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Abstract. The Beth Uhlenbeck formula gives an exact (quantum) expression of the second

virial correction to the equation of state of
a

(slightly degenerate) dilute gas. We show how this

result con be extended ta arbitrary degeneracy provided that the interaction potential has a

sufliciently short range. For this purpose we develop a formalism based
on the

use
of Ursell

operators, which contain no symmetrization in themselves (they correspond to an
auxiliary

system of distinguishable partiales) and we show how they cari also be used for a system of

identical partiales. A concise expression generalizing the Beth Uhlenbeck formula
is

obtained,
which is equally valid for bosons and fermions. Higher order corrections are also introduced.

The formalism is rather general and will be applied to other cases m
forthcorning articles.

l, Introduction

The Beth Uhlenbeck formula [1, 21 gives an exact expression of tl~e second virial coefficient

as a function of ail collision phase shifts associated with the interaction potential. This is a

remarkable result which, in a concise formula including no phenome1~ologicaI constant, relates

macroscopic and microscopic quantities: on the ol~e hard, the density, the temperature, and

the pressure of
a gas, on the other l~and, the quantum phase sl~ifts, wl~icl~ are exactly calculable

from the Schrôdinger equatiol~. A doser inspection shows that the pressure correction is the

sum of two contributions, one of pure statistics, and a second ansing from the interactions;

the former is actually nothing but the first-order term of the expansion in nÀ~ of the ideal

gas equation of state (n is the number density and the thermal wavelength). It is therefore

not surprising that tl~e validity of tl~e formula sl~ould require two conditions, tl~at tl~e gas

be dilute with respect to both degeneracy effects (nÀ~ < 1) and interaction eoEects as well

(nb~ « 1, where b is the range of the interaction potential). A raturai question is whether

one con release the first of these conditions and study gaseous systems over a forger range,

going continuously from the classical region where nÀ~ < to the quantum region where this

qual~tity is comparable to one. One would just assume that the gas remains always dilute in

terms of the interactions. As a matter of fact, most classical textbooks on quantum statistical

mechanics include a study of gaseous systems that are degenerate and imperfect. The methods

(*) UA associée
au

CNRS n° 18, laboratoire associé à l'Université Pierre et Marie Curie.
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they use are based on various forms of perturbation theory; for instance they introduce an

auxiliary pseudopotential which replaces the real interaction potential [3], or they make a

direct substitution of a collision T matrix for this potential [4], or use variational methods [Si.
This well known approach is, nevertheless, different from that of Beth and Uhlenbeck whose

calculation is exact (of
course they limit the caIculatio1~ to the first density correction to the

equation of state, but this is precisely the definition of the second virial correction ). In essence,

the cluster expansion method they use is a method providing directly density expansions, as

opposed to interaction expansions, which require at least partial resummations of diagrams
in powers of the interaction potential [fil to reconstruct the T matrix from V and to obtail~

density expansions. Actually, the exact treatment of tl~e relative motion of two partides
is explicit in the Beth Uhlenbeck formula, which contains a thermal exponential of the two

partiale Hamiltonian ensuring that thermal equilibrium has been reached, in other words that

the binary correlations between the partiales are treated properly. Technically, a characteristic

of this approach is that no expression which diverges for repulsive hard cores is ever writtel~,

even at some intermediate stage. It therefore seems to be an attractive possibility to try and

extend the method to degenerate systems, if only to compare the result of both methods,
interaction and density expansions. This is the subject of the present article; we show that

concise and exact formulas con indeed be written that provide a natltral ge1~eraIization of the

Beth Uhlenbeck formula, without requiring complicated algebra.
For this purpose, we will make use of a generalization of the quantum Ursell il duster

functions introduced initially by Kahn and Uhlenbeck [7]: Ursell operators which intrinsically
do not contain statistics (as opposed to the usual quantum Ursell functions [9, loi, which are

fully symmetrized). The action of the operators is defined, not only in tl~e space of symmetric

or antisymmetric states of tl~e real system, but also in tl~e larger space of an auxiliary system
of distinguisl~able partiales. If the system is dilute in terms of the interactions but not of

statistics, this makes it possible to limit the calculation to low order Ursell operators while,
with the usual (fully symmetrized) Ursell functions, one would need to include higher and

higher orders with increasing degeneracy (~). Of course, this method implies that we have

to give up well-known advantages of the formalism of second qual~tization, but this is the

price to pay for the treatment of interactions and statistics in completely independent steps.
It also means that an explicit symmetrization of the wave functions becomes indispensable
at some point and, moreover, that no approximation whatsoever cari be made at this step:

otherwise the possibility of treating strongly degenerate systems would be lost. Fortunately it

turns out that the symmetrization operation cal~ indeed be performed exactly. This is done by
introducing simple products of operators, correspondil~g to exchange cycles, or more generally
simple functions of operators (fractions) that correspond to summations over the size of these

cycles ltp to infil~ity. Physically, this allows us to emphasize the role of the size of exchange
cycles [1Ii that take place in a physical system of identical partides and shows, in eacl~ situation,
wl~icl~ size is dominant in tl~e determination of its properties, pressure for instance.

Another feature of the method is that it naturally provides expressions for the ol~e- and

twc-body density operators, which is of course convenient if one is interested in a detailed

study of correlations. Also, the formalism cari be applied to other physical problems, such

as the Bose-Einstein condensation. These questions will be the subject of coming articles; a

preliminary report on this work has been given in Il1].

(~) The initial introduction of the Ursell functions was made by him within classical statistical
me-

chanics [8], and generalized ten years later to quantum mechanics by Kahn and Uhlenbeck.

(~) As discussed in iii], when a Bose Einstein condensation takes place, the Ursell operators bave
no

singular variation, which is another way to see
that they are not sensitive to degeneracy by themselves.
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2. Ursell Operators

In tue canonical ensemble, tue partition function ZN of a system of indistinguishable partides

is given by a trace inside tue space of symmetrical (or antisymmetrical) states. Nevertheless,
with the help of tue projectors S and A onto these (sub)spaces, tue trace can be extended to

a larger space, which is associated with tue same number of distinguishable partides:

ZN
=

Tr
KN ~

(l)
A

In ibis equation, S applies for bosons while A applies for fermions, and tue operators KN are

defined by:
Ki

= exp -flHo (1)

K2
" exp -fl [Ho(1) + Ho(2) + V12]

N
~~~

KN
= exp -fl £ Ho (1) + £ Kj

~=1 ~>J

with tue usual notation: Ho(1) is tue one-particle Hamiltonian induding kinetic energy and

an externat potential (if there is any in tue problem), Kj is tue interaction potential between

particles with labels and j. We now use duster techniques to expand operators exactly in tue

same way as one usually does for functions. Tue Ursell operators Ui (1 =
1, 2, --NJ are therefore

defined according to:

Ui
=

Ki

U2(1,2)
=

K2(1,2) Ki(1)Ki(2)
(3)

U3(1,2,3)
=

K3(1,2,3) K2(1,2)Ki(3) K2(2,3)Ki(1)

-K2(3>1)Ki (2) + 2Ki (1)K2(2)Ki (3)

etc.. Conversely, in terms of tue Ursell operators, tue N partide operator KN con be wntten

in tue form:

I~N
"

£ £ Ul(.)f~l(.)...f~l(.) X f~2(., .)f~2(., .)...f~2(., .) Xf~3(.,
,

(~)

l~l1 l~'l mi fLtors
' '

mi £tors '

where the first summation is made on ail possible ways to decompose the number of partides

asl

N
#

£lill( (5)

The second summation corresponds to ail non-equivalent (3) ways to distribute the N partides

into the variables of the Ursell operators, symbolized by dots in (4). Ii is convenient to simplify

(~) For instance U2(1, 2)U3(3, 4, 5) and U2(2, 1)U3(4, 3, 5) correspond ta equivalent distributions of 5

partiales, since the very definition of trie Ursell operators implies that the order mside each Ui is

irrelevant.
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the two summations into one:

L ~
~

~ (~)

(m[ ) (D') lUj

which is meant over ail non-equivalent ways to distribute the partides into various sequences

of U's. There is little difference between our definitions and those of Section 4.2 of [9] or [loi :

we use operators instead of symmetrized functions and, more importantly, the action of these

operators is defined, Dot only within the state space that is appropriate for bosons or fermions,
but also in tue larger space obtained by the tensor product that occurs for distinguishable
partides. Hence tue need for an explicit inclusion of S or A in (I).

We now decompose tuese operators into a sum of permutations Fa tuat, in tutu, we decom-

pose into mdependent cycles C of particles (~).

=

( L L Ci(.)Ci(.)Ci(.) x~~~ f2(.;)C2(.;)C2(.;) xC3(.,
.,

).... (7)

~~~ ~~~
mi factors m2

~tors

wuere tue first summation is similar to tuat of (4), wuile tue second corresponds to ail non-

equivalent (~) ways to distribute numbers ranging from one to N into tue variables of tue

various C's. In tuis equation, tue operator S applies for bosons witu
i~ =

+1, wuile A witu

i~ =
-1 applies for fermions. We also simplify tue notation mto:

£ £
~

£ (8)

lm~1 lDj jP~ j

We can now insert (4) and (7) into (1) and obtain, wituin a double summation, numbers tuat

are traces calculated in tue space of distinguisuable partides, 1-e- in tue ordinary tensor product
of N single particle state spaces. Inside most of tue terms of tue summation, a factorization

into traces taken inside smaller subspaces occurs. For instance, if tue term in question contains

a partide number1 contained at tue same time in a Ui operator as well as in a Ci, tue

contribution of that partide completely separates by mtroducing the simple number Tr (Ui).
Or, if n partides are ail in the same Un but ail in separate Ci's, this group of partides

contributes by a factor Tri..n (Un) if they are ail
m

different Ui's but also contained in one

single large cycle Cm, their contribution also factorizes separately. More generally,
m each term

of the double summation, partides group into dusters U-C dusters), which associate together
ail partides that are linked either (6) by cycles Ci (with > 1) or by Ursell operators Ui, (with

1' > 1). Tue general term is therefore the product of the contributions of ail the dusters that

it contains and one can write:

~N
~ ~ ~ ~ ~cluster('>j, k> ..) (9)

(Poe ) (U) clusters

(~)We
use

trie same notation as in reference [11]: Ck(1,j,k,..) denotes
a

cycle where partiale
replaces partiale j, partiale j replaces particle k, etc. This should net be confused with the notation

P(1, j, k,..) for
a

general permutation (non necessarily
a

cycle) where partiale replaces particle 1,
partiale j partiale 2, partiale k partiale 3, etc. Any P

con
be decomposed into a product of C's; for

instance, P(2, 1, 3)
=

C2(1, 2)Ci(3).
(~)Inside

every cycle,
a circular permutation of the variables has no elfect and therefore does net

affect the permutation P~.
(6)There

are therefore two explicitly distinct origins ta the clustering of particles in this point of

view: belonging ta the same Ui, or ta the same cycle Ci This
is distinct from usual cluster theories

where, either only interactions introduce clustering (as
m

classical statistical mechanics),
or

trie two

origins are net exphcitely distinguished (as in
usual quantum cluster theory).
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where (1, j, k,..) is tue index number of partides contained within tue duster; tue number of

dusters into which each term of trie double summation is factorized depends, in general, on

this particular term.

3. Diagrams

Clusters differing only by trie numbering of partides that they contain give tue sonne contribu-

tion. It is therefore useful to reason in terms of diagrams U-C diagrams), which emphasize tue

way particles are connected through exchange cycles and Ursell operators, rather than their

numbering. For instance, tue first diagram will correspond to one partide in a Ui and in a Ci
(whatever tue numbering of tue partide is), and contribute tue value Tr (Ui)

as mentioned

above; another diagram will introduce tue value Tri,2 (U2), etc.; m this section we discuss

more generally how diagrarns can be defined in a convenient way.

3.1. DEFINITION AND COUNTING. The value of any diagram containing nd>ag. partides

can be written as a trace over the variables of nd;ag. partides numbered arbitranly:

l'd>ag. =
~~~~~~~" Tri,2,..n~,~~ (Ui(1)..Ui(ri)U2(ri +1, ri + 2)...Ci(1). Ci(j)C~(1, s). .) (10)

Here pk is the number of cycles (~) of length k; the factor i~P2+P4+.. arises from the factors q's
in (7) and corresponds to the contribution of the panty of the permutations contained in the

diagram to the total permutation of the N partides. Now, inside each term of the multiple
summation, a given diagram l'd;ag. may occur several times; we then note md;ag. tue number

of times it is repeated, and we get:

~N
"

( L L fl fd'ag.i~~'~~ (~~)

lP«1lui d>ag.

with tue obvious relation:

N
"

£
md>ag. X ndiag. (12)

d>ag.

Of course identical diagrams appear, not only m tue same term of tue double summation, but

also in many different terms. Therefore, if £
j~~,~~ j

symbolizes a summation over ail possible

ways to decompose N according to (12),
we can also wnte:

z~
=

j z
c imà;~~,i x

n ira;~~.imd&~ (13)

lmd>ag d>ag.

where c
(md;ag.) is tue number of terms in tue double summation of (11) that correspond to

this particular decomposition of N.

To evaluate this number, we bave to specify more precisely how tue U-C diagrarns are con-

structed. In every duster, we represent tue permutation cycles Ck by horizontal fines containing
k boxes, or segments, which are available to numbered partides. When tue corresponding par-

tiffes are inside Ui's,
we

do not add anything to tue diagram; when they are contained inside

U2's, we join the corresponding segments by an additional double hne, a triple fine for U3's,

etc. For instance, if we consider the pure exchange duster:

l'~ju~ter
=

Tri,2,..
7

(Ui(1)Ui(2)..Ui(7)C7(1, 2,. 7)) (14)

(~) One obviously has: pi + 2p2 +
= nd,ag
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(a) (b)

(c)

(d)

(e)

Fig. l. Examples of U-C diagrams. For an
ideal gas, only linear U-C diagrarns containing chains

of one-partiale Ursell operators Ui occur, as
shown in (a);

a summation of the contribution of these

diagrams over the length of the chain gives the grand potential (multipbed by -fl). The generalization
of trie Beth Uhlenbeck formula anses from the diagrams shown in

(b) and (c) contaimng Que single
two-body Ursell operator U21 for each of them, a summation over trie lengths of the Ui chairs is aise

necessary. Figure (d) shows
an

example of a
diagram containing

a
friree-body U3 operator and three

Ui chains, with
a

counting factor g =
2. Figure (e) shows an example of multiple connection through

an U3 operator, which aise introduces
a factor g =

2 in the weight of the diagrarn. For
more details

on
the definition and counting of the diagrarns,

see
Appendix A.
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the corresponding diagram will be that of Figure la. This kind of linear diagram is the only
possibility for an ideal gas; to generate a l'~ju~ter appearing in (9), it must receive a numbered

partide in the first segment of the fine, in the second the partide which is replaced by it

under the effect of the permutation cycle, in the third the partide which is replaced by that

m the second segment, etc. Equation (14) gives what we will call the "explicit value" of the

contribution of the diagram; using simple transformations (sec Ref. il1] or Sect. 4,1), one con

obtain the simpler "reduced value" Tri ([Ui(1))~).
If we now start from a duster which contains one single U21

l'~ju~t~r
=

Tri,2,...9 (U2(1, 2)Ui(3)Ui (4)Ui(5)..Ui(9)C3(1, 3, 4)C6(2, 5,...9)) (15)

we obtain the diagram shown in Figures 16; in the same way, the duster:

l'~ju~ter
"

Tri,2,...io (U2(1, 6)Ui (2)Ui (3)..Ui (10)Cio(1, 2, 3,., 6,..10)) (16)

leads to the diagram of Figure lc. These two kinds of diagrarns tutu oui to be the only ones

that are necessary to generalize the Beth Uhlenbeck formula; we give their reduced values in

Section 4.2. Figure ld shows an example of a diagram containing one single U3, and arising
from the trace:

I'= Tri,2,...16 (U3(1,2,3)Ui(4)Ui(5)..Ui(16)C3(1,4, 5)C8(2, 6..12)C5(3,..16)) (17)

and Figure le gives another similar exarnple. Clearly, the process can be generalized to associate

a diagram to any duster, however large and complex.
But it is not suilicient to construct diagrams, we must also choose explicit rules (~) ensuring

that every l'~ju~ter appearing in (9), where the partides are still numbered, will correspond
to one single, well defined, diagram; for instance, for the duster written in (15),

we must

decide whether the diagram will be that shown in Figure 16 or another where the lowest

cycle ("base cycle" is that of length 6 instead of 3. We will avoid this kind of ambiguity by
choosing rules which fix, for every duster associated with a given diagram, where exactly each

numbered partide should fait into the diagram. These rules ensure that no double counting of

dusters may occur; they also determine how the geometrical characteristics of the diagrams
(the lengths of the successive cycles) con be varied, which in tutu determines the way in which

the summations over lengths will be made
m a second step (next section). For our purpose in

this article, we do net need to study the most general case (this discussion is given in Appendix
A); ii will be suilicient to remember that the first particle m

the lowest cycle ("base cycle"

must be, among_ail partides contained in the Ui of highest order 1, that which has the lowest

index number for the configuration to be correct.

The preceding rules aise introduce the "counting factors" corresponding to the probability
of obtaining a correct representation of a duster by throwing numbered partides at ramdam

into a diagram; the counting factors are used below to obtain the value of c (md;ag. ). Suppose
for instance that we distribute k numbered partides into a linear diagram of the kind shown in

Figure la m ail possible ways; it is dear that there is a probability 1/k that the first partides
will have the lowest index number as required, which leads to the following counting factor

fd;ag. for pure exchange cycles:

fà;ag.
=

j
(18)

(~) There is some flexibility in finis choice, and here we attempt ta take the most convenient convention,

but ii is net necessarily the only possiblity.
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(a) (b)

Fig. 2. Other examples of U-C diagrams. As in Figure 1, horizontal fines correspond ta exchange
cycles containing Ui operators; vertical double fines symbol12e U2 operators (triple bnes would be used

for U3, etc. ). Formula (19) gives the weight of these diagrams;
a more expbcit calculation of these two

terms is
given in

Appendix B.

(in other words, if one puts numbered partides into a cycle Ck(.,
., .,

..),
one can obtain the

same permutation k different times). Similarly, it is easy to see that the counting factors of

the diagrams of Figures 16 and c are
1/2, which corresponds to the probability of having the

partide numbers contained inside the single U2 m the correct order. The general value of

counting factors is given m Appendix A; in many practical situations (when case (ii) of this

Appendix does net occur)
we can ignore the g's in formula (A,l) and use the simpler form:

fd;ag. =
lPi~ x iml~~ (19)

where lM is the largest order of the Ursell operator contained in the diagram (one for Fig.
la, two for Figs. b and c, three for Figs. ld and e) while pim is the number of these Ursell

operators in this particular diagram (7 for Fig. la, one for ail the other cases in this figure).
Two other examples of diagrarns for which this formula is valid are given in Figure 2; as an

illustration, they are explicitly calculated in Appendix B.

We are now m a position to calculate c(md;ag.). This number can be obtained by dis-

tributing the N particles within the sites of ail the diagrams of a series defined by the m's,
which can be clone in N! different ways, and counting how many times the same term of the

double summation of (11) is obtained. Since there are md;ag.! ways to interchange the order

of ail U-C dusters arising from the same diagram, there is a first redundancy factor equal to

fl~;~~ (md;ag.!) that cames in. Moreover, there is aise only a proportion (fd;ag.)~~'~~' of the

obtained configurations that is acceptable. Altogether, the net result is

c
jmà;ag.i

=
Ni ~I ~~( ,

jjà;ag.i~da~ (20)

~,~~ ,ag..

3.2. Two SUMMATIONS. We now
take advantage of the fact that (20) contains factorials

and, m a
second step, that the value of fd;ag. depends on the topology of the diagrams, but

net on the size of the chains of Ui's that it contains (except for pure exchange cycles). This
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allows us to group together series of terms in (13). The first summation is clone classically by
going to the grand canonical ensemble and defining the corresponding partition function by:

Zg_~_ =

£ e~"~ZN (21)

N

Then a useful simplification occurs because the sums over the md;ag.'s are now independent;

moreover tue factors eP"'/
can be reconstructed by multiplying every number l'd;~g, by e~""d>ag.

,

so that:

Zg_~, =

fl
exp [exp (flpnd;ag.) x fd>ag. x l'd;~~_] (22)

d;ag.

We therefore obtain the grand potential (multiplied by -fl) in tue form:

LogZg,~_ =

£ e~""d'~g
x fd;ag. x l'd;ag. (23)

diag.

This is an exact formula, which gives tue value of tue pressure of tue system (multiplied by its

volume and divided by tue temperature).
Tue second summation which can now be clone consists in grouping together tue contribu-

tions of ail U-C diagrams that have the sonne "frame" (or "skeleton"): we sum tue diagrarns
which have the saine topology and ailler only, inside the horizontal fines that represent the

permutation cycles, by the lengths of the intermediate chains of Ui's that connect together
the partides contained in the Ui's with 1> 1. Beside the fact that this operation tutus eut to

be mathematically simple it merely leads to the introduction of fractions of the operator Ui

as we will see in the next section (see aise the discussion of Sect. 2 of Ref. [Il])
-,

it is aise

indispensable from a physical point of view: we have to make a summation over ail lengths
of intermediate horizontal chains of Ui's m order to take into account an arbitrary degree of

degeneracy. We call "Masses" these groups of topologically equivalent U-C diagrarns; classes

may aise be represented by diagrams (E-diagrams) which are, m a sense, simpler than the

original diagrams since any indication of the length of the cycles has been removed. Examples

are shown in Figure 3 where dashed fines mean that a summation over cycle length is implied.
We call B~j~~~ tue contribution of a Mass; because the counting factors fd;ag. are equal for ail

diagrams of the same Mass (~), one can write:

~~~~~~ ~~~~~ d>a(iass
~~~~~'~~ ~ ~~'~~' ~24~

In terms of classes, (23) becomes:

LOg Zg_C. "

£
~Cl&SS (25)

Cl&SSeS

As (23), this is an exact formula, containing extensive quantifies in bath stries, and thus well

adapted to approximations (as opposed to Zg,~, itself). We shall see below that the first term

of the summation gives the grand potential (~°) of an ideal, (degenerate), gas, which we shall

note E;deai The generalized Beth Uhlenbeck formula is contained in the second and the third

term in the summation, which we shall note E(;~~~~ and E(~~~, if, moreover, in each of these

two classes, one limits the summation of (24) to its first term (lowest order in Ui ), one recovers

the usual formula, valid only for weakly degenerate gases.

(~) Except for the ideal gas, which is a special case.

(~° More precisely, trie la garithms of partition functions give the value of the grand potential multipbed

by -/J.
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1---------1

(a) (b)

(c) (d)

(e)

Fig. 3. E diagrams introduced by the summation of the diagrams of Figure 1 over the lengths of

the Ui chains, according to formula (24). The dashed fines, which symbolize these summations, cari be

replaced by intermediate operators given by fractions 1/ il ~zUi), where
z = exp flp; every operator

Ui, with1 > 2, remains expirait and, moreover, introduces
a

factor z~; finally, the weights fd>ag. must

aise be inserted in the value of the E diagram.

4. Dilute Degenerate Systems

4.1. IDEAL GAS. We first check that the first Mass of diagrams reconstructs the grand
potential (multiplied by -fl) of the ideal gas. This Mass, symbolized in Figure 3a, correiponds

to the summation of the contribution of pure exchange cycles containing only Ui's, summed

over any length k ranging from one to infinity. We know from (18) the counting factor, so

that we just need to calculate the numerical contribution l'k of every cycle. The result, proved

below, is simple:

r~
=

~k+i Tr juij~ (26)
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where:
for basons

(27)~
-l for fermions

This is again a consequence of the fact that the trace over the N partides contained in the

diagram is taken in a space that is simply the tensor product of k single particle spaces of

state. Because the numbering of the partides ares net affect the value of l'k (it just changes
the names of dummy variables),

we can for convenience renumber the relevant partides from

1 to k. Tue effect of Ck is then to move partide into the place initially occupied by partide
2, partide 2 into tue place occupied by partide 3, and so on, until one cames back to tue

place of partide 1. Introducing a
complete set of states (( çJn)) in tue one-particle space of

states (~~), one can then write:

rk
=

~~+~ L (1 ~2ni 1Ui(1) 1 ~2n~)12 ~2n~ 1Ui(2) 12
: ~2n~)

x x (k ~2n~ Ui(k) k ~2ni =
iJ~+~ Tr (lUil~ (28)

(the factor i~~+~ is equal to the parity of the cycle which enfers the definition of A for fermions).
We now have to make the summation:

which contains a well known series:

~2 ~3 ~4
x + i~- + + i~- +.. =

-i~Log il i~x) (30)

We therefore get for the grand potential (multiplied by -fl) of the ideal gas:

B;deai
" -~ Tr (Log [1 i~

e~" Uij (31)

This is the dassical result. For instance, we can assume that Ho, the one-partide Hamiltonian,

is equal to P~ /2m (kinetic energy of a partide m a
box) by replacing in (31) the trace by a sum

over
d3k, and Ui by its diagonal element e~~~~~~/~~, one immediately recovers usual formulas

tuai are found in most textbooks on statistical mechanics. Indeed, the method that we have

used is more indirect tuan tue traditional metuod, but ii gives a puysical interpretation to tue

term in [Ui]~ tuat is obtained by expanding the logaritumic function of (31): it corresponds

to the contribution of ail possible cydic exchanges of k partides m the system.

4.2. FIRST CORRECTION FOR SHORT RANGE POTENTIALS

4.2.1. Correction to trie Partition ~ilnction. What happens now if we add the two following

terms in (25), which contain one single U2 and no Ursell operator of higher order ? Let us start

with the first Mass of diagrams, shown m figure 3b where the two partides in the U2 operator

belong to two different exchange cycles, and which we will call direct diagrams. In the first

(~~ If the partiales have infernal states, the index
n

symbolizes ai the same lime the orbital quantum

nurnbers as well as those characterizing trie infernal state. For instance, if the particles bave spin I,
a

surnrnation written as
£~ contains

in
fact two summations, one over

orbital quantum numbers, and

a second over
(21+ 1) spin states.
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diagram of this Mass, the two cycles are of length k
=

1 (identities) and only two partides,
unaffected by exchange, are involved; this simply introduces the contribution:

Fll
"

Tll,2 (U2(1, 2)) (32)

Tue next diagram m ibis Mass corresponds to three dustered particles, two contained in tue

same U2 and two in one permutation operator C2. Tue numerical value of tuis second diagram
is:

I'2,1
" ~ Tri,2,3 (U2(1, 2)Ui(3)C2(1, 3)Ci (2))

(33)
"

~lTll,2,3(U2(1,2)Ul(3)l~ex.(1,3))

or:

F2,1
= Q

£ (1 1l~ni (2 l~n~ U2(1, 2) 1 l~n~) 2 l~n~)(§7n~ Ui §7ni (34)

wuicu provides tue following reduced value:

F2,1 " Q Tli,2 iU2(1, 2)Ui(1)j (35)

Similarly, one would calculate a contribution l'i,2 arismg from tue excuange of partides 2 and

3, and obtained by replacing in (35) Ui(1) by Ui(2). More generally, wuen a U2 operator

dusters togetuer ki partides, belonging to tue same permutation cycle of lengtu ki, witu k2
partides belonging to anotuer cycle of lengtu k2, tue calculation of tue effect of eacu of tuese

cycles remains very similar to tuat of Section 4.1: now we bave two partides tuat separately
excuange witu otuers, but tue algebra of operators remains tue same for eacu of tuem. We

tuerefore get tue reduced value:

l'k,,k~
" n~~ ~~n~~~~ Tri,2 (U2(1, 2) [Ui (1)]~~~~ [Ui (2)]~~~~ (36)

For tuis dass of diagrams, according to (19) tue counting factor f is simply 1/2. Tue last step

is to make a summation over ail possible values of ki and k2 after inserting an exponential of

fl times tue cuemical potential multiplied by tue number of particles contained in tue diagrarn:

~~,~~~~ =

l £ ~#p(k,+k~)~~
~ ~~~~

2 1> 2

ki,k~

Tuis operation cari be clone by using tue relation:

~
~'~~~~

l

qx
~~~~

One tuerefore introduces fractions of tue Ui's operators, wuicu results in tue expression:

i e#P e#P
~~'~~~~ 2~~'~ Î~~~'~~1

q e#HUI(1) q e#HUI (2) ~~~~

For tue second Mass of diagrams, excuange diagrams suown in Figure 3c, tue two parti-
des contained in U2 are intermixed inside tue same circular permutation. Tue first excuange
diagram corresponds to tue two particles contained in tue same transposition:

I'(~i
=

Tri,2 (U2(1, 2)qC2(1, 2))
= q Tri,2 (U2(1, 2)P~x_ ) (40)
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Tue second contains turee partides:

I'(~j
=

Tri,2,3 (U2(1,2)Ui(3)C3(1,2,3)) (41)

wuicu is equal to:

~ÎÎ2 ~
~~ '§~nl ~~'§~n2 1~2~~'~~ '§~n2~ 1~'§~n3~~§~n3 1~l §~nl~ ~~~~

nl,n2>"3

Now, we can use tue equality:

(i:ç~~~ (2:ç~~~ ju~(1,2)ji:ç~~~jj2:ç~~~)=

=
(i ~oni (2 ~on~ U2(1, 2)Pex. i ~on~) 12 ~on~ (43)

wuicu allows us to get tue same summation over indices as in equation (34) and to obtain tue

reduced value:

I'()j
=

Tri,2 (U2(1, 2)P~x_Ui (1)) (44)

Anotuer, very similar, term occurs if tue circular permutation C3(1,2,3) of (41) is replaced
by C3(1, 3, 2); tue calculation can easily be repeated and provides tue result:

Fiji
=

Tri,2 (U2(1, 2)Pex_Ui(2)) (45)

From tue preceding equations it is non diilicult to see that the generic term of this second

Mass of diagrarns is obtained from (36) by a simple replacement of U2 by the product i~U2P~x,.
Inserting a Pex, into (39) therefore provides E]~~~ Finally, the value of the grand potential
(multiplied by -fl), to first order m U2, is given by:

~°~ ~~'~' ~'~~~ ~ ~~'~ ~~~~ ~~~'~~ ~~ ~
Î~~~

q

ÎH
Ui(1) q

ÎHUI
(2)

l~~~~

This result is valid within an approximation which is basically a second virial treatment of

the interactions, while it contains ail statistical corrections. The formula remains therefore valid

if the degree of degeneracy of the gas is significant. Nevertheless, as pointed out for instance

m Section 2.1 of reference [12] and in reference [13], virial series (even summed to infinity)

are no longer appropnate beyond values where the density exceeds that of a phase transition;
this is because singularities in the thermodynamic quantities occur at a transition (in the limit

of infinite systems). Therefore, for basons, the validity of (46) is limited to non-condensed

systems. The discussion of what happens when a Bose Einstein condensation takes place will

be given m a future article

4.2.2. Comparison with trie Usual Beth Uhle~lbeck Formula. We now show that equation (46)
reduces to the Beth Uhlenbeck formula if the two denominators containing Ui's are replaced

by one, an operation which is valid in the limit of low densities where e~" is small. To see the

equivalence between the low density limit of relation (46) with the usual value of the second

virial correction, we start from the definition of the Wk functions given in equation (14.35) of

reference [9], which for k
=

2 becomes (~~):

~2(~l ~2)
"

~ (ÀT)~ £ ~Éns(~l, ~2) Î~ ~
~~"~ (~~)

n~

(~~) We assume
for simplicity that the partiales have no

infernal state (or, if they do, that they are ail

in trie sa~ne
internai state).
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where the functions iIn~ (ri, r2)
are a complete set of stationary states for the system of identical

partides (they are properly symmetrized); the thermal wavelength is defined by:

~~
ùù

~~~~

Relation (47) can be transformed into:

W2(ri, r2)
"

2 (ÀT)~ (l ri, 2 : r2
£ iIn~)(iIn~ e~~~ 1 : ri, 2 r2) (49)

n~

Inside this equation appears a dosure summation over the symmetrized states of the system

so that:

W2(ri, r2)
"

2 (ÀT)~ Il
: ri 2 : r2

Se~~~ 1 : ri 2 :
r~) (50)

(for fermions, S is replaced by A). From this function reference [9) defines the Ursell function
Uf(ri,r2) by:

Uf(ri>r2)
"

W2(ri, r2) Wi(ri)Wi(r2)
"

AW2(ri> r2) + U]~~~'~~~(ri>r2) (51)

where AW2 (ri >r2) is the difference between the values of W2(ri>r2) with and without inter-

action potential, and U]~~~~~~(ri, r2) the value of the Ursell function for a system of two free

partides. Equation (14.49) (~3 of [9] shows that the second virial coefficient in the expansion
of the grand potential is half of the integral of Uf(ri, r2) over the variables ri and r~, mul-

tiplied by (ÀT)~~ and the inverse of the volume. But the contribution of U]~~~'~~~(ri,r~) is

automatically contained in Log Z~_~_, so that we can concentrate on AW2 (ri, r2) only. Because

the summation over ri and r2 can be written as a trace in a space which is the tensor piéduct
of two one partide state spaces, and because:

S, A
=

il + P~x] (52)

we get the result:

/d3ri d~r2 AW) (ri r2 "
2 (ÀT)~ Tri,2

U2(1,
2) ~~

~
)~~'~ (53)

where U2 (1, 2) is the difference between the exponentials of the interacting partide Hamiltonian

minus that of free partides, which is precisely our definition (3). We therefore recover our result

(46), provided the denominators 1 qe~"Ui inside the trace are replaced by one.

4.2.3. Discussion. The only difference between equation (46) and the Beth Uhlenbeck for-

mula anses from the presence of the two fractions inside the trace. Since:

1

Î#HUI
~ ~

l
ÉÎ~~UI ~~~~

they are actually nothing but operatonal forms of the usual Fermi or Bose factors (1 + q f) that

appear, for instance, in the collision term of the Uehling Uhlenbeck or Landau kinetic equation
(with the usual notation f for the distribution function). In the present case, nevertheless,

because U2 and Ui do non commute in general, the operatorial character of the fractions is

relevant: m the absence of externat potential (mutually interacting partides in a box) the

(~~) In the second edition, ibis equation is
nurnbered (la.49).
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eigenvectors of Ui are plane waves (~~), while those of U2 are different since they involve

correlations between the partides.
If the trace m the right hand side of (46) is calculated in the basis of plane waves, the

correction is expressed as an integral containing the diagonal elernents of U~ between such

plane waves. The simplest situation occurs when ail these diagonal elements have the same

sign. Then, for bosons, because the eigenvalues of the fractions are larger than 1, the effect of

degeneracy is always to enhance the effects of interactions; this is physically satisfying since

the Bose Einstein statistics tends to favor situations where partides are close. In particular, if

the potential is attractive and if there are two body bound states (molecules), their weight will

be increased with respect to what it would be in the usual Beth Uhlenbeck formula. If, on the

other hand, trie diagonal elements of U2 between plane waves change sign when the relative

momentum of the two partides changes, which may happen if the potential has attractive as

well as repulsive parts, more complicated cancellation effects may take place in both the usual

Beth Uhlenbeck formula and its generalization, so that no general prediction on the sign of the

effect of degeneracy is possible (except for the contribution of bound states of bosons which

remains enhanced as
above).

For fermions, the eigenvalues of the fractions are between 0 and 1 so that the effect of

statistics are just the opposite of what they are for bosons: they tend to reduce the effects of the

interactions, except if mutual cancellation effects take place. Moreover, if the system is strongly
degenerate, the effect of the product of the two fractions is to cancel the contribution of ail

matrix elements corresponding to partides inside the Fermi sphere, leaving only interactions

between particles neon the surface (or outside) of the Fermi sphere. This applies to bound

molecules, which introduce a contribution containing the scalar product of the bound state

wave function by ail plane waves outside of the Fermi sphere, exactly as in the Cooper problem.
A final remark is related to the convergence of the power series that we have summed into

fractions of the Ui operators (the remark applies for fermions only). As noted by Kahn and

Uhlenbeck [7], when the chemical potential of a system of fermions becomes positive, the virial

series diverge, and the equation of state is obtained by a continuation of an analytic function.

Here we observe the same phenomenon: the series in (eP"Uij ~ that we have summed over the

size k of the exchange cycles becomes divergent when p > 0; nevertheless the sum remains a

regular function and, for fermions, (46) has no singularity.

4.3. NEXT ORDER CORRECTION. We now calculate further corrections to the partition

function by induding ail diagrarns containing two U2 operators as well as those containing a

single U3 (and, of course, an arbitrary number of Ui operators connected together by exchange
cycles). We colt their respective contributions to the logarithm of the partition function E~2xu~)
and Box u~); the corresponding diagrarns are shown in Figures 4 and 5.

4.3.1. Diagiarns Conta1~ling Two U2's. As shown in Figure 4, there are altogether ten dia-

grams containing two U2's; we note that, although for instance the diagrams (a) and (b) in this

figure are topologically equivalent, they should indeed be considered as distinct; this is because

the location of the starting point corresponding to the "base partide" (with our convention,

that in the lowest left corner) is relevant according to our definition of diagrams; in the former

the "base cycle" involves another U2 operator, while in the second one it is the second exchange

cycle which connects two U2's. The corresponding rules are explicitly given in Appendix A,

Section (1).

(~~) If the particles are subject ta trie elfect of an externat potential (atoms
in a trap for instance), trie

eigenvectors of Ui
are net simple plane waves, but the essence of our

analysis remains valid.
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...~ i,i
(a) (b)

(c) (d)

Î"m mÎ"
iej (f)

(g)
(11)

(i) (J)

Fig. 4. Diagrams containing two U2 Ursell operators. Ail diagrarns have the
sonne counting factor

fciass
#

1/4. Diagrams (c) and (j) lead ta a
contribution proportional ta a trace over the stores of Orly

two partiales, whereas the expressions of the other diagrarns are proportional ta a trace over three

partiales.

The "reduced" contributions of these diagrams are relatively easy to calculate by using
rules which can be inferred (~~) from the calculations of the preceding section: (1) each extra

(~~)Alternatively,
one con always corne bock ta trie "exphcit" expression of diagrarns, reduce the

nurnber of partiales over which a trace is taken as was done for instance in (34) or (35), and check that

the calculations
are correct.



N°2 URSELL OPERATORS 197

exchange cycle (horizontal fine) introduces trace over a new partide, as well as a factor q;
(ii) dashed fines between two different U2 operators, symbolizing surnmations over the length
of Ui-chains, introduce factors (1+ q f) where the operator.f and the fugacity

z are defined

by:

l ~ÎÎUI ~~~ ~
~~~ ~~~~

In this way we obtain for the contributions of diagrarns (a) and (b) the "reduced" expressions:

Tli,2,3 iU2(1> 2) Il + Qf(1)1 Il + Qf(2)1U2(2> 3) Il + Qf(2)1 Il + Qf(3)11 (56)

and:

iJ Tri,2,3 iU2(1, 2) J + iJf(i)1 J + iJf(2)1U(1, 3) J + nf(i)1 J + nf(3)11 (57)

The diagram noted (c) in Figure 4 involves only two distinct partides and yields:

Tli,2 lU2(1, 2) Il + Qf(1)1 Il + Qf(2)ll~ (58)

As in the previous section, a U2 which connects two particles inside the same exchange cycle
(a "dosed U2" leads to an expression where the U2 is multiplied by an exchange operator qP~x,
together with a trace over the "intenor" partide. In other words, because the P~x operator
exchanges the two "legs" of the Ursell operator, the cycle of indices associated to the states

of one given partide is now restricted to a part only of the horizontal fine: when moving
horizontally in the diagram, one has to skip the part of the fine that is contained between the

two legs; as for this part, it is separately dosed under the effect of the P~~ operator, so that a

trace over a different partide is introduced. For example we get for diagram (d):

Tri,2,3 lU2(1, 2) Ii + nf(i)1 Ii + nf(2)1U2(2, 3)Pex(2, 3) Ii + nf(2)1 Ii + nf(3)11 (59)

Diagrams (e), (f) and (g) lead to expressions which ailler only by the numbering of partides
and are therefore equal; as for diagram (h), it gives the contribution:

Tri,2,3 (U2(1, 2)P~x(1, 2) il + q f(1)] il + q f(2)] U2(2, 3)P~x(2, 3) il + q f(2)] [1 + q f(3)] (60)

while (1) is equal for the same reason.

The situation is slightly more complex for a "dosed U2" operator when there is another U2

operator which links a partide "iniide" the U2 with another partide of the same exchange
cycle but "outside", as in diagram (j); in this case it tutus out that no additional particle is

needed. A calculation based either on the rules of the preceding paragraph, or starting from

the "explicit expression" of this diagram, shows that its contribution is given by a trace over

two partides only:

Tri,2 lU2(1, 2) J + nf(i)1J + nf(2)1U2(1, 2)Pex(1, 2) Ii + nf(i)1J + nf(2)11 (61)

We then have to insert the counting factors f~ja~~. In each diagram, U2 is the highest order

Ursell operator and there are two of them, so that according to formula (62) the counting
factors are the same for ail classes and are equal to 1/4. Finally, using the faon that U2(1, 2)

is invariant under exchange of partides 1 and 2 and that the numbering of particles inside the

trace is irrelevant (dummy indices), we can write the complete contribution of ail diagrams
with two U2 and an arbitrary number of Ui operators in the form:

E(2x u~) "
(Tli,2 (UÎ'~(1, 2) il + q j(1)j il + q j(2)j)

~

+2qz~ Tri,2,3 (Ul'~(1, 2) il + q f(1)) il + q f(2))

X UÎ'~(1> 3) Il + Qf(1)1 Il + Qf(3)1) (62)
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where Ul'~ is defined as the symmetrized version of U21

Ul'~
=

U2
~ ~ j~ ~~' ~~ (63)

4.3.2. Diagrams Contai~ling a Single U3 The calculation of the contribution of ail diagrams
with one U3 and an arbitrary number of Ui operators is easier as there are only four diagrams
and, moreover, there is only one Ui operator which involves more than one particle. Diagrarn
(a) leads to a contribution proportional to:

Tri,2,3 lU3(1, 2, 3) J + nf(i)1 J + nf(2)1 J + iJf(3)11 (64)

Diagrams (b) and (c) introduce, in a way which is similar to what happened with "dosed U~"
diagrams m the preceding section, an additional 2-particle exchange cycle Pex multiplied by q.
In diagram (d)

we have a "completely dosed U3", which yields, in an analogous manner, an

U3 multiplied by a 3-partide exchange cycle C3.
In the calculation of the counting factor f~ja~~, the additional factor (g)~~(which is due to

multiple connections)
comes in for the first lime (see Appendix A.(ii)). In diagram (a), we

have to find the particle with the next-tc-lowest index number among two exchange cycles m

order to build up the diagram starting from the "base cycle", while in diagram (b)
we have

to find this partide among two possible candidates of the same exchange cycle. Both cases

(a) (b)

(c) (d)

Fig. 5. Diagrarns containing one
single U3 Ursell operator. Diagrams (a) and (b) have counting

factor fcja~~ =1/6 whlle (c) and (d) have 1/3. Together with the partiale exchange cycles appearing

in
the respective reduced expressions, these factors

are
precisely those that allow ta group the three

terras into a
single final contribution which certains trie symrnetr12er (or antisyrnmetriser) of three

partiales.
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result in (g)~~
=

l/2. In the last two diagrams there is no such ambivalence, so (g)~~
=

l.

Furthermore there is a factor (pi~ x lM)~~
"

l/3 which is common to ail diagrams.
It tutus out that these counting factors are exactly those necessary to reconstruct the 3-

partide symmetrizerlantisymmetrizer 53/A3 (again using the fact that the indices in the trace

are dummy). We thus obtain for the final contribution of ail diagrarns containing one U3

operator:

B(i xu~) =
z~ Tri,2,3 (UÎ'~(1, 2, 3) J + nf(i)1P + nf(2)1J + ~Jf(3)j (65)

where Ul'~(1, 2, 3) is the symmetrized version of the three partide operator U3:

_,

Ul'~(1, 2, 3)
=

U3(1, 2, 3)
~

(66)
3

5. Discussion and Conclusion

A more detailed comparison between this work and other methods of approach can now be

clone. The basic idea of the method of Beth and Uhlenbeck, or more generally of Mayer duster

expansion methods [16], is to reason in terms of functions which directly give local approxima-
tions of the thermal equilibrium. Here we start from Ursell operators which give rise to various

contributions in the form of U-C diagrams. This leads to equation (25) which provides an exact

expression of the grand potential of the system, and expresses it as sum of various terms aris-

ing from E-diagrarns, already containing a sum over ail possible sizes of intermediate exchange
cycles. Each term is obtained as an integral (a trace) over a finite number of variables. The

general expression is valid for dilute or dense systems as well, such as liquids or even solids;
of course for gases it becomes simpler because it con be truncated more abruptly. Indeed, the

generalization of the Beth Uhlenbeck formula is obtained by limiting the summation to the

first three terms only (the first corresponding to the ideal gas).
The method that we have used is close to the "binary collision approximation" of Lee and

Yang [14, 15]; these authors also introduce the Ursell functions of an auxiliary system obeying
Boltzmann statistics, their aim being to establish relations between the Ursell functions of the

two systems (see also Ref, il?] for a discussion of this type of method, as well as the article

by Montroll and Ward [18]). Also, they introduce integrations over the inverse temperature

to write their expansions, which is not clone here. For these reasons, the similarity between

the two methods is real but not obvious, either in the equations, or the diagrams, so that a

close exarnination is necessary. Indeed, it is only alter that a first version of the present article

had been submitted for publication that the present authors realized that both methods con

provide the same results: equation (II.8) of i14] is equivalent to equation (46), with different

notation; m the same way, (II.18), (II.19) and (II.13) are equivalent to the results of Section

4.3. Nevertheless, the derivations remain rather different, mostly because we never introduce

the Ursell functions of the system of indistinguishable partides m an intermediate step: we

directly calculate the contributions of the Ursell operators of the auxiliary Boltzmann system

to the grand potential by summing over the lengths of ail exchange cycles. This may be the

reason why our approach seems to be more compact and easier to hardie, and allows writing
calculations that are sometimes more general and explicit; in particular we give generic rules for

obtaining the counting factors. In forthcoming articles we will exploit this relative simplicity

to extend the application of our method beyond the only generalization of the Beth Uhlenbeck

formula.

Probably the most popular method for handling interactions m quantum statistical mechan-

ics is using perturbations expansions m terras of the interaction potential, at least as a starting
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point, as for instance in the well known article of Bloch and De Dominicis [19]. By substituting
the collision T matrix for the interaction potential, one can indude in the final result an infi-

nite number of terms of the expansion (resummation of ladder diagrams). The analogy with

our method is that, as T, the second Ursell operator U2 (or higher order operators) contain

an infinite series of powers in the interaction potential. But the analogy remains limited: in

our case, even at intermediate stage of the calculation, one never assumes that the potential
is small (which technically avoids any divergence of the terms for hard core potential) and

no replacement of V by T is necessary; actually T does non appear explicitly anywhere. The

reason behind this difference is that the small parameter in our calculations is by no means the

intensity of the potential, but its range b, which is physically a completely different quantity;
this may be seen as a general difference between potential and density expansions.

In other words, the use of Ursell operators leads to a grouping of the terms of the usual

expansion in terms of V that is different from what other approaches would provide. It extracts

the terms that are actually dominant for a dilute gas, where only binary collision occur. For

instance the corrections that are first order in b are entirely contained in the generalized Beth

Uhlenbeck formula (46), which indudes among others second order terms in V, while terms of

the same order are also contained (~6 in the results obtained in Section 4.3; those are therefore

contributions to the partition function that correspond to corrections in b of higher order. In a

gas of many partides, second order terms in V may arise either from effects taking place within

a single binary collision, or from the effect of two successive collisions involving one common

partide carrying the information from one collision to the other. A second order calculation in

V based on the formalism of the second quantization does not necessarily makes the difference

between these two kinds of contributions. In our approach, on the other hand, the partides

are indeed numbered at an intermediate stage (~~) and it is possible to keep track of "which

partide is which", so that terms which are second order in V but negligible if b is small can be

sorted out more easily.
Another interesting point of comparison is the more recent calculation by Nozières and

Schmitt-Rink [20], who give a calculation of the thermodynarnic potential for a system of

fermions at low densities. In order to simplify the summation of the diagrams in their calcu-

lation, they assume that the matrix elements of the interaction potential are separable into a

product of functions; moreover, for brevity, they explicitly mdude only one phase shift (s wave

approximation)
so that their result is less general thon (46). Of course this does not mean that

their method can not be generahzed to fully recover (46), but we have not exammed the ques-

tion. In the same vein, a more detailed comparison between (46) with the results of Galitskii

[GI
for fermions and Belyaev [21] for bosons, valid at zero temperature, would be useful.

In an article in preparation, we show how the fact that our method fully indudes the short

range effect of the interaction potential on thermal equilibrium can be exploited for a precise
study of the properties of the two body density operator, at short or long range, in particular
to study the perturbation of the exchange hole of fermions (or bump for bosons) by a hard

(~~) The same remark holds for terms of higher order in V which, in our forrnalisrn, can be spread over

a
big variety of U-C diagra~ns, especially of course if the order

is
large.

(~~) This does net ~nean
thon statistics

is net treated exactly in the final result; in fact, the elfect of ail

exchange cycles is included without approximation in our
calculations. For instance the fact that (46)

is
expressed rnathernatically as a trace over two nurnbered partiales should net give the impression

that it includes only exchange in a physical systern of two particles only, such as a binary rnolecule:

arbitrary long exchange cycles with an
infinite nurnber of partiales are indeed included in trie result.

This is
illustrated by the fact thon (46) certains fuit Fermi Dirac of Base Einstein distributions mside

the degeneracy factors il + ~ Il. Trie limitation ta exchange inside
a

binary system is
rather a feature

of the usual Beth Uhlenbeck theory.
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core potential. Another article will contain a discussion of the description of Bose Einstein

condensation and superfluidity in a dilute gas of bosons, and pairing in a dilute gas of fermions,

as briefly sketched in the proceedings of a recent conference Il1]. For the study of the phase
transition corresponding to a divergence of the size of the dominant exchange cycles, it is

natural to use a formalism where one keeps track of this size explicitly.
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Appendix A

General Rules for Constructing Diagrams

Our convention for building the diagram associated to any particular term in the double sum-

mation (9) is the following:

(1) we start from the Ui, or the Ui's, that are of highest order
=

lM in this particular term,
and identify the partide it (or they) contain(s) that has the lowest index number nm;n; this

partide is considered as the "base partide", and belongs to the "base cycle" from which ail the

rest of diagram will be drawn. By convention, the base partide is shown first (left position)
and the base cycle is that at the lowest position

m the figure; for instance, in Figures 16 and

ld, this base is a three-partide cycle.
(ii) to continue in the construction of the diagram, we add a second generation of cycles. We

first use the Ursell operator Ui~ that contains the base partide and add the other permutation
cycles which indude the other partides in the same Ui~1 this is done in the order of increasmg
values for the index number of the particles contained in this UIM, so that the order of the new

cycles is dearly defined. This also defines, for each of them, a "secondary base partide" that

is put first in the diagram (~~).
(iii we continue the addition of this second generation of branches in the diagram by moving

along the base cycle and skipping all numbered particles that are m Ui's, until we reach one

which belongs to an Ui with > 2; we then add additional cycles containing the other partides
inside this Ui We use the same rule as in (ii) and we define "secondary bases" for the new

cycles, so that their representation is also uniquely fixed. Going along all the base cycle in this

way completes the first generation of additional cycles.
(iv) Then we build in the same way the second generation, by starting in succession from ail

of cycles of the first generation in the order in which they were added, etc, until, eventually,

the complete diagram is obtained.

With these conventions, ail cycles are individually identified, so that it makes sense to

vary their lengths mdependently to generate all terms of (9); this will be useful below for the

calculations which lead from the U-C to the E-diagrams. Figure 2 shows examples of diagrams;

(~~) If the connection
is

multiple, that is if the additional cycle contains several partiales of the Sartre

base Ursell operator Ui~, the secondary base partiale
is

thon of lowest index nurnber; ail trie orner

partiales are
then autornatically located in the diagram by their order

m
trie exchange cycle, and do

Dot play a
special raie at this stage.
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Appendix B gives more details on the conventions used in their representation (in particular,

it is convenient to assume that, inside the trace, the series of Ursell operators are put before

the series of cycles).
Now suppose that we reverse the question: starting from a given diagram, how do we identify

its occurrence in the double sum? what is its weight in the summation that gives Log Z? Assume

that we throw randomly nd;ag. numbered partides into ail available locations. With the precise
rules that we have chosen above, it is clear that double counting problems are avoided, but

also that not all of these random configurations obtained are allowed. What is the proportion

fd;~g, of the configurations that are compatible with our conventions? Let us note pi~ the total

number of operators Ui~ (those of largest order lM) appearing in this particular diagrarn. The

reasoning is as follows:

(1) first there is a probability (pi~ x lM)~~ that the right base particle will be obtained

(ii) second, if lM > 3, in the construction of successive generations of cycles, either more

than one cycle is added from the connections of the same Ui, or there is a multiple connection

towards the sonne cycle (or both). Figure le gives one example of such a multiple connection. In

ail these cases, additional factors (g)~~ are introduced which account for the correct ordering
of numbering of secondary base particles.

Thus we obtain:

Îdiag. " Î7lM X ÎM X gÎ ~ (J~.l)

(this formula is also valid if lM
=

1, in which case pi~ is nothing but the size k of the linear

exchange cycle). For the generalization of the Beth Uhlenbeck formula, case (ii) never happens
and the factors g's do non play any role; they nevertheless enter the calculations of Section 4.3.

Appendix B

Two Examples

The diagram shown
m

Figure 2a corresponds by definition to the following trace:

Tri,~,~,~,~ ju~(1,2)u~(3,5)ui(4)ci(i)c~(2,3,4)ci(5)j (B,i)

Our convention is that the Ursell operators are always put before the cycles; the notation

C3(2,3,4) refers to a cycle where the particle numbered 2 replaces that numbered 3, that

numbered 3 replaces that numbered 4, and that numbered 4 that numbered 2 (the Ci's do

not produce any change in the positions of the partides). Equation (B.l) gives what we call

the "explicit value" of this particular diagrarn, but it can also be simplified into a "reduced

value". This con be clone by inserting into (B,l) dosure relationships and using summations

to introduce products of operators whenever possible. In this case this leads to the expression:

Tri,2,5(U2(1,2)U2(2,5)Ui(2)) (B.2)

In the explicit value, any numbered partiale appears once and only once in every Ursell operator
and every cycle; in the reduced form this is not necessarily the case.

In a similar way the diagram shown m Figure 2b is defined by the explicit expression:

Tri,2,3,4,5,6 (U2(1, 2)Ui(3)U2(4,5)Ui(6)Ci(1)C3(2,3,4)qC2(5,6)) (B.3)

while its reduced value is:

q Tri,~,5 (U2(1,2)Ui(2)U2(2,5)Ui(5)) (B.4)
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