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Abstract. We analyse the Langevin dynamics of the random walk, the scalar field, the

X-Y model and the spinoidal decomposition. We study the deviations from the equilibrium
dynamics theorems (FDT and homogeneity), the asymptotic behaviour of the systems and the

aging phenomena. We compare the results with the dynarrical behaviour of (random) spin-glass
mean-field models.

l. Introduction.

Spin-glasses and other disordered systems bave 'critical' dynarnics throughout their low-temper-

ature phase. Their most striking dynamical eifect is that of aging: they do not reach thermal

equilibrium after very long times and experiments are performed out of equilibrium showing a

dependence on the history of the system [1, 2].
These phenomena have been studied with numerical simulations [3-6], several phenomenolog-

ical mortels have been proposed [7, 8], and analytical techniques have been applied to mean-field

systems [9-11].
It has been recently proposed [9] that mean-field spin-glasses do not reach a situation of

dynamical equilibrium (1.e. homogeinity in time and the fluctuation-dissipation theorem (FDT)

are
violated) even after infinitely long times.

In other systems an intermediate situation known as interrupted aging occurs m
which non-

equilibrium eifects tend to dissapear, but very slowly as compared to the relaxation of ordinary
non-cntical systems (e.g. paramagnets, ferromagnets) [12, 13].

The persistence of out of equilibrium eifects alter very long times, and in particular the

violation of the equihbrium theorems is a feature not restricted to disordered systems such as

spin-glasses. It is interesting in itself to study the deviations from the equilibrium theorems

m
simpler examples with Hamiltonians that are determimstic (non random), and even not

disordered or frustrated.

It was noticed by Virasoro [16] that these deviations appear already at the level of the

simplest non-equilibrium system, the random walk. The atm of this note is to analyse the
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Langevin dynamics of some such simple examples: the random walk, the free scalar field, the

X-Y model, and the spinoidal decomposition of a ferromagnetic Ising-like system. In each

case we shall study the deviations from the equilibrium theorems and we shall analyse the

long-time behaviour of the correlation and response functions, and the total response to a con-

stant perturbation applied during a finite time-interval (the equivalent of the 'thermoremanent

magnetization' in spin-glass experiments).
The organisation of the paper is the following. In section 2 we present some general remarks

on the FDT and its possible generalization. In section 3 for reader convenience we recall the

results obtained by Virasoro [16] on the simplest non equilibrium model, 1-e- the random walk.

In section 4 we consider the case of the D.dimensional free scalar field theory. In section 5

we study the dynamics of the X-Y model at low temperature in two dimensions. Finally in

section 6 we consider the dynamics of the spinoidal decomposition for the usual ferromagnetic
Ising case. Our conclusions are presented in section 7.

2. Trie generalized fluctuation dissipation relation.

Let us consider a system which has been quenched from high temperature at time t
=

0. The

auto-correlation function C(t, t') among a local quantity O at two subsequent times t' and t is

C(t, t')
=

°(t)°(t') (2.1)

Hereafter represents the mean over the thermal noise.

For large t and fixed t t', in an equilibrium dynarnics situation the auto-correlation function

behaves as

C(t, t')
=

C(t t')
,

(2.2)

1-e- it is homogeneous in time.

The response function to a pertubation is defined as the variation of the quantity O(t)
with respect to a perturbation applied at time t'. More precisely, if we consider the perturbed

Hamiltonian

H
=

Ho +
/

dt h(tlo(tl
,

(2.31

the response function is defined as

ôi oit)
(2 4)R(t, t

ôh(e)

and, because of causality, it equals zero if t~ > t. The response function is not independent of

the correlation if the system is in equilibrium. Indeed, it is related to the correlation function

by the celebrated fluctuation-dissipation theorem (FDT):

R(t, t')
=

fl 9(t t') ~~~~j ~~~

,

(2.5)

and it is also homogeneous in time R(t, t')
=

R(t t')
However, if the system is out of equilibrium neither homogeneity nor the FDT (2.5) hold.

The generalised relation between response and correlation functions can be written as

R(t, tf)
=

flô(t tf) x(t, tf) ~~j(j
~'~ (2,ô)

with X a
function of bath times t' and t that characterizes the approach to equilibrium.
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The FDT and its violation can be partially understood from the following considerations.

Let us consider a system descnbed a variable y(t) which satisfies the Langevin equation

jy(t)
=

-Fiyi(t) + ~(t) (2.7)

where
7~ is a Gaussian random noise with zero mean and correlation

~(t) ~(t~)
=

2T à(t t~)
,

(2.8)

T being the temperature.
Taking t > t~ for definiteness, the equation of motion (2.7) implies

() ~) C(t, t~) =
2TR(t, t') + A(t, t~) (2.9)

where we have used (y(t) ~(t')
=

2TR(t, t~) and

A(t, t')
+ Fivi(t) v(t') Fivi(t') v(t) (2.1°)

At equilibrium trie correlation functions satisfy (B(t)D(t')
=

(B(t')D(t) ), if B(t) and

D(t~)
are any two functions of y(t). This is a consequence of the time reversai symmetry.

Hence the asymmetry A vanishes and trie fluctuation-dissipation theorem may be recovered by
using the invariance under translations m time of trie correlation functions at equilibrium:

C(t,t')
=

C(t-t') ~ l~+~)C(t,t')
=

0 (2.Il)
t t

and
ôC(t, t')

(2 12)R(t, t
=

fl
~~~

In trie off-equilibrium situation trie homogeneity in time (Eq. (2.Il)) is not valid and trie

asymmetry A may be present. Equation (2.5) is not valid in general and the generalisation
(2.6) must be considered.

In mean-field spin-glass mortels trie autc-correlation and response functions are defined as

C(t, t~) =
(1IN) £$

~
si (t)si(t~) and R(t, t~) =

(1IN) £$
~

ô( si(t) /ôhi(t'), respectively. In

the analysis of the asymptotic dynamics(~ presented in reference [loi (see also [14]) it has been

proposed that, for long enough times and small time diiferences, t, t'
- oo and (t t~) /t « 1,

X
=

1 and FDT is satisfied, while for long enough times and big time diiferences, t, t'
- oo

and (t t~)/t
r-

O(1), the function X depends on the times only through(~) the correlation

function C(t, t~), i e.

R(t t~) =
fl9(t t~) xic(t t>)i ~lli ~~~ (2.13)

A self-consistent asymptotic solution for trie mean-field out of equilibrium dynamics within

this assumption bas been found bath for the p-spm sphencal and trie Shernngton-Kirkpatrick
mortels (Refs. [9, loi).

In trie followmg sections we shall investigate trie behaviour of trie function X for vanous

(non random) mortels and we shall compare trie results with expression (2.13) at long times.

(~) Asymptotic means t, t'
- Oo

alter N
- Oo

(~) This result is expected to hold for large times for systems with jinite susceptibility,
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SCALINGS AND AGING PHENOMENA. Another interesting problem is tu study the scalmg
properties of the correlation, response and X functions, and the response of trie system to a

constant perturbation applied during a finite period [0, tw].

For trie p-spm spherical spin-glass mortel, if t and t t'
are both large one analytically finds

c(t, t/)
c~

)
j2.i.i)

within trie assumptions descnbed above. Trie numerical solution of trie dynamical equations

suggests that

c(t,t')
=

s(t'/t)
,

(2.1.2)

(1.e. h a power law). This is a new
(non-homogeneous) scaling(3). This is trie simplest scahng

that captures an essential feature of spin-glass phenomenology: the agmg eifects, 1-e- the

exphcit dependence of trie behaviour of trie system on its history. The scaling (2.1.2)
can be

modified in many ways to describe in more detail the results of simulations of realistic mortels

and experiments. Then, one sometimes assumes the slightly diiferent form

c(t,t')
=

t-à s(t>/t)
,

(2.1.3)

where à is a small number, of trie order of a few percent in spin-glass mortels [2, 8, 4]. Trie

factor t~~ implies an interruption of aging for large t (O(few years)).
Trie generalized FDT relation (2.6) can be written as

R(t, t')
=

fl 8(t t~) X[t~~, t' /t]
~

C(t, t'), (2.1.4)

If we substitute the scaling form (2.1.3) for the correlation function in equation (2.9) and we

assume that a similar form is valid for the asymmetry, we find that the response function scales

as
C/t'

or
ôC/ôt~.

If instead we assume that the asymmetry A is zero, as will be the case below, we find

X(t, t~) =
X(À)

=

l
+ + à

~~~~
(2.1.5)

2 S~(À)

with e t~/t.

In the typical agmg experiments il, 2] one measures the 'thermoremanent magnetization',

i-e- the response of the system to a constant magnetic field h applied dunng the interval [0, tw],
at constant temperature. tw is interpreted as a 'waiting time'. In a general dynamical system

described by the Langevin equation (2.7) the equivalent of the thermoremanent magnetization

is

xt~(t)
=

/
dt'R(t,t') (2.1.6)

~~

Aging experiments show that xt~(t)
=

mt~(t) depends non-trivially on t and tw [1, 2].

(~) In the dynamics of other mean-field spm-glass models
more compbcated scahngs can be present.
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3. Trie random walk.

As noticed by Virasoro the simplest example of a dynamical system that ares net reach equihb-
rium and violates trie fluctuation dissipation theorem is trie random walk [16]. In the continuum

hmit the quantity y(t) satisfies the very simple diiferential equation

jv(t)
=

~(t), (3.1)

with ~ a Gaussian noise with vanance given by equation (2.8).
It is easy to check that,the correlation function C(t,t')

=
(y(t)y(t') and the response

function R(t, t')
=

à( y(t) )/ôh(t~)
=

(fl/2) y(t)~(t~) are given by

C(t,t')
=

2Tmin(t,t'), (3.2)

Rit, t')
=

ôjt t') j3.3)

Hence, the relation (2.6) is satisfied with

X(t,t')
=

1/2, (3.4)

Vt, t', a constant function but diiferent from the usual FDT result, X
=

1, the system never

reaches equilibrium.
Indeed one finds that the scaling form (2.1.3) for the correlation is satisfied with S(À)

=

for < 1, but with a big value for à, à
=

-1. Inserting this scaling in equation (2.1.5) we

also obtain X
=

1/2, as expected smce m the random walk problem the force F and the

asymmetry A are zero. However, the scalings for the correlation and the total response are

quite diiferent from those observed in spm-glasses. In terms of the 'waiting time' tw and

T e t tw, C(T + tw, tw)
=

2T tw and xt~ (T + tw)
=

tw (cf. Eq. (2.1.6)). Both expressions are

mdependent of
T

but depend explicitly on tw.

This example may seem trivial, but it captures the essence of the phenomenon that will be

described in the rest of this note.

4. Free Gaussian fields.

In this section we study the behaviour of a simple free scalar field çi(x; t). The Hamiltonian is

quadratic m the field and in dimensions D it reads

H
=

/ d~xa [(Vçi)~ + m( çi~) (4.1)
2

where ma is the mass of the field (see e-g- Ref. [17]).
The relaxational dynamics is given by the Langevin equation

)4(xo;to)
=

A4(xo;to) ml 4(xo;to) + ~(xo;to) (4.2)
o

~(xa; ta)
is a Gaussian noise

(~(ka; ta) its Fourier transform) with zero mean and correlations

(~(xa;ta) ~(xj;tj)
=

2T exp
(-@) à(ta tj)

~2
JJ(k~; t~) ~(k~f, t~)

=
2T (2~r)D exp

~-j) ôD(k~ + kj) à(t~ tj)
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x(
e ]xa xi

]~
and k( e ]ka]~. We have introduced a spatial correlation over a typical lenght

1IA to simulate the lattice spacing. (This serves to cure some large k pathologies.)
Taking çi(xa, 0)

=
0 as the initial condition, the solution to the dynamical equation (4.2) for

each noise realisation is

dD~ t~
~ ~~~~°'~°~

/
(27r)~

~~~~~~
Î

~~ ~
~~°~~°~~~~ ~~ ~~~°'~~ ~~'~~

Since we are dealing with a field, the correlation, response and X functions depend on

space-time coordinates. A standard calculation for the correlation function Ca (xa, xi ta, t[)
=

çi(xa ta çi(x[; t[ gives

j d~ko
eikDl~°~~~~e~~~~~~~~~~~~ ~~~ ~~~ ~~~

(~
~~~~m~~(Î~

e
~~~~~~~~~~~~~~

~~ ~~

The response function R(xa, xi ta, t[)
=

à( çi(xa ta /ôh(x[ t[ is given by

~°~~°'~~'~°'~~~
/

Î~Î~ ~~~~~~~ ~~~~ ~~~~~
~

~~~~~~~~~~ ~~~

l e~~Î(~o~tll _~
= e

41to-tj+1/A (4 5)
(47r)D/~ (ta t[ + 1/A2)D/2

Here and in what follows we take unpnmed times bigger than pnmed times and we omit the

theta functions.

The preceeding formula suggest to measure space, time and mass in appropriate lattice

umts

t e
A~ta, (4.6)

x + Axa, (4.7)

m + ma/A (4.8)

and to rescale the correlation and response functions C e
AI~~~JCa, and R e

(1/A~)Ra. Note

that there is no rescahng of fields and correlations m D
=

2.

The function X that measures the departure from FDT reads, in terms of the rescaled

coordinates:

X(X,X'[t t')
=

j'
lÉ(X,X';t t')

,

,

~~(X, X~j t, t~)

ou

t t~ +

1)
~~~

~ ~~,
x~t'

jj~
t + t~ +

~~~ ~ ~
2[(t + 1)2 t'2]

(4.9)

4.1 LARGE-TIME BEHAVIOUR. Consider first the massive case. We have a time scale given
by:

t~q
r-

m~~/~ (4.1.1)
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For any x fixed and any two times t, t' » t~q we have that X
=

1. This identifies t~q as an

'equilibration' time(~)
In the massless case m =

0 the equilibration time diverges and we have a more interesting
situation. Let us concentrate on this case. For fixed x and large times t, t',

we have

X(x; t, t')
=

X(x; À) =
~ ~~ ,

(4.1.2)
l )

~
l +

with
=

t'/t. Hence X is non-trivial and FDT is violated, even for very long times.

If
-

0 then

X(z; À) -
1/2. (4.1.3)

If
-

1 and D # 0, then

X(x; À) -
,

(4.1.4)

and we recover FDT.
=

corresponds to times t, t' satisfying (t t') If « 1, 1e. small time

diiferences.

If we put D
=

0 we recover X
=

1/2 for ail times, the result for the random walk.

4.2 SCALINGS. We now present the scalings. Since the massless scalar field turned out to

be more interesting we shall concentrate m
this model. If

m =
0 the explicit computation of

the mtegrals in equation (4.4) gives

~2-D ~ ~2 ~2
~~~'~ '~'~ ~7rD/2 4

~
2

~'
4(t + t' + 11' 4(t t'+ 1) '

~~'~'~~

where r[n; a, b] is the generalized incomplete Gamma function

r [n; a, b] e dz z"~~e~~ (4.2.2)
~

For equal space points x =
0 equation (4.2.1) reduces to

~~~'~'~'~ ~ 47rÎD/2
1

-~j/2 ~~
~ ~~ ~ ~~~

~~~
~~ ~~ ~ ~~~

~~Î
~~'~'~~

For long times and < 1, 1-e- big time diiferences (t t')/t
r-

O(1), this expression satisfies

the scaling law (2.1.3) with à
=

D/2 and

~~~~ ~
(47r)D/2 Il D/2) ~~~ ~~~

~~~ ~ ~~ ~ ~~~ ~~~~ ~~'~'~~

Hence, m
this time scale the function X (Eq. (4.1.2))

cari be wntten as
X(0; t, À) =

X[t~C]
and in particular X(0; t, À) =

X(C) for D
=

2.

(~) Note however that if
~ is of order /7

or
larger then X can be smaller than 1, even zero for small

time differences. We shall not consider such divergmg distances
m

the rest of the section.
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Considering again the general mortel, the total response (2.1.6) reads

~
tw

~~

i
e~m~(t~t"J~@ù

~~~ ~~~

/
~ ~

Î
~~

(47r)D/2 (t t" + 1)D/2

=

~
e~~~~~~~W~ il e~~~~wj (4.2.5)

and for large tw, tw » t~q it reduces to

xt~ (T + tw
=

~ e~~~~
,

(4.2.6)

the typical relaxation in a system that has equilibrated;
i e. xt~ (T) depends only on T =

t tw

and no aging is present.
Instead, in the massless limit

xt~ (T + tw)
=

tw (4.2.7)

which shows a dependence on the history for ail tw, although a rather unusual one.

The learned reader will notice that in the massless case the Hamiltoman is invanant under

the transformation

çi(x)
-

çi(x) + constant. (4.2.8)

The correlation functions are not invanant under this transformation and therefore the sym-

metry is spontaneously broken. The slow approach to equihbrium is a reflection in the time

domain of the Goldstone boson arising from the spontaneous breaking of the symmetry. In the

next section we shall see a case where the symmetry group is implemented in a non-linear way.

These results are in agreement with the general formulae discussed in Section 2 when the

asymmetry is neglected (cf. Eq. (2.1.5)). Indeed the asymmetry is zero, because the force F

is linear m
the field çi.

5. Trie relaxational dynamics of trie XY model.

The Hamiltoman of the O(2) non-hnear a model can be wntten m terms of the angular variable

à defined through S(xa)
=

(cosô(xa), smô(xa)). In two dimensions it reads

H
=

/
d~xa (Vô(xa;ta))~ (5.1)

2

(see e-g- Ref. [17]).
The relaxational dynamics is given by the Langevin equation

i~(X~;t~)
=

ôfl

°

~~(xo;to) + ~~~°~~°)
,

~~~~

with ~(xa; ta) as m equation (4.3).
We consider low temperatures such that vortices can be neglected and therefore we do not

see the Kosterlitz-Thouless transition.

The solution to the dynamical equation (5.2) for each noise realisation is that of the massless

scalar field problem
m

D
=

2, cf. equation (4.3).
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The angle-angle correlation Ô(xa, xi ta, t[) + à(x[; fi à(xa; ta) is given by

Ô(z~ ta, t'
=

~
r

o. ~~~Î A~x(
° ~~ '4(1+ A~(to + tl))'4(1+ A2(t~ tj))

(5.3)

and in particular, the time correlation between the angles at the same space point (z(
=

0) is

~~~'~°'~~~
Î

~°~
~ÎÎÎ ~ ÎÎ

~~'~~

The response to an externat field Î(xa;ta) acting like Î(xa;ta) à(xa;ta), Éa(xa,x[;ta,t[)
e

à( à(xa;ta))/ôÎ(x[;t[)
=

1/(2T) à(xa;ta) ~(x[;t[) is given by

A~x(
A~ ~~~ 4(1 + A~ (ta t[

(5.5)Éo(Zojto,t()"p
~ ~2(t -t')

We now turn to calculating the physical quantities for which the angular character of à is

essential. We first calculate the 'composite' correlation

C(za;ta, t[)
e sm

à(xa;ta)
sm

à(x[;t[) (5.6)

= exp
Ô(0;ta,ta) + C(0;t[,t[) smh Ô(za;ta, t[) (5.7)

2

and the associated response to a transverse field h(xa;ta) acting hke

h(xa;ta)
sm

à(xa;ta)
~~~~

~°~~°'~°'~~~ ôh(XÎÎtÎ) ~~'~~

where mixa; ta) is the transverse magnetisation m(xa; ta)
=

(sinô(xa; ta) ). The 'composite'

response con also be wntten m terms of the angle-angle correlation C and its associated

response function Ra:

Ra(za; ta,t[)
= exp (C(0; ta,ta) + Ô(0; t[, t[)) + C(zai ta, t[)

2

x
Ra(za;ta,t[) (5.9)

As m the previous section we now rescale space-time coordinates as

t e
A~ta, (5.10)

x e Axa, (5.Il)

and rescale the response function R e
(1/A~)Ra, É

e (1/A~)Ra (but neither the correlations

nor the angles).
In terms of the new coordinates we have

~~~'~'~~~
Î

~
~'

4(1 ~~
+ t'l' 4(1 ~~ t/) '

~~'~~~

~~~'~'~'~
7r

1
+1-

t~
~~~ 4(1 ~~ t') '

~~'~~~

C(x; t, t~) =
((1 + 2t)(1 + 2t'))~~~~~~~ smh C(xj t, t')

,

(5.14)

R(x; t, t')
=

((l + 2t)(1 + 2t'))~~~~~~~ É(x; t, t') exp (Ô(x; t, t~)) (5. là)
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From equations (5.14) and (5.15), the function X reads

X(Xj t, t')
=

~~~~'~'~~~
(5.16)

A_(x; t, t>) + A+(x; t, t>) exp(-2C(x; t, t'))

with

~* ~~' ~'~'~
~~~ÎÎ~

~~
~

~~ÎÎ~~
~~~

x~ x~

T
~~~ 4(1 + t t') ~~~ 4(1 + t + t') 1

47r l + t t'
~

l + t + t'
~

l + 2t'

(5.17)

5.1 LARGE-TiME BEHAViOUR. In this subsection we consider the large times limit, t and

t~ large (t > t~). In this limit the function X is

~~~ ~~~~
~~ ~~~

~
l + exp

-ÎC(x;
t, t~))

~~ ~~

with Ô(x; t, t~) given by equation (5.12). We shall analyse the function X and the correlation

C in diiferent regions determined by the space and time separations x and t t'.

Eq~ai times. We first consider the correlation and response functions at equal times

t
=

t' » 1. We consider separately the cases x =
0 (local values) and x » (many'lat-

tice spacings')

~, x =
0

1
(5 1.2)C(0; t, t)

= j

which was to be expected, since the O(2) symmetry is unbroken and
sin~ à

=
1/2. We also have

X(0; t, t)
=

1 (5.1.3)

1e. the system evolves locally with an equihbrium dynamics.

b. x~»1

and

C(x; t, t)
-

C~t~t,c(x) t
x~~/l~~~ (5.1.5)

b-ii x~»t»1

~iimx(x;t,t)
=

j,
~~

c(x; t~ t)
-

0 (5.1.6)
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We condude that if we take a snapshot of the system at a large time t, within a range of

length t
t~/~ trie system seems equilibrated in the sense that trie correlations comcide with

the static ones il?] and the response satisfies FDT. Weil outside that range the angles are

uncorrelated and X
=

1/2, as in a random walk. In the following we shall see m more detail

the nature of this 'equihbration'.

Dijferent times. We here consider diiferent times, 1-e- t t~ # 0 and we agoni analyse
separately the cases x =

0 and x » 1.

a. x =
0

hm X(0; t, t')
=

~ ~~~
(5.1.7)

t~°° t+t'
)~

~

~
l + t t'

and the correlation C(0;t,t~) reads

~~~'~'~'~
'~ ~~~~~~

~~~~~~
~1 ~Î ~~

t'~
~~~~~~

l
~Î ~'

t'~
~~~~~

~~'~'~~

b. Consider now two points widely separated
x » 1 but well within the 'range of equilibration'

for these times~ 1-e-

t > t' » X~ » (5.1.9)

Two possibilities then arise:

b-1 (t t~)/(t + t') <

(À -
1.) We reobtain the 'equihbrium' situation X

=
1 and the correlation function goes,

asymptotically m t t',
as

C(Xj t, t~)
r-

(t t')~~/~~~) (5.1.10)

b.i~ (t t')/(t + tf) > o

(> < i.)

iim x(x; t, t~) =
x(>)

=
,

(5.1.Il)
~~°°

i +
~ )-T/(2«)

>

and the correlation function is

C(x;t,t~)
ct

~~~~ ~~~~~~À~~/l~~~
~~

~ )~~~~~~ ~j)~~~~~~l(5.1.12)
2 1 +

(cf. Eq. (5.1.8)), and X
=

t~~/~~~~Î[C].

For relatively small time diiferences with respect to the total time and for any two points

well within a
'domain' of equihbration these results are still those of a system evolving as in

equilibrium, m
other words X

=
and the correlation and response functions are homogeneous
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m time. However, even within a'domain' when the time separation is large enough, the

correlation and response give manifestly out of equilibrium results: X has a non-trivial time

dependence and the correlation and response functions are not necessarily homogeneous in

time. We conclude that one cannot picture these domains as regions m which a true (lasting)
equihbrium has been established. This has to be contrasted with the behaviour of the massive

scalar field, which after a certain t~q and for fixed
x evolves as in equilibrium.

5.2 REMANENT MAGNETizATiON. Let us now tutu tu studying the behaviour of the system

m a 'thermoremanent magnetization' expenment.
The total response to a constant, uniform magnetic field h(x; t,t') applied from t'

=
0 to

t'
=

tw over the whole system is

~t~(t)
= ((1 + 2t)~~/~~~~

/
dt~ (1 + 2t~)~~/(~~~ k

~ ~,
T (5.2.1)

~~
l + t +

with

k(w~ T) e

/~
d~ exp

(- ~) exp ~-
~

r
0; ~, ~~j (5.2.2)

~

2 47r 2 2

Defining a function (see Appendix A)

f( T)
=

2-(1+T/(4«)) ~T/(4«)-1 dilJ
ilJ

~~~~~~~
~(~ ~n) (~ ~ ~)

'

i->/i+>
(1 +'°)~ l +'° ' '

we have that in the large t limit for every tw and t

xt~ (t)
=

tÎT~/~~~~f l~), T)
,

(5.2.4)

and f(Àw, T) is an mcreasing function of Àw, finite at Àw =
1. Asymptotically, for t » tw

xt~(t)
oc

tfT/(8«) t-T/~8~) (5.2.5)

Several considerations are in order about this behaviour. Throughout the low temperature
phase T < 47r, and the susceptibility diverges with tw. This result was to be expected smce

the static magnetization grows as h~ with ~f =
T/(87r T) il?].

For finite times and small fields the hnear response theory holds, but becomes worse as an

approximation for larger times and it faits completely at tw - oo. This result is remimscent

of what seems to happen m spm-glasses with the reaction of the system when temperature is

slightly changea: while experimentally (long times) this response is possibly non-symmetrical
with respect to the sign of the temperature changes, it is still symmetrical

m
the relatively

short times involved in most simulations.

The longer the waiting time dunng which the field has been applied, the slower the relaxation

of the remanent magnetization. If we normalize the magnetization by its value at tw, then the

decay is a function of t/tw. This is agam reminiscent of what happens
m spm glasses and other

disordered systems, except for the fact that the susceptibility is limite m those cases.

6. Spinoidal decomposition.

We consider a
normal ferromagnetic system (of Ising or Heisenberg type) and we supose that

the dynamics is local, without local conservation of the magnetization. The Langevin equation
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described in the previous sections is a good example of such a dynamics. For definiteness we

consider the Ising case.

We are interested in studying the evolution of such a system J~.hen we quench it from high
temperature to a subcritical temperature. Trie problem is well studied in trie literature [18].

Trie main result is trie random formation of domains oriented in diiferent directions which

become forger and larger with increasing time. Trie size of trie domams ((t) grows as t~~~

It is aise well known that the equal time correlation function in the large time hmit is well

described by
çi(x, t)çi(0, t)

=
F(x/((t)), (6.1)

for well separated space points; i-e- x » 1. Trie function F is net very far from a Gaussian.

Throughout this section trie brackets stand for average over initial conditions. We suppose
that trie field # at time zero is Gaussian-distributed with a correlation function that goes tu

zero at large distances.

The most natural proposai for the correlation function at diiferent times is

i1(~,tf)i(o,t)
=

c(~/i(t),t/t/j (à.2)

and, if we consider the correlation at the same space point we would then have

4(0,t~)4(0, t)
=

C(t'/t) (6.3)

Intuitively we con understand this scaling as follows. The correlation function is proportional

to trie probability that both spins stay in trie same cluster. At time t trie spin stays in a cluster

of size ((t) which bas a mean life proportional to ((t)~,
i-e- to t. Therefore it takes a time of

order t to revert trie magnetization.
Let us be more precise. We consider trie followmg zero temperature Langevin equation:

4
=

~4 + 4(1 ô~) (6.4)

One con treat this problem approximately as follows [19]: introduce a field # defined by

4
=

914)
=

fi~
(6.5)

Equation (6A) becomes, in terms of #,

Ill
-

A< + <
loi 1~il (v<)~ (6.6)

The approximation consists in neglecting trie last term; then one assumes

~~ =
A4 + 4 (6.7)

Note trie sign of trie mass term. We do not discuss here trie range of validity of this approxi-

mation, which is widely done in trie hterature [18].
Trie strategy we follow is similar to trie one used in trie preceding section: we first solve a

simple linear problem and then calculate trie physical correlations as correlations of composite

operators.
Trie #-correlation function m Fourier space is given by

14(k, t) 4(k~, t~) Ol
ô~(k + k~) exP((t + t~)(1 k~)) (6.8)
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which corresponds to

~ x, t) ifi xl, y
~

i

(t + tf)D ~2
exp(t + t'

x2

4(t + p)

m position space. For large times trie absolute value of # becomes exponentially large, çi goes

to +1 (cf. Eq. (6.5)) and one bas

C(t, t~) =
Sgn(4(0, t)) Sgn(4(0, t')) (6.10)

The correlation of trie random Gaussian variables #1 + ~(x
=

0, t) and #2 + ~(x
=

0, t'), is

~~ ~J ~
(t~ +

D/2~~~~~~ ~'l ~'~
'

~~'~~~

their randomness comes from that of trie initial conditions.

Equation (6.10) becomes

~fi2 ~fi ~fi ~fi2/
~~l ~~2 ~~~~~ll ~~~~~~Î2 ~~P

~
~

j2 fi) fi(
~j ~2

~~~'~~~
~fi2

j~~fi~
~fi2

~ ~~'~~~/
~~ll ~~Î2 ~~P

~
~

j2
~fi~~fi~ ~ ~2

1 2

Changing variables

~~
~

)(~~Î4~l

~~
~

)~~~Î4
~~ ~~'~~~

we obtain

d#i d#2 sgn(#i )sgn(#2 exp (-A #) 28 #1~2 ~Î)
c(t, t~) "

'

(6'14)
d#i d#2 exp (-A #( 28 #1~2 ~Î)/

with

~ ~

A
=

À~/~ B
=

~ ~

,

(6.15)
2

=
t'/t. Since we are only interested in trie scaling we do not explicitly compute this integral,

but notice that

c(t, t')
=

c(>) (ô.iô)

In a similar way one con prove trie other scaling laws. Trie important result is that this

approximation gives expressions for trie correlations which are m very nice agreement with the

aging formula

A similar analysis coula have been clone for trie response function and for trie correlation at

limite temperature, but this would make this paper too long.
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7. Conclusions.

We bave seen that in many systems in which equilibrium is slowly approached some form of

aging phenomena are present. These systems are characterized by a correlation length that is

infinite in the static hmit but is finite for finite times: it diverges with a power law
m time.

A remarkable feature is that in these systems the energy landscape is flat: no high barriers

in energy are present. On trie contrary trie flatness of trie potential in certain directions, 1-e-

the presence of zero modes, is at trie origin of this very slow approach to equihbrium.
These systems are an evident proof that it is not possible to condude for trie existence of

energy activated barrier-crossing only from trie presence of aging. It would be rather interesting
to see if there are some peculiar phenomena, which may distinguish trie eifects of barriers from

those due to flat directions.

Appendix A.

Trie total response to a constant magnetic field h(x; t) applied during trie interval [0, tw] over

trie whole system defined in equation (2.1.6) is

xt (t)
=

(l + 2t)~~/~~~~ /~~ dt~ (1 + 2t~)~~/~~~~ k
~ ~,

T) (A.I)
~ 4

o

1 + t + t

with

~~~'~~ Î~ ~~ ~~~ Î~ ~~~ Î7r~
~' Î'

Î~~Î ~~'~~

Changing variables

w =

~~~ ~
~ ww =

~~~ ~~ (A.3)1+t+t~
1+t+tw

the total response is

xtw (t)
- 1(1 + 2t)~/~~~i(i + t)

Il
~i

li~~ + 2(1 + t)
il ~~~~~~

k(~d T) (A.4)

Vt, t'.

Let us now consider the scale, i-e- t » and 0 < Àw e tw/t < 1. In this case we can use

1 + at
r-

t and + t t'
r-

t t' in trie lower limit of trie integral. Then,

~~ (t)
=

2-(1+T/(4«)j ~-i+T/(4«) p-T/j4«) d" 1~ " ~(~ ~n) ~ ~)
~

~' ~'

/~e
(1 +1°)~ l

1°~ ~~~~~~

'

and finaiiy
Xt~(t)

"

tÎ/~/~~ f(Àw,T) (A.6)

with f(Àw, t) given by equation (5.2.3). Note that trie integrand in (A.5) diverges for w =
1

and gor w =
0, but trie integral over w is still convergent, and (A.5) is valid for ail Àw.
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