C.2) we have

T~(E)
=

~ £ S*
~~~'

=

~ £ ~j £ fiÎ
Ts, exp

~ (Ès Ès, 1~ fis jisi
iM

~

J'dE iN

~
h 2

iJ a, s(à,à)s,(a,à)
(C.9)

The sum is over all pairs of trajectories s and s' contributing to T, T', t or t'. In performing
the ensemble average the short trajectories (where the diagonal approximation is valid) will

dominate and for s =
s' we have

~ M

(nv(E))
= p

~ £ Ès Ts
,

(C.lo)

aô s~a,%

giving the standard interpretation of the Wigner time as the mean scattering time (mean time

of the dassical scattering trajectories averaged with their stability prefactor) or the inverse

escape rate [57] from the disordered region.
The criterion developed Section 9 was to measure the departures from the circular ensembles

by trie parameter
J~~ =

nvE~/h, which is simply the ratio between the scattering and the

diffusion times across the sample. The agreement with RMT obtained for large values of
J~~

translates into a Wigner time much larger thon the diifusing time for traversing the structure

(L( ID). That is, the particle spends in the disordered region enough time to sample it before

leaving.
Separating the reflection and transmission trajectories s of equation (C.lo)

we see that, at

the semidassical level, the Wigner time can be decomposed into transmission and reflection

components. At the quantum mechanical level, this is not possible since the matrices T, T', t

and t' are not unitary, and for a given impurity realization we obtain an imaginary part when

usmg these matrices instead of S in equation (9.2). However, these imagmary parts vanish

under ensemble average giving well-defined transmission and reflection Wigner times. These

partial times can be related with trie dassical traversai times of a diffusion through a disordered

region connected with leads (diffusion from an entrance to an exit (58, 59j). Calling T~ =
Î/uf

trie elastic scattering time, trie quasi-one-dimensional case can be discretized as a diffusion in

a one-dimensional lattice with m =
L~ Il sites. In this model it has been shown [58, 59] that

the mean traversai and reflection times are given by

Tr " Te lÎl
(j

lÎl + ))
,

(C.Il&)
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(2~ ~'
3

~ ~
~

(C.llb)

Therefore, m the large m-limit, the mean traversai time is reduced by a factor of three with

respect to the diffusion time in an infinite chain, Tr m 1/3 Te
m~

=
1/3 (L] /2D). The dassical

transmission and reflection probabilities are

T
=

,

(C.12a)

~
m

m +1 '

(C.12b)

and the total dwell time is

TD "
TTT + TRR

" Te Ill "
L~ /Vf

,

(C.13)

consistent with our findings that the Wigner time is approximately independent of disorder

and coincides with the ballistic traversai time. For quasi-one-dimensional geometries the par-
tial Wigner times obtained in the simulations after impurity average are in relatively good
agreement with the average diffusion times TTT and TRR. From equations (C.Il) and (C.12)

we con also calculate the mean length of trajectories contributing to se, that is, those hitting

n times the vertical walls at the entrance of the disordered region. For instance, for
n =

2 we

have

2TTT~ + 2TRR~
(C.14)~2 " T2 + R~

In the large m-limit, trajectories with n bounces will have a typical length proportional to n.

Appendix D

Invariant Measure of S in the Polar Decomposition Without Time-Reversal

Symmetry

In this appendix we find the metric of the scattering matrix in the polar decomposition for the

case where there is no time-reversai symmetry. The calculation follows the same fines of that

in Section 3, the diiference coming from the fact that instead of the decomposition (3.1) we

now have

s=xtzx=u'ru=Y'Y. (D.i)

The unitary matrix X diagonalizes S, U and U'
are independent block-diagonal unitary ma-

trices given by the polar decomposition (2.9). Y and Y'
are mdependent unitary matrices that

allow us to define the metric of S. Diagonalizing r as in equation (3A) we have the same Y as

before (Eq. (3.8)) and

, , ~
u(3)p j~(3)Q

~ ~ ~ ~ u(~)Q -iu(~)P ~~'~~

The infinitesimal variations of Y, u(~), and u(~)
are given in terms of the antihermitian

matrices ôY, ôu(~) and ôu(~) by equations (3.9) and (3.lo). Analogously, we can write

dY
=

Y' ôY'
,

(D.3)



322 JOURNAL DE PHYSIQUE I N°3

du(~)
=

u~~) ôu(~)
,

ôu(~)
=

da(~) + i ds(~)
,

l
=

3, 4. (D.4)

Therefore the mfinitesimal variations of S are given by

dS
=

Y' (ôY'+ ôY) Y
=

Y' (idji) Y (D.5)

The hermitian matrix dji defines the metric of S by [7]

2N 2N

p(dS)
=

fl Re(dji),j flIm(dji)ij
,

(D.6)

>ij ><j

and is given by

dji=2 ~ i'dQ-QdP
PdQ-QdP o

P(ds~~l + ds(~l)P + Q(ds(~) + ds(~))Q -P(da(~l da(~l)Q + Q(da(~) da(~l)P
~ Q(dal~) dal~) )P P(dal~l dal~) Q Q(ds(~) + dsl~) )Q + P(dsl~l + ds(~) )P

P(dal~) + da(~) )P + Q(dal~) + dal~))Q P(dsl~) ds(~) )Q Q(ds(~) ds(~l)P
~~ Q(ds(~) ds(~) )P + P(ds(~) ds(~) Q Q(da(~) + da(~) Q + P(da(~) + da(~l )P

(D.71

In order to calculate the invariant measure of S it is convenient to break the product (D.6)

over the real and imaginary parts of the elements of dji
as

N N§ ~~~~~~~'~~~ §
2/Ç(1 + Àa

~~
'

~~'~~~

~

Î~
~ ~~~~~~~ ~~~~~~~~~

~~~
~~~~~~~'~~~ ~~~~É)b,a+N

"

à ~a À~
4

N

a<b
~a ~ l à~ +

àilf/
,

1~~~~~~~~
~~~~~ia+N.b+N Im(dH)a,à+~ ~~n~à~/~~,~~~

j ~~ ~~

(D.8bi

~~~
~~ ~ ~~ ~

~

~~~~

N Nfl Re(dÉ)a,a Re(dH)a+~,a+~ Im(dÉ)a,a+~
=

fl (PI (d811~ + d8[Ill + QI (d811~ + d81$~l)
a=1 a=1

x (QÎ (ds[[~'+ ds[$~) + PÎ (dsi$~ + ds[Î~)) x (Paoa (ds[[) ds[[)) QaPa (ds[[) ds[[)))
(D.8d)

The last product, equation (D.8d), shows the redundancy of the polar decomposition m the

absence of time-reversal symmetry. The matrix S is unchanged if in its polar decomposition

we make the transformation [Soi
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U
-

GU U'
-

U'G~
,

G
=

(Î j
,

(D.9)

where the blocks are pure-phase diagonal matrices, Ça
= exp (iJ~a ). Under this transformation

we have

ds[~j - ds[~j + dJ~a
,

=
1, 2 (3, 4) (D.10)

and the r h-s- of equation (D.8d) remains uncha.nged. Since dJ~a are arbitrary we take them

equal to
dsÎÎ

[Soi, and when multiplying both sides of the equation above by fl$_~ dsÎÎ
we

obtain the transformation of the volume element as

fl Re(dji)a
a

Re(dH)a+~
~+~

Im(dji)a
a+~

ds[[)
=

fl ~~ fl ds[~j (D.Il)
Î~

' '

Î~

a
+ 1

Î~

As in the time-symmetric case, we express the Jacobian of the transformation in the Gibbs

form (4.2), with an inverse effective temperature fl
=

2 and an effective Hamiltonian (4.3)

given by the same logarithmic interaction as before (Eq. (4.4)) and a one-body potential:

V(À)
=

N log (1 + À)
,

(D.12)

which comcides with fl
=

1 potential up to order N terms but diifers
m

the terms of order

unity (N°).
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