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Abstract. We propose a new continuum description of the dynamics of sandpile surfaces,
which recognizes the existence of two populations of grains: immobile and rouing. Trie rolling
grains are carried clown the slope with

a constant drift velocity and have a certain dispersion
constant. We introduce a

simple bilinear approximation for the interconversion process, which

represents bath trie random sticking of rolling grains (below the angle of repose), and the dis-

lodgement of immobile grains by rolling ones
(for greater slopes). We predict that the mean

downhill motion of rolling grains causes surface features to move uphill; shocks cari arise at large
amplitudes. Our equations exhibit

a second critical angle, larger than the angle of repose, at

which the surface of
a

tilted immobile sandpile first becomes unstable to an
infinitesimal per-

turbation. Our model is used to interpret the results of rotating-drum experiments. We study
the long time behaviour of

our
equations in the presence of

noise.
For an initially rough surface

at the repose angle, with no incident flux and an mitially constant rolling grain density, the

roughness decays to zero in time with an exponent found from
a

lineanzed version of the model.

In the presence of spatiotemporal noise,
we

find that the interconversion nonlinearity
is

irrele-

vant, although roughness now becomes large at long times. However, the Kardar-Pansi-Zhang
nonhnearity remains relevant. The behaviour of

a
sandpile with a steady

or noisy input of grains

at its apex is
aise briefly considered. Finally, we show how Dur

phenomenological description

cari
be derived from

a
discretized model involving the stochastic motion of individual grains.

1. Introduction and mortel.

The physics of granular media (powders)
is interesting from many standpoints, trot least be-

cause of its obvious practical and engineering importance [1, 2]. In this paper we study theoret-

ically the surface evolution of a sandpile, whose mean slope is close to the angle of repose. This

problem has recently gained the status of a paradigm m the physics hterature: sandpiles were

proposed as a prototype of'open dissipative systems' and predicted to exhibit 'self-organized
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criticality', that is, scale- and time-invariant dynamics [3]. Thus, for exarnple, if grains are

dropped onto the centre of a sandpile supported by a plate (Fig. 1), the slope fluctuates in

time, as does the flux of grains leaving at the lower edge; theories of self-organized criticality
predict power-law spectra for (say) the distribution of avalanche sizes. This proposai has lead

to a series of original and interesting experiments [4-7], as well as a great number of theoretical

and numerical works [8-10]. However, there is evidence that sandpiles do Dot usually show

self-organized criticahty [11]. Often the behaviour is more reminiscent of properties of an equi-
librium system close to a first order phase transition (displaying hysteresis [12] rather than a

second order transition (displaying power-law behaviour) as suggested by theory.

4

Plate

Fig. 1. Typical situation considered in this paper; a
sandpile on a

plate, fed or disturbed from the

top or from the bottom; the grains are supposed to be extracted from the pile when they reach the

edge of the plate.

In the remainder of section 1, we discuss previous approaches to the problem and motivate

a new phenomenologial treatment involving two coupled hydrodynamic variables. We discuss

with some care the simphfying assumptions we have macle, and identify scope for variation

in
these assumptions. In section 2 we use our model to consider simple (noise-free) problems

in sandpile dynamics, and in section 3 tum to problems involving noise. Finally
in section 4

we show how our continuum equations for sandpile motion emerge naturally from
a micro-

scopic description involving the stochastic motion of individual grains. Dur conclusions are

summarized briefly
m section 5.

1.1 PREVIOUS APPROACHES. Varions mortels have been proposed to describe the time

evolution of the height of a sandpile: for example one can set up a discrete cellular automaton

in which a local threshold slope is introduced, above which 'avalanches' are initiated [3, 13].
Soon after these cellular automaton models were investigated, Hwa and Kardar [14] proposed

a continuum description of the same problem. Their philosophy was to write down the most

general nonlinear local dynamical equation compatible with the symmetries of the system,

selecting nonlinear terms on the basis of "relevance" criteria determined (essentially) by di-

mensionaI analysis. On these grounds, Hwa and Kardar proposed that 'sandpiles' [14] should
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be govemed an anisotropic 'Driven Diffusion Equation':

~~l'~)
=

uôjh(r, t) + uiô jh(r, t) /tô~(h(r, t)~) + il(r, t) (1)

where h(r, t) is the height above a point r in the plane; a background slope, presumed equal to

the angle of repose, has been subtracted. The spatial variable z is the component of r along
the downward axis of the sandpile; u and vi are effective surface tensions; and

~1
controls the

strength of the non-linear term, which was argued to capture the important aspects of any
threshold eifects. Finally, q(r, t) is a noise term describing the random addition of grains.

The strength of this phenomenological approach lies partly in its avoidance of the complexity
of the full problem, which might in principle require a description of the bulk of the sandpile.

Alternative phenomenological descriptions have also been proposed for this and other, closely
related, problems such as the surface of a sandpile vibrated from below [15, 16]. Often one is

interested in the scaling behaviour which controls the properties of the system at long times;

in the presence of noise, the initial condition is then unimportant. The long time properties of

equation (1) can be studied using theoretical or numerical approaches [17, 14, 18, 19], to obtain

information on the response and correlation functions. One finds, for both two dimensional

and three dimensional sandpiles, 'superdiifusive dynamics' (the correlation length increasing
faster than t~/~) and a stationary profile that is asymptotically flat (1.e., height fluctuations

that saturate at large separations).
Noisy non-linear equations, such as the Hwa-Kardar equation, are certainly of great interest

from a physics perspective (see e-g- Refs. [20, 18, 14, 21]), especially when they lead to

criticality and scaling Iaws in the long time Iimit. Nonetheless, from trie point of view of

understanding sandpiles, it seems desirable that a phenomenological model should also describe

simpler situations, which indude the deterministic evolution of a sandpile in the absence of

noise. This would enable the basic model to be validated before the aclded complexity of noise

terms is introduced. In any case, several aspects of the Hwa-Kardar treatment can be criticized,

as follows.

(i) Although the whole argument is based on symmetry considerations, equation (1) violates

the most natural one, which is translational invariance in h: translating the sandpile upwards
should not change its dynamical equation. Hwa and Kardar suggest that this symmetry could

be spontaneously broken, although the mechanism remains to us rather obscure.

(ii) Secondly, equation (1) predicts a slow decay (as t~~) of the sandpile surface to zero

slope (after subtraction of the repose angle) if the noise is suddenly switched off. We would

argue that, in a realistic model, the surface should typically come to rest in a metastable state

intermediate between the initial one, and that of zero slope.
(iii) Dur third point is of more general scope: symmetry arguments atone are sufficient to

construct phenomenological equations oniy if
one takes into account ail trie slow variables in

the problem. The presence of a hidden slow (hydrodynamical) variable induces in general long

range eifects and forbids a naive local gradient expansion in the height variable.

1. 2 A MODEL WITH TWO DEGREES OF FREEDOM. In the case of sandpiles, we believe that

the local height h(r,t) is not the only hydrodynamical variable. Instead, the grains can be in

two diiferent states: either immobile or rolling downwards. We thus suggest that a suitable

hydrodynamical description should indude, along with h (which is the height of a stack of

immobile grains), the local density of rolling grains R. These must be coupled dynamically
by an interaction term, allowing for the conversion of rolling grains to sticking grains and vice

versa. In this section we derive appropriate coupled equations for these quantities on a purely
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phenomenological basis. (Their relation to a more fundamental microscopic formulation is

explored in Sect. 4). Since it deals only with surface variables, our description does not, of

course, take into account any long-range eifects mediated by the stress field in the bulk of the

medium, which might be significant in some situations.

The insight that two order parameters, rather than one, would better describe the evolution

of sandpiles is that of Mehta [16], who introduced a model with two coupled variables in the

context of modelling vibrated sandpiles. Mehta's two variables were not h and lZ, however;
they described two diiferent aspects of surface roughness, coupled to the dynamics of collective

and single-partide rearrangements [16]. We believe our own choice is more directly related to

the physics of the underlying problem.
From now on, we shall for simphcity work in one projected dimension (1.e. we consider two-

dimensional sandpiles whose height h(z, t) depends on one spatial variable). The generalisation
of the following equations to higher dimensions is immediate (though their solution is often

not). We first propose that the rolling grains are governed by a convective diffusion equation
of the following form:

R(x, t)
=

-ô~(uJz(x,t)) + ô~(vô~Jz(x, t)) + r(Jz(x, t),h(x, t)) (2)

where lZdx is the number of rolling grains between
x

and
x + dz,

v is the drift velocity of the

rolling grains downwards along x; D is a diffusion (or dispersion) constant. For simplicity, we

treat both u and D as constants in time and space. As discussed in section 2 below, one can

gain indirect information on these quantities from 'rotating drum' experiments.
The term T accounts for the conversion of immobile grains into rolling grains, and vice versa.

We shall construct T with the help of the following physical considerations:

(a) We assume that an immobile grain cannot spontaneously start rolling unless it is dis-

lodged by an already rolling grain. This seems reasonable close to the angle of repose, although

m
principle at some larger angle a static grain could cease to be supported by those below it,

and start rolling. However, to create this condition in the absence of rolling grains clearly
requires an externat perturbation, such as an imposed tilt of the entire sandpile. (We return

to this issue in our discussion of the Bagnold angle in Sect. 2.2).
(b) The local slope -ô~h of the sandpile must exceed a critical value Sc (which

we associate

with the angle of repose) for the dislodging process to be effective. For convenience we cari

subtract off a background slope, so that Sc is zero, unless otherwise stated. With this choice,
the gradient of h is everywhere small and we need not distinguish between gradients and angles.
By convention we consider piles that are decreasing in height with increasing z

(sloping down

to the right); thus ô~h > 0 corresponds to a surface less steep than the angle of repose.

(c) If the local slope is less than the critical slope Sc Ii.e., ô~h > o) then rolling grains
will tend to stick to the surface, thus being converted into immobile grains. This occurs

independently for each rolhng grain, and hence at a rate proportional to lZ(z, t) itself.

(d) If ô~h
=

Sc, but à]h ~ 0, then conversion acts to reduce the local curvature of the

surface (filling in hollows and eroding bumps) again at a rate proportional to lZ.

The simplest form of T exhibiting the above four properties is the following:

T(h, lZ)
=

-lZ[+f1h + Jçô] hi (3)

with
+f > 0 and Jç > 0. This expression, though nonlinear, depends linearly on each of lZ and h,

a choice which olfers great advantages in analytical work. This major simplification corresponds

to assuming that, for a given rolling grain density, the rate of deposition or dislodgement of

static grains varies smoothly from positive to negative as the slope passes through Sc. In
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principle this should not be true (except if there is a 'partide-hole' symmetry of the kind

discussed in Ref. [14]): instead, one should introduce two coefficients +f+ and +f~ for slopes
above and below the critical value (likewise also for Jç). However, this simplifying assumption

seems to us reasonable (but see below Sect. 1.3, viii); when it holds, our choice of T becomes

simply the first term of a Taylor expansion (for lZ and h small).
Having chosen T, we can at once write down

an equation for the height h(z, t) of the sandpile
(in suitable units), which we define to indude only immobile grains, as follows:

h
=

-T
=

7Z(x, t)[+fô~h + Jçô]h] (4)

so that the total number of grains (h + 7Z) is conserved locally. Since T is linear in 7Z, it follows

from equation (4) that in the absence of rolling grains, the surface is 'frozen' in a metastable

state, and is incapable of spontaneous rearrangement. A static system which is perturbed (so
that some rolling grains are

generated) will typically evolve for a short time but then immobilize

in a new state as the rolling grains come to rest. This metastability is a characteristic feature

of powders, and we believe that it is important to incorporate it, at least qualitatively. (As
noted previously, this feature is not easily captured in the Hwa-Kardar approach.) We shall

see later that it con lead to hysteresis and other interesting elfects.

Equations (2-4) comprise the basic phenomenological theory with which we aim to describe

the surface evolution of sandpiles. Before applying the model to some interesting situations,

we make some further comments about the structure of the model, and possible variations of

it (either in the equations themselves, or in their interpretation).

1.3 VARIOUS REMARKS. (i) Equations (2, 4) are invariant when h
-

h + const., as they
should be. The total number of grains is conserved since à(h + 7Z) fat can be written as the

divergence of a current. Note, however, that the conservation of grain number only implies
volume conservation if the underlying powder has a fixed density.

(ii) The actual height of the sandpile may of course be defined to mdude the rolling grains.
Since in the moving phase powders expand, the true height of the sandpile reads 7i

=
h + alZ

with a > 1 an unknown parameter of the theory. For simphcity, we consider only the underlying
height h in what follows.

(iii) The term in Jç in equation (4) is physically crucial. This term atone allows surface

features to be smoothed, rather than simply convected from one place to another (see Sect.

2 below) under the action of rolling grains. For example, one can prove that for Jç =
0 the

probability distribution of the heights of local maxima in h is conserved in time.

(iv) In contrast, the model obtained by setting D
=

0 in equation (2) remains sensible, and

shares several major properties with the full equations. However, this dilfusive term represents
the only means by which rolhng grains can propagate backward up the slope of a sandpile. This

propagation tums out to be essential to the description of hysteresis phenomena (see Sect. 2),
and so we retain D > 0 in what follows. More realistically, this dispersive term could anse, not

by any individual grains actually moving uphill, but rather from the fact that a rolling grain

can dislodge grains a little above it (or below it) on the slope. A more detailed mortel of that

process would require D to depend on ô~h. (The resulting terms, such as
à]lZô~h, coula be

viewed as contributions to T.) For simplicity
we study only the simplest version (constant D)

in this paper.

(v) Several other physical elfects coula complicate these equations by adding new nonhn-

ear terms. For example, the velocity of rolling grains (as well as the diffusion constant, see

(iv) above) might depend on the local slope and also on the local density of moving grains,
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#ving extra terms in equation (2). However, we believe that equations (2-4) already cap-

ture the essential physics of the problem (which might be obscured by introducing too many
phenomenological parameters).

(vi) In the presence of a incident flux of grains (determimstic
or random), an input term

q(x, t) should of course be added. It is not totally obvious, however, whether q(x, t) should be

aclded to equation (2), or to equation (4),
or to both. Arguably this depends on the properties

of the grains themselves. In the case of "soft grains" q(x,t) should presumably be added to

the Î(x,t) equation, smce these grain will generally stick upon landing. In the case of hard

elastic grains, the added grains will primarily contribute in the rolling grain density, and hence

q(x, t) should be added to the lZ equation.
(vii) If the average incident flux of grains (q) is non~zero (as expected physically) one should

follow Kardar, Parisi and Zhang (KPZ) [20] and add a term proportional to (q)(ô~h)~, which

takes into account the dependence of the flux of partides on the local orientation of the surface

[20, 18, 21]. Such a term is dearly appropriate for soft partides (added directly to h); its

inclusion is not so transparent for hard grains (when the incident flux is aclded to lZ).
(viii) A similar term may also arise from the asymmetry between dislodgement and sticking

processes. The constant coefficient
+f in equation (3) could be replaced by +fo ++fiô~h to accourt

for this asymmetry, either as the next term in a series expansion, or to mimic the discontinuous

case when +f+ ~ +f~. This contributes to T a term in lZ(ô~h)~, which reduces to a KPZ term

m equation (4) if lZ is weakly fluctuating.
(ix) Finally, we note that although our arguments are couched in terms of "rolling" grains,

very similar considerations can be used to construct a model in which dislodged grains do Dot

roll, but bounce loosely along the sand-pile surface. This may require a distributed energy

source such as extemal vibration of the pile, though for large elastic grains (such as boulders

in a
rockfall), that does not seem to be necessary. Similar behaviour occurs when an externat

convection (such as wind) is applied to a roughly horizontal surface. In this situation there

will be large changes
in

the interconversion constants +f and
K.

Otherwise, it is arguable that

the basic structure of the equations is the same; if so, many or our results can be carried over

to these problems.

2 Deterministic examples.

We shall now analyse our phenomenological equations in some physically motivated situations.

In this section, simple deterministic evolutions (such
as an isolated bump, Sect. 2.1) are

considered; noisy situations are deferred to section 3. This section of the paper is mostly
qualitative, but our arguments are illustrated and supported by some numerical solutions

of the governing equations. One interesting outcome of our analysis (Sect. 2.2) is that an

immobile sandpile remains stable to small perturbation until a'spinodal' critical slope Sd,
strictly larger than Sc (the repose angle) is reached. We shall also discuss in section 2.3 and

2A the characteristic relaxation time scales pertaining to 'rotating drum' experiments [4, ii,
and show how to estimate on this basis the model parameters u and +fD. Section 2.5 concems

a sandpile with a point source of incident flux.

2.1 EVOLUTION OF A BUMP AND OF A SINUSOID. Let us first Îook qualitatively at the

case where a
single small bump sits in the middle of

an otherwise flat surface (at angle Sc),
with a constant rolling grain density lZo. Equation (4) then reveals that the bump propagates
uphill with velocity uh "

'fRo. (It also undergoes spreading due to the dispersion term.) For

a sandpile, this interesting behaviour reflects the fact that rolling grains deposit on the flatter
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(uphill) part of the bump, and erode the steeper (downhill) part, resulting m a net uphill
translation. Hence the surface structure is convected upwards by the action of rolling grains;

this is a generic feature of the model. The eifect is similar to the well known fact that traflic

jams propagate in the opposite direction to the flow of cars [22]. In contrast, a curious feature

of the Hwa-Kardar formulation, equation (1), is that bumps might travel either upwards or

downwards depending on their absolute height.
Measurements of the uphill convection speed could in principle be used to extract the value of

+f
from an experiment where Ro as well as the upwards velocity are measured. Experimentally,

uphill-travelling "surface waves" have recently been observed in sandpiles vibrated from below,
although the physics here may be more complicated, since bulk convective motions of the pile

were apparently involved [23].
Suppose now that one now starts with a sinusoidal profile, Î(x,t)

=
ho sin(2rx là), with

an initially constant rolling grain density Ro. If ho is small enough, the variations of R(x,t)
due to the evolution of h(x, t) will be negligible; the oscillatory profile will be convected uphill
and decay exponentially in time (due to the diffusion term in Eq. (4)), with a relaxation time

T> =
À~ /RoJç. The uphill motion can only be observed if uhT> > À, 1-e- when À+f/Jç > 1. If on

the other hand ho is not small, shocks can appear. This has been confirmed numerically (see
Fig. 2); the numerical scheme used is described in the Appendix. These shocks arise because

regions where (ô~ hi is initially larger will generate more rolling grains, thereby enhancing their

effective upwards velocity. Once a shock has appeared, it becomes the dominant cause of the

relaxation of the profile. The gradient in the shock is of order hla, with
a is the shock-width

(of order the grain size) and the relaxation rate in the presence of shocks is then found to be

m
a~ /RoJç.

Relaxat~on of a sine wa;e

i

,

ll~x,t=0)=1

05 ~,'

_,"

~ 0

-.-,=o
~

05 -1=iooo ' _,'

"""""1=io '~,,"
-.-.-t=IOC

,

~
l

0 20 40 60 80 100
X

Fig. 2. Numerical results for an
initial sinusoidal height profile with a constant rolhng grain density

7Zo, at various times. In this case, the initial amplitude
was

high enough to produce snacks at

intermediate times.

2. 2 HYSTERESISj MAXIMUM ANGLE OF STABILITY. Next we consider the situation of fig-

ure 3, where a sandpile is prepared in a metastable state, with ô~h(x, 0)
=

-So < 0 [24], but

with no rolling grains. (This can be done by simply tilting the base of a sandpile which was

at its angle of repose.) As we have already emphasized, smce no rolling grains are present,
this situation does not evolve with time. However, imagine now that one slightly perturbs this

initial state by creating a small number of rolling grains at the louer edge of the pile. (This
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could be done by dislodging a few grains so as to spill over the hp of the supporting plate,

or by briefly openmg a small hole there.) Interestingly, the subsequent evolution will depend
critically on the initial slope perturbation So, as shown by the following argument.

h

~~S~
'

' ",
Î "

~ ',
~s '

0 x L

Fig. 3. Initial metastable configuration of
a sandpile, with slope 50 larger than the nominal stable

slope Sc. This configuration is
then perturbed by

a
small amount of rolling grains, introduced either

at the bottom or at the top of the pile.

If, at time zero, a small pulse of rolling grains lZ(z~, 0)
=

AlZo à(x' z) is created at site x,

then two opposite elfects will come into play:

(1) Firstly, the rolling grains are convected away downhill, tending to restabilize the profile

near z in a new frozen state. The elfect of this can be isolated in equation (2) by exduding
the interconversion term T; we find that the density of rolling grains at z after time t evolves

as

~~~'~~ ÉÎ~~~~ ~~~~~~~ ~~~

Note that the dispersion process, governed by D, is the only factor limiting the elfectiveness

of convection at carrymg away the perturbation: if D
-

0, the rolling grain density at x falls

to zero instantaneously.
(ii) Secondly, the rolling grains cause dislodgement which dots as a source of new rolling

grains. From equation (2), one finds that in the absence of convection or diffusion (u
=

D
=

0),
7Z(x, t) would grow exponentially, as follows:

R(x, t)
=

AlZo exp -+f dt'ô~h(x, t') (6a)Î~

So long as the local slope does not vary too much in space or time, this con be replaced by

Riz, t)
m ARO exp(+fSot) (6b)

If we now combine these two competing elfects, R(x, t) will either grow or decrease expc-
nentially, according to the relative magnitudes of +fSo and u~/4D. If So > Sd CÎ u~/4+fD,
rolling grains are generated by dislodgement faster than they are convected downhill this

leads to a catastrophic avalanche, discussed further below. If on the other hand So < Sd>

the small perturbation is swiftly convected away, leaving the uphill profile in a new quiescent
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Fig. 4. Height h(x,t) at dilferent times t
=

1600, 2400, 4000, 5600,8000, starting at t
=

0 (upper
curve) from

a
slope below the spinodal limit So < Sdi Perturbed from the bottom (x

=
L). The

values of the parameters are; v =
o-1, l~

=
10, ~ =

1,
~ =

1. Note that the profile relaxes to a

new
metastable configuration: the two last curves

(t
=

5600 and 8000)
are indistinguishable. Inset:

evolution of the rolhng grain density as a
function of time for the

same
initial conditions.
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Fig. 5. Height h(~, t) at dilferent times t
=

300, 400, 500, 700, but starting at t
=

0 (upper curve)
from

a
slope steeper than the spinodal hmit: So > Sd

i

and agam perturbed from trie bottom (~
=

L).
The profile

now
relaxes to the nominal stable slope SC (" 0 here): the last curve, corresponding to

t
=

700, has collapsed
on

the ~-axis. Same parameters as m
figure 4. Inset: evolution of the rolhng

grain density ai the Upper edge as a function of time for the same initial conditions.

state. Hence we predict the existence of a sharp critical angle, dilferent from the static angle of

repose, above which the profile is unstable to small perturbations. In analogy with the physics
of first order transitions, we call this a 'spinodal' angle.

We have confirmed this prediction by numerically solving our equations. The results are

displayed in figures 4 to 6. In figures 4 and 5, we show the height profile at diiferent times,
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for which the profile
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a nfiguration (Fig.
4), and
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t) e 0
(Fig.

5). The

in each case is made
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pile.
The inset of figure 4 shows

profile
of

lZ(x,
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from
equation
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alue of t. Figure 6 shows he ratio of trie final height to the initial height
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r =

h(0,
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Interestingly,
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plot
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the
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smaller
than 1, but still on-zero. (We have

found
numerically

that r is quite insensitive to the initial noise ~
although

the time needed to
reach trie
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hen

AlZo - 0:
see below).

0 < r < 1 is

estimate, rom
hese data, Si ci

3u~/D+f
and Sd (10 - 20)u~ /D+f. For S > Sd >

eviously,

the relaxation of the
surface

is
complete,

and
the final tate is at the angle of

epose

Sc = 0. The
merical

value
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surprising since, m
equation

(6) by lZ = AlZo exp(+fSot) we
gnored

the fact

that the
ean slope itself decays

with time.

The diiference etween
Sc (zero, by our and

Sd characterizes the role of hys-

teresis in our model sandpile. In this context,

In our approach, the Bagnold angle is related to hysical parameters escribing the
ynamics

of the profile:
the dislodging rate +f, the nvection of the grains v and, crucially, the

iffusion constant
D. If D was qual to

zero,
there would be no limiting

(Sd - cc) ssentially because lZ could not influence nything
appening in

the

uphill direction from here
they started. Convection

of lZ would immediately emove any la-
alized in the rolling

grain
density, preventing the feedback mechanism that

leads
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to instability. As mentioned previously, the diffusion term in equation (2) indudes the eifects

of dislodgement by grains at neighbouring spatial positions (see Sect. 1.3 (iv)), and therefore

in practice D could be a strong function of the background slope So. At the level of the above

arguments, however, this makes little dilference: Sd is given by the root of Sd CÎ
u~ /4+fD(Sd)

where D(So) represents the slope-dependent effective dilfusivity.
Of course (as mentioned in Sect. 1.2) if a static sandpile were tilted through a large enough

angle, some grains coula cease to be supported by those below, and start rolling. The angle
at which this occurs is, in fact, a more conventional interpretation of the Bagnold angle (25],
which therefore depends on the local 'roughness' of the profile (see also [16] ). In our picture,
such an explicit mechanical instability is not necessary for the global structure to be unstable

(though it could indeed provide the source for perturbations in lZ). Nor is it suilicient, since

for So < Sd the surface does not relax completely even if some isolated grains do start rolling.
Therefore our 'spinodal' interpretation of the Bagnold angle is quite distinct from the usual,
mechanical one. Dur hysteresis mechanism also dilfers from that proposed by Jaeger et a1. [12],

which is based on a discussion of the nonmonotonic friction-velocity curve for an individual

rolling grain.

The above arguments concerned the elfect of a small rolling grain pulse on surface structure

uphill of the perturbation. It is natural to ask the elfect on surface structure on the downhill

side for example, what happens if rolling grains are added to the Upper edge of a static

pile tilted through an angle So beyond the angle of repose. For So > Sd, the entire surface

again relaxes to zero slope as before, but for intermediate angles the behaviour is more subtle.

The perturbation AlZo of course rolls down the pile, dislodging further grains as it travels.

As this puise passes through the neighborhood of some point x, its integrated elfect on the

relaxation of h(x) remains finite (for the reasons discussed above, just as if the pulse were

initiated at x in the first place). However, the amplitude of the pulse increases (exponentially)
with time as it dislodges more and more grains. Therefore, for points far enough downhill from

the initial perturbation, the relaxation elfect is large and the local slope will relax to values

very close to the angle of repose. However, as the perturbation becomes smaller one has to

look further and further downhill to see this elfect. In fact, since the pulse of rolling grains

mcreases exponentially, the characteristic distance, beyond which nearly complete relaxation

occurs, increases as m
) log((Sd So)V/+fARO).

2.3 THE TIME~SCALE FOR SURFACE RENEWAL. For So > Sd we expect the initial profile
to relax to the truly stable profile ô~h

=
0 alter a certain renewal time, or 'flushing time'

T which we now estimate. Suppose as before that the initial perturbation is created at the

lower edge of the sandpile, x =
L, where h(L, t)

=
0 (see Fig. 3). At x =

0, we imagine that

there is a wall against which the sandpile is leaning. Initially, h(0, 0)
=

SOL; for definiteness,

we
define the flushing time T as the half~time for the height of the upper edge of the pile:

h(0, T)
=

h(0,0)/2. As a rough estimate, we shall again neglect the time dependence of the

mean slope in the evolution equation for R, treating this as a constant, SO

Following our previous arguments concermng the competition of convection with dislodge-
ment, we find from equation (2) that the rolling grain density at x =

0 and time t is approxi~
mated by:

On the other hand,
from equation

(4), one gets Î
ci

-+fRSO. We
can therefore define a

certain time t*(R) by the
equation

h(0, t*) m h(0, 0)/2; this is easily found
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Fig. 7. -'Flushing time' T(L)
as a

function of the initial slope So for
a

Pédet number equal ta one.

As expected, T becomes small as the 'driving force' So increases, and diverges when So
-

Sd.

flushing time T by the following self-consistency condition:

~ ~~~~~ ~

fIZÎ,
T) ~~~

with lZ(0,T) given by equation (7).
The solution of equation (8) depends on a quantity Pe

=
uL/D, which we define by anal~

ogy with the usual Pédet number in fluid mechanics. If this is large enough, Pe » 1 e

log[+fT(L)AlZo/L], one
finds that (à e So Sd)1

~~~~
Î$

ÎÎÎ
Î~Î ~~

~~~~

which, to first order, does not depend on the noise level ARC. For small Pe, one finds:

~~~~ "

ÎÎÎS
ÎÎÎ

ÎÎ ~~ÎÎÎÎ~ÎÎL~ ~~~~

(Note that the result for large So is the same for both large and small Pe.) Hence the flushing
time decreases with the initial slope So (1.e. the driving force à)

as one might expect.
We now compare these predictions with numerical data. Figure 7 shows T as a function of

the initial slope So, for L
=

100, D
=

10 and v =
0.1. This corresponds to Pe

=
1 which is near

the crossover between equations (9a) and (9b). For initial slopes such that à
=

So Sd ci Sd,

one finds from equation (9a) T(L)
m LIV m 1000, which is indeed the order of magnitude of the

flushing times shown in figure 7; moreoever the flushing time shows a divergence for So
-

Sd

and a decreasing trend for large So, in good agreement with equations (9).
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2.4 THE ROTATING DRUM. The above discussion cari be used to analyse the 'rotating
drum' experiment reported in reference [4], in which a cylinder, partially filled with grains,

is rotated around its (horizontal) axis with an angular frequency w. We shall assume large
Pe; this is justified below. If w is very small, one expects the slope S of the surface of the

sand to build up gradually, according to S(t)
=

wt, until the spinodal angle Sd is reached at

which point a landslide occurs. We presume the mechanics of the drum is imperfect enough to

provide the perturbation AlZo needed to trigger the sandpile instability at Sd. (Amusingly, if

the noise level is toc small, the instability will eventually occur for an angle SO > Sd totally
irreproducible since it relies on uncontrolled rare events. This might explain why there is an

irreducible uncertainty on the determination of Sd> even for very clean experiments [26]
However, it takes a finite avalanche duration T(L, w) for the slope to relax after Sd is reached.

Defining t*
=

Sd/w + T(L,w), and replacing So by wt in equation ii),
we

find that t* obeys
the following equation:

4+fDt*~ u~t*~ (2vL + 4tD)t* L~
=

0

from which one deduces that (ignoring numerical prefactors) T(L,w)
m L/v for Pe » 1 and

T(L,w) m
iD/u~ for Pe < 1. Notice that T(L, w) is in fact independent of w in both regimes

(though dilferent from T(L) for a sudden tilt, as calculated above). Dur description is valid

prouided trie time between avalanches is large compared ta trie duration of the avalanches them-

seiues, i-e- T(L,w) < Sd /w. In the opposite limit, avalanches overlap strongly: this corre-

sponds to a continuous flow regime, as described in reference iii. The characteristic angular
frequency at which the crossover from isolated avalanches to continuous flow is therefore defined

as: Sd /w* m T(L, w* ).
This scenario of regular avalanches between two limiting slopes, reminiscent of

a
first order

phase transition [11], emerges naturally from our model and concurs qualitatively with the ex-

perimental findings of reference [4]. Interestingly, both the time between successive avalanches

Sd /w and their duration T(L, w) were measured in the experiments of Jaeger et ai.. The values

reported in [4] are: L
=

0.1 m, w =

10~~ s~~, T(L,w)
m s and Sd Ù 5 x

10~~ Writing
Sd

=
Au~/+fD, where A is a numerical constant of order 1, we obtain the following parameter

estimates: (1) By assuming Pe » 1, one obtains
u m o.1 m/s and thus +fD m

A/5. Consistency
of Pe » 1 then imposes that

~1 » 20A s~~ Note that a value +f =
100 s~~ corresponds to a

lifetime of a rolling grain before sticking, on a surface indined at 1° below the critical angle, of

about s.
(ii) If instead we assume Pe < 1, then we deduce

+f m Al x
10~ s~~ and u~ ID

ci 5i.

Consistency of Pe < 1 then imposes that u » 0.5t m/s.
These estimates do not, unfortunately, allow us to decide the magnitude of Pe without

further information conceming (say)
u or +f. The crossover value w* dividing isolated avalanches

from continuous flow can however be predicted, based on our finding that T(L, w) is frequency
independent, whatever Pe. We obtain w* m 5 x

10~~ s~~,
or 0.5 r-p-m, which compares very

well with the value quoted by Rajchenbach ii, 27] for a system of glass beads with similar

diameter to those used by Jaeger et ai. [4] (0.25-0.5 r-p-m).

2.5 A SANDPILE WITH STEADY POINT SOURCE. In ail the cases examined numerically,
the presence of a steady source of grains relaxes an initially unstable sandpile (SO > Sc)
completely, 1-e to Sc, regardless of the value of the initial slope SO- In the case of a pulse

of incident grains, the question of whether enough 'dislodged' grains are generated locally to

initiate the relaxation process, before the 'dislodging' grains are convected away, is crucial to

the existence of the dynamical angle Sd However, in the present instance dislodging grains

are always present, hence relaxation is always complete.

JtR R~'l 11' 1Ill ilQl'I J ' fil t'(Tt>RER ltj,j
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3. Surface evolution in the presence of noise.

In this section we focus on another aspect of the sandpile problem, of obvious interest to the

statistical mechanics community [20, 18, 14, 21, 19], though arguably more remote from the

practical world of real sandpiles. We study the long time, large Iength-scale properties of our

equations in the presence of a random noise source. Two sources of noise are considered: noise

in the initial condition (initial roughness) which then evolves
m time, and spatiotemporal noise,

such as is introduced by an incident flux
or random "rain" of deposited partides.

3.1 RANDOM INITIAL CONDITION. We have numerically integrated equations (2-4), using

a standard finite dilference scheme [28], with a mesh size a
(which we associate with the grain

size). The simplest case to consider is that of noise m the initial conditions. We start from

an initially random surface h(x,t), with an initially constant rolling grain density lZo. The

background slope Sc has, as usual, been subtracted so that h(x, 0) has mean zero; we take the

initial state to bave a gaussian white noise spectrum with a small mean-square amplitude h(.
We have obtained statistics for trie height deviations at long times for large enough samples.

Dur data (not shown) is consistent with the following analytical predictions: (É(z, t)~)
~w

t~~/~ and (ô~h~)
+~

t~~/~. These exponents con be simply derived by expanding the governmg
equations (2~4) in small deviations from a uniform rolling grain density lZ

=
lZo + ôlZ, and

solving the problem to lowest order m h and ôR. Equations (3) and (4) then reduce to the

following linearized equations:

ôlZ
=

-uô~ ôlZ + Dô]ôlZ h (10a)

h
=

Ro Î'fô~h + Jçô] hi (10b)

The second of these is a straightforward convection diffusion equation for h (with convection

in the uphill direction, as discussed previously). The convection term has only a trivial eifect

since the random initial condition is already homogeneous. The diifusive term smears out the

height fluctuations within a time dependent diffusion length ((t) ci
@@. The typical height

fluctuation can be estimated simply by averaging ((t) la samples from the initial distribution

(corresponding to the initial heights at all mesh points within the diffusion length). Since these

have mean zero and rms deviation ho, one has h m
holli

+~

t~~H. A similar argument
gives ô~h ci h If

+~

t~~H. It is gratifying that our numerical data may be rationalized so simply
(and in fact this can be done much more rigorously [29] ). Since the initial roughness decays in

time, it is perhaps not surprising that the linearized model becomes valid at long times. The

situation is less obvious with a steady noise term, as we now consider.

3. 2 RANDOM INCIDENT FLux. We have aise investigated numerically the role of a random

rain of soft grains governed by an incident flux q(z,t) aclded to the h equation (Eq. (4)).
For this study we did Rot indude a KPZ term, (ô~h)2; the role of such a term is discussed

in section 3.4 below. For q(x,t) we chose a white noise such that (q(x,t)q(x',t'))c
=

2a

xô(x x')à(t t'), where ()c denotes a cumulant. Thus the mean incident flux, which leads

to a steady upward translation of the surface, has been subtracted.

One interesting outcome of our numerical work is that, in order reach a well-defined scaling

regime, the sandpile must be given a mean slope S~ slightly less than Sc (1.e. the slope must

be flatter than critical). If a slope Sc is used, the rolling grain density increases exponentially
in time. This crosses over to exponential decay at slopes less than S~; only for S

=
S~ is a

scaling condition obtained. In practise, one can dynamically tune to the critical slope S~ by
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Fig. 8. Noise induced dynamical slope (minus the nominal stability slope Sc)
as a function of the

noise level, with a power Iaw fit with exponent 3/2. The noisier the flux used ta generate the pile, the

flatter the resulting slope.

Histogram of j~

JL (arb. units)

Fig. 9. Histogram of the local rolling grain density in
the presence of a

tandem tain of partiales:

we have plotted log P(7Z)
as a function of 7Z, which would be

a
parabola for Gaussian fluctuations, as

observed when the input noise
is

small. Larger
noise

induce 'intermittency' (see Fig. 10), with a peak
developing at small values of 7Z.

insisting that the total number of rollmg grains in the system remains constant. The behaviour

of our noise-induced dynamical slope S~(a) is presented in figure 8, where we show Sc S~ as

a function of the noise level a. Unexpectedly,
our data can be fitted bj, a nontrivial power-law:

Sc S~
=

A(u)a~, with an exponent fl m 3/2, and an amplitude A(u) which is a decreasing
function of the rolling grain velocity u. Physically, this means that the larger the noise, the

flatter the pile which is constructed the true angle of repose Sc is only reached in 'careful'

conditions (a
=

0). The static structure factor, (h(k,t)h(-k,t)), and the time evolution of

(h(x,t)~) and (ôR(x,t)~)
are consistent with those predicted by the linearized theory in the
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presence of noise: we find (h(k,t)h(-k,t))
+~

k~~, with both (h~) and (ôlZ~) scaling as
t~/2.

(The latter result for lZ fluctuations of
course does not contraclict the fact that the total

number of rolling grains remains constant in time for S
=

S~.) The results for the height
variable correspond to the Edwards Wilkinson model [29] which is obtained by adding the

noise term q to equation (10b); since the noise term is translationally invariant, the convective

term in that equation agam plays no rote. The surface is asymptotically rough, in contrast to

the asympototic flatness predicted by the Hwa-Kardar model (Eq. (1) [14].

Snapshot of the rolling grain density.

12

1o

8

j
~

~

4

2

o

0 40 80 120 160 200
X

Fig. 10. Snapshot of the rolling grain density 7Z(~,t) at a
given instant of time, showing quiescent

regions coexisting with 'avalanches'.

Although our model follows the scaling exponents of the hnear theory, the probability distri-

bution of the local rolling grain density P(lZ) is highly nontrivial. For small values of the noise,
the numerics show a nearly Gaussian distribution of fluctuations about a well-defined mean;
however, for larger noise amplitudes the distribution becomes skewed and exhibits a significant
tait for small values of lZ, corresponding to the presence of Iocally 'frozen' regions (Fig 9). A

plot of the spatial variation of lZ at a given instant of time is shown in figure 10. It is dear that

for large-amplitude disorder, the rolling grain density shows strong intermittency, with many

quiescent zones separating irregular bursts. We have also investigated the time autocorrelation

of the flux (or "avalanche density" ulZ. The linearized theory predicts that the autocorrela-

tion function u2(ôlZ(x, t)ôR(x, 0)) decays with time as
exp[-u2t/D], again consistent with our

numerical results. The absence of long time correlations arises because the non-zero convective

velocity u sweeps away the fluctuations as they are formed. This prediction is at variance with

other theoretical approaches [3, 14], where broad spectrum (1If) noise was proposed for the

flux down the slope.

3. 3 PERTURBATION THEORY FOR WEAK NONLINEARITY. We now set up a formai pertur-
bation expansion about the Iinearized equations (these

are Eq. (10a), and Eq. (10b) with the

noise term q added on the right) to study the nonhnearity arising from a random incident flux

of soft grains. We will see that this perturbation theory is well-behaved, which indicates that

the power-law exponents predicted from the lmearized model should remain valid, although
the nonlinearity will alter the amplitudes of the correlation functions.

Writing lZ
=

lZo + ôlZ and taking the Fourier transform of equations (2-4), we obtain the
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following equations (at wavevector k and frequency w):

(iw + iuk + Dk~)ôlZ(k, w)
=

-iuhkh(k, w) 1+f

/ ~~ ~~
qh(q, fl)ôlZ(k q, w fl) (11a)

2x 2x

(iw ivhk + JçlZok~)h(k, w)
=

q(k, w) +1+f
/ ~~ ~~

qh(q, fl)ôlZ(k q, w fl) (11b)
2x 2x

Where uh "
'fRo > 0 is the magnitude of the uphill convection velocity of surface features

(introduced in Sect. 2). We have neglected terms corresponding to JçôlZô]h in T, since these

involve higher powers of k than the parts retained, and will thus be unimportant for the

interesting limit of small wavevector and frequency.
Expanding equations (11a) and (11b) in powers of

+f
(with uh held constant) and eliminating

ôlZ(k,w) from equation (11b), one finds the following perturbative expansion for h(k,w):

h(k, w)
=

Go(k, w)q(k,w) + +fuhGo(k,w)
/ ~~q(k q)h(q,w~)h(k q, w w~)

+i~t~UhGo(k, W)
/ ))q(k P)lP q)hlq,Wq)h(k P,W Wp)h(P q,Wp-q)

+°(~t~) (12)

where Go (k, w) e (iw iuhk + JçlZok~ )~~ and wq e -uq + iDq2.
Having eliminated the rolling grains, we are left in equation (12) with an evolution model

for h, induding nonlinear terms, whose eifect can be studied by following standard procedures
(see e-g. [17, 20, 18] ). Formally one recasts the dynamical equation in terms of perturbative

expansions for the response function G(k,w) e (~~~~'~°~) and for the correlation function
ôq(k, Mi

(h(k, w)h(-k, -w)). These consist of the bare values (as given by linear theory) plus correction

terms in the form of integrals. For example, to order +f2, G(k, w) reads:

G(k, w)
=

Go (k, w) 8+f~u)aG( (k, w)k ~~q~(k q)Go(q, wq) Go (-q, w-~ )Go (k q, w wq)
Î

2x

+6i+f~uhaG((k, w)k ~~q~Go(q> wq)Go(-q, w-q) (12')12x
It is straightforward to check that these integral corrections are ail convergent. In the

language of critical phenomena, the nonlinearity is therefore "irrelevant". This means that the

perturbation expansion should, for weak nonlinearity, lead only to finite shifts in the effective

parameter values (such as the uphill convection velocity, +flZo, or the effective surface tension,

JçlZo) from those of the linearized theory. For example, the lowest correction to the uphill
convection velocity for height fluctuations is:

~~~~~~ ~~ ~
~ÎÎ~'+ Î3~'~~

~~~~

Thus the combined action of noise and non-linearity is to speed up or to slow down the

uphill convection of surface features, depending on the sign of 3u uh [30].
Dur perturbation theory will presumably start to break down when the nonlinearity is strong

enough. However, there is no sign of such complications in our numerical results given earlier;
in practice the scaling behaviour, (h(k, t)h(-k, t))

+~

k~~, and (h~), (ôlZ~)
+~

t~/~, remains that

of the linearized model. As is the case for analagous problems involving critical phenomena
under flow [31], it appears that the steady convection of surface features suppresses the buildup

of fluctuations, preventing the occurrence of large nonlinear correction terms: note that [uh]ei
diverges when the relative velocity uh + u goes to zero.
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3.4 OTHER TYPES OF NONLINEARITY. Some other forms of nonlinearity were discussed

earlier (Sect. 1.3), points (v-viii)) which are missing from our treatment so far.

Various contributions could arise from including a dependence of the velocity of the rolling
grains u either on the local slope (as one might expect) or on the density of rolling grains (which
would represent a hindering eifect). It is straightforward to check that for noisy deposition these

nonlinear terms are also "irrelevant", 1-e-, they lead to convergent integrals in the perturbation
theory; the same applies to similar dependences of the diffusion constant D.

The same is net truc however of the KPZ nonlinearity, as discussed in point (vii) of sec-

tion 1.3, which is intended to describe the dependence of the mean incident flux of incoming
particles or of

+f on the local slope of the surface. The KPZ equation [20], which describes

random deposition onto horizontal surfaces, is obtained by adding a term À(ô~h)~ to the right
of equation (10b), and setting uh "

0:

h=uô]h+À(ô~h)~+n

where we have identified the baie "surface tension" as lZoK
= u. In the present context, for

nonzero incident mean flux, we should analogously add a term À(ô~h)~ to equation (4). This

gives the following contribution to the right hand side of equation (12):

-ÀGO(k, w)
/ / )

[q(k q)] h(q, n)h(k q, w
fl) (14)

Perturbation theory to second order in shows that this term is relevant (in space dimensions

d < 2): the divergence induced is the one encountered for the usual KPZ equation [20, 18].
This term strongly affects the effective surface tension, which becomes k dépendent. For two

dimensions (as here) the KPZ model predicts that for large times, (h(k,t)h(-k,t))
+~

k~~,
and ([h(x, t) h(z, 0)]~)

+~

t~/~ These scaling form are expected to hold in the presence of

ail the others, irrelevant, non linearities which we have discussed. The presence of a KPZ

term however leads to some subtlety involving the conservation condition on grains, which

imposes that h + 7i
=

ô~j + q where j is a suitably defined current, and q the incident

flux. For the model just considered, this reads instead h + lZ
=

ô~j + À(ô~h)2 + q. Clearly,
the conservation law is restored by adding a counter-term -À(ô~h)2 to the equation for 7Ù,

equation (2). However, it is arguable that this conservation law should not hold in general in

granular media, where the local density can change e-g- under stress. But in fact, such a KPZ

term in the lZ(z, t) equation is anyway expected to appear from the nonlinear dependence of

T on ô~h as considered in section 1.3 (viii). For completeness, therefore, we have checked

the eifect of adding a counterterm to the lZ(x,t) equation as just described. This yields in

equation (12) a further contribution of a rather diiferent form,

-iÎfÎGo(k,
WI

/ ) ) () jq(k p)(p q)j h(q, fl)h(k p, w wpjh(p q, wp fl) (15)

The term appears only to affect the uphill velocity [uh]ei which will also become k dependent,
while giving a finite correction to the surface tension lZoK. Although we have not analysed
this in detail, it seems hkely that the height exponents are not alfected by this 'Doppler hke'

perturbation, and remain at their standard KPZ values. This trend is confirmed by a numerical

simulation of the governing equations with both terms present: see figures 11 and 12.
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3. 5 A SANDPILE WITH NOISY POINT SOURCE. We hâve finally investigated in a qualitative

manner the elfect of a noisy point source at the top of the pile. The main question is to know

how the non-linear 'black-box' separating the input point at the top from the exit point at the

bottom transforms the statistics of the input noise. In particular, one could wonder if a short

range correlated input noise could generate a 'colored' noise in the exit flux; this would reflect

a nontrivial (e.g., power law) avalanche size distribution. Figure 13 shows on the same graph
the input and exit flux as a function of time; revealing indeed an increase in correlation time.

A more systematic statistical analysis of this important question (in view of the number of

recent discussions related to the avalanche size distribution) is however needed, and we defer

it for future work.
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4. Derivation from a
microscopic model.

In this section we show how our continuum equations (2, 4) can be obtained from a discrete

microscopic model involving the stochastic dynamics of individual grains. In fact it was the

study of this model which initiated the present workj logically, therefore, this section might
have been placed first. We have deferred our discussion until now because the continuum

equations, once formulated, are rather easier to use, especially m analytical work, once our

choice of a simplified, bilinear interconversion kernel (Eq. (3)) has been made.

The microscopic model discussed below remains phenomenological, insofar as it contains

various parameters which we do not attempt to predict. Nonetheless, it allows us to complete

a conceptual bridge between the local microphysics of sandpiles and their observed macroscopic
behaviour. We limit attention to the case of "hard" grains, for which any external flux feeds

into the population of rolling grains, rather than the immobile ones. This is the opposite case

from that considered in section 3; however, the generahzation is straightforward.

4.1 SURFACE KINETICS We consider a discretized two dimensional sandpile, constructed

by dropping grains of sand onto a line. This baseline is divided into intervals of length a, which

are labelled 1,1+ etc., and events (such
as grain addition) occur at various times ta, tp etc..

Time is also discretized, so motion of grains occurs in discrete hops from one site to another.

In what follows, the term "adsorption" means sticking of a mobile grain to the pile at a given
site to form an immobile grain. Also, we shall make a distinction between "rolling" grains
and "mobile" grains. Trie latter represent, essentially, those grains capable of rolling at the

next time step. The distinction becomes unimportant in the continuum hmit, but is a useful

bookkeepmg device m our discrete model.

We now
consider some particular site1 at time ta, denoted hereafter as ii, a) we can write

for the corresponding change in the number
n

of immobile grains:

Ônza
"

~lza (Fia + Îija) Lia (16)
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where ~fizn is the local sticking probability. Here Fi represents the number of incident grains
added to the pile at (1, o) from external sources, whereas Rzn is the number of "rolling" grains
arriving at (1,a) (grains which have not just been added, but which were previously either

added or dislodged at some dilferent site). The quantity Lin represents the number of grains
newly dislodged at (1, a).

We now introduce a quantity

i7lza "
(Fia + Îiza)(1

ffizoE~ ~ Lia (li)

This represents the total number of mobile grains at (1,a), namely grains that have arrived

from an external source but are not adsorbed (F(1-~fi) ); rolling grains arrived but not adsorbed

(R(1- ~fi)) and dislodged grains newly produced IL). Finally we define xza,jp as trie transition

probability that a mobile grain at (j, fl)
moves to ii, a) without making contact with the pile

between these two times. In general, this can indude local and long range jumps of all kinds

reflecting rolling, bouncing etc., though below we will specialize to a simpler form for xzn,jp.
With these definitions, we obtain for the rolling grain density

~-i

R~n
=

~j ~j
Xm,jp mj,p (18)

P=o j

which means physically that the rolling grains at site1 at time t~ consist of ail mobile grains,
present at sites j and earlier times tp, that have moved from there directly to (1, o). Equations

(16, 17) may be easily rearranged to give

~~~" ~i
~fizn

~~"
i ~bzn

~~" ~~~~

Dur results so far are very general. To make use of them, we must make some simplifying
assumptions. The first of these concerns the transition probability xza,jp. For simphcity we

assume

Km jà "
e)ô~-i pôz+i

j
+ + e)ôa-i pôz-i

j
(20)

' 2 ' ' 2 ' '

with
e a parameter. This describes partides that can only transmit to nearest neighbour sites

in a single time step. (It thus describes the rolling of grains, but not, in principle, any long-

range hops or "bounces".) Unless
e =

0, there is a built-in preference for jumping downhill

(1.e., increasing 1), reflecting the presence of a background slope.
Substituting this form mto the defining equation (18) for R gives

Rzoe "

(j C)~7lz+1,a-1 + () + ~)~7lz-1,a-1 (20')

If we now ehminate Lm and Ri from equation (17) using (16) and (20) we obtain

min
() e)mz+i,«-i (( + é)mz-1,~-i

=
Fin Anm (21)

Equations (19) and (21) are a pair of coupled equations, local in time and space, for the

evolution of the numer of adsorbed grains, n, the number of mobile grains, m, at neighbouring
sites. The external flux is F, whereas the adsorbtion probability

~fi
and dislodgement rate L

for each site remain to be chosen.
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4. 2 THE CONTINUUM LIMIT. We now seek the continuum limit for equations (19, 21). We

denote the discretization length by a, as previously, and the discrete time interval (jump time)
by

T.
We must first associate our discrete variables n, An, F,~fi,L and

m
(each of which is

dimensionless) with a set of (dimeusioued) continuum variables. This can be done in several

ways, but most straightforwardly by dimensional analysis, with the following results:

Fin "
#(x,t)aT

,

Lin
=

À(x,t)aT

~fiin "
P(x, ;

mm
" m(x,

Here h(z,
t) is

e height; h
its time

unit time
per unit length);

p(x,t)
trie robability

per unit time of a mobile partiale sticking;
À(z, t) the rate of

production
of roliing

partides
by

dislodgement
per

unit

length and time;
and (z, t) the umber of obile grains per unit length.

Making
these in equation

(19),
and letting the time increment

(T - o) at fixed
sticking

robability p yields

h(x,t)la~
=

P(x,t)m(x,t) À(x,t) (23)

This makes sense when one reahzes that hla~ is the total number of immobile grains per unit

length: pm represents the adsorption of mobile grains and the loss of immobile grains due

to the dislodgement process.

We now apply the same hmiting procedure to equation (21). We further assume that the

density of mobile grains m(x, t) can be represented as a smooth function of position and time.

By expanding on the left of (21) in a double Taylor series, we obtain:

1 + 2e(a/T)ô~m (a~/2T)à]m + O(T~, a~)
=

# hla~ (24)

To eliminate the dependence on a, we introduce physical quantities lZ
=

ma~,
q =

çia~, and

A
=

Àa~ which remain well-defined in the continuum limit. Thus lZ(x, t) is the contribution that

mobile grains would make to trie height h if suddenly immobilized; q(z, t) is trie contribution

that any incident flux would make to h under the same condition; and A is the rate of height
loss from dislodgement. We also define variables D

=
a~ /2T and u =

2ea/T, which (by taking

e +~

a) can both be made to remain finite as a -
0 and

T -
0.

With these definitions, equations (23, 24) become

h
=

p(x,t)R A(x,t) (25a)

lÙ + uiR Dô]R
= q

Î (25b)

These correspond to equations (2) and (4), with a constant velocity u and diffusion constant D.

Note that the incident flux term q is added to the lZ equation. This mortel therefore represents
the physics of "hard" grains, as defined earlier, for which any grain that lands on the pile is

initially mobile. The interconversion kernel in the present model is of the form

r
=

-p(x,t)Jz(z,t) + A(x,t) (26)

with p the local sticking probability and A the dislodgement rate.
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At this point we coula make a sequence of physically motivated assumptions, in the frame-

work of the microscopic model, to simplify the form of T. However, we have already carried out

the corresponding procedure, at the macroscopic level, in section 1.2. The simplified bilinear

kernel (Eq. (3)) follows from (26) if we assume (1) that the dislodgement rate A is proportional

to the density of mobile grains, so that A
=

q(x, t)lZ, and (ii) that the quantity q(x, t) p(x, t)

can be expanded as a Taylor series in h(x, t) and its spatial derivatives. The latter requires
that h(x,t) can be treated as smoothly varying. We have not needed to assume this so far

in this section, although a corresponding assumption was made earlier for m(x, t) (in deriving
Eq. (24) above).

The above considerations lead to a mortel with a finite diffusion constant D which arises

from the ability of grains to hop uphill. As mentioned in section 1.3 (iv), the diffusion term in

equation (2) is intended also to model the fact that dislodgement of a given immobile grain can

be initiated by mobile grains, not just at the same site but at neighbouring ones. As discussed

there, this would lead to a presumably slope-dependent diffusion constant. To model the case

where this process is the dominant form of dispersion, the hopping diffusion D can be "switched

ofll' by taking a slightly diiferent continuum limit of the discrete picture: if we maintain e finite

je-g-,
e =

1/2, corresponding to fully directed motion) as a -
0 and

T +~ a -
0, theu D

=
0

whereas u =
2ea/T, as before Any dislodgement-induced dispersion, of the type just described,

would then have to be explicitly induded in the kemel T.

5. Conclusions

We now summarize the main points of this paper. First, we have established, using general
physical arguments, a set of phenomenological equations (2-4) with which to describe the

evolution of the sloped surface of a sandpile or similar granular aggregate, close to the angle of

repose. These equations diifer from earlier analyses in their explicit inclusion of two interacting
variables, the local height of the pile and the local density of mobile ("rolling") grains. The

latter is subject to a steady downhill convection arising from the background slope. The

interconversion of immobile and rolling grains was represented by a simplified bilinear kernel

with relatively tractable analytic properties.

Several interesting aspects of sandpile dynarnics have been predicted using the model. Firstly
(see Sect. 2.1) the downhill convection of rolling grains leads to an

uphill convection of surface

features. For a steady initial rolling grain density, small features will be convected umformly,
whereas large amplitude features will tend to shock. Secondly (sec Sects. 2.2, 2.3)

our equations
exhibit the physically important property of metastabiiity leacling to hysteresis elfects. A

sandpile at the angle of repose will not relax fully when tilted unless a finite threshold (the
Bagnold angle) is exceeded. In our model, this corresponds to a'spinodal' angle beyond
which infinitesimal perturbations can lead to relaxation of the pile. This spinodal angle can be

expressed in terms of the other parameters entering the model, some of which can be estimated

from rotating drum experiments (see Sect. 2.4); qualitative agreement is obtained between our

predictions of the avalanche/continuous flow transition and the observed value.

We have also investigated our equations m the presence of various noise terms, focusing on

the long time, large length-scale properties. For a random initial condition with no externat

flux (see Sect. 3.1), the initial roughness decays in time with exponents corresponding to those

of the linearized version of the theory. For homogeneous spatiotemporal noise, and in the

absence of any KPZ term, our nonlinear equations again display the asymptotic properties
of their linearized counterparts; the height fluctuations therefore show Edwards-Wilkinson

scaling (see Sects. 3.2, 3.3). The steady downhill convection of grains inhibits the buildup of
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fluctuations; the current autocorrelation function decays exponentialljr in time. If a KPZ term

is added, however (appropriate in the presence of a nonzero incident mean flux) it remains

relevant despite the convection, and we recover numerically the anomalous exponents of the

KPZ model (see Sect. 3A). According to whether this term is included, the surface dynamics

are either dilfusive (((t)
+~

t~/~), or of the KPZ type (((t)
+~

t~/~). In either case, the sandpile
surface is predicted to be rough, 1-e-, height variations increase with separation. These results

dilfer significantly from those of Hwa and Kardar who predict a flat surface and a correlation

length ((t)
+~

t.

Finally, in section 4, we have shown explicitly how to obtain our phenomenological contin-

uum description of rolling and immobile populations, starting from a discretized microscopic
model that considers the local motions of individual grains. This helps to darify the physical
approximations we have made, and completes a conceptual link between the microphysics of

sandpile surfaces and their macroscopic behaviour.

Ail the results summanzed above are for sandpiles in twc-dimensional space (the height is a

function of one position variable, and time). As mentioned in the introduction, our equations
generalize straightforwardly to higher dimensions. Most of the interesting physical properties
that we have predicted carry over, or have obvious analogues, in higher dimensions. Another

direction would be to apply similar ideas to surface growth. Assuming that one still has two

populations of partides (moving or stuck),
one could consider the following equations:

~~l'~~ =
-T

=
ÀIÙR(ài, t) Ùh(£, t) + À21Z(£, t)i7~h(£, t) (27a)

(27b)ô~zjj,
t ~v2~z(p, t) + r + °(~

~~

as alternatives to the usual KPZ description. We leave the detailed investigation of these

extensions open to future study.
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Appendix.
The solution procedure.

In this appendix we describe a solution method suitable for dealing with the deterministic

examples of section 2. The results of section 3 in the presence of'strong noise' were instead

obtained using a standard finite dilference time-march scheme. The basic equations (2) and (4)

are a pair of second order quasi-linear partial dilferential equations in the dependent variables

h(x,t) and lZ(x, t). They may be solved by methods developed for first order equations, by
rewriting them m matrix form as,

A(w)~) + B(w) ~)
=

C (A.1)
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where
w + (h(x, t), lZ(x,t)), A and B are matrices whose elements are functions of w. The

mhomogeneous term C is a column vector containing the second order derivatives, along with

any externat perturbing terms (such
as a noisy incident flux q). Equation (13) can be dassified

as 'hyperbolic' [32, 33], since the characteristic equation

det(B ÀA)
=

0

has two real roots, Ài
" -'fil and À2 " u, and there are two linearly independent eigenvectors,

lj, such that

1)(B ÀjA)
=

0; j
=

1,2 (A.2)

As a consequence, there are two characteristic curves along which the basic equations reduce

to compatibility conditions. To describe these, we introduce the notation

Dz (dtj à
ldxj

à

S~ & A~ & G

The first curve can be then written in pararnetric form as

1
~' ÎÎ '~~ ~~'~~

along which the following compatibility condition applies:

~~
=

KlZô]h (AA)

The second curve has the parametric form

)
=

1; (~ = u (A.5)

with the compatibility condition

(+fiÎ u)
~Î

~
~Î ~~~~ ÎÎÎÎ~Î ~ ~ ~~'~~

The numerical procedure is based on an inverse marching scheme [34], wherein characteristics

are drawn backwards from any point w(z, t) at which the solution is desired, to the decremented

time (t ht) where the solution is known. Along the characteristics, which are approximated
locally by straight hnes, the compatibility conditions are integrated using a modified Euler

predictor-corrector method. For a detailed discussion of the method, see [34]. The second

order derivatives appearing in the non-homogeneous term C are approximated by simple finite

dilference expressions.

SOME COMMENTS ON THE BOUNDARY CONDITIONS. In all the 'deterministic' numerical

simulations, the sandpile is imagined to be bounded by a wall on the left at z =
0, and a sink

on the right at z =
L, as depicted in figure 3. The background slope Sc is always taken as zero.

Finally, there is always a source of grains q, in
this case, of'hard grains' added somewhere

on the pile, either as a pulse, or as a constant flux. Since there are two second order partial
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derivatives in the goveming equations, we require four boundary conditions in all, at x =
0

and z =
L. These are prescribed as follows.

i) At
x =

L, we assume that no dilfs can occur, 1-e-, the height h(L, t)
=

0. This is consistent

with our equations, which would relax such a shock rapidly (see Sect. 2.1).
ii) The existence of a sink at ~ =

L implies that the rolling grains arriving at x =
L are

immediately removed. Thus lZ(L, t)
=

0.

iii) The net flux of grains from the left must be zero due to the presence of the wall. Thus

at x =
0, ulZ Dô~lZ

=
0.

iv) We assume that the gradient of h at the wall, ô~h
=

0. One might anticipate that

perhaps there exists for powders, as in the case of liquids, a'wetting angle' at the wall, such

that, ô~h(z
=

0), is some physical constant k ~ 0 depending on the nature of the wall, and the

powder grains. In the absence of precise information, we have chosen the value k
=

0 above.

In any case, our results are expected to be independent of the precise choice of this constant.

The use of a scheme derived from the Method of Characteristics, requires that ail the

variables be prescribed on the initial curve. The height h(x,0) has been assumed to be a

parabola, starting with zero slope at some value h(0, 0) at x =
0, and decreasing to zero at

z =
L, consistent with the boundary conditons (1) and (iv) above. The rolling grains are

supposed to not exist initially, 1-e- lZ(x, 0)
=

0 (consistent with (ii) and (iii) above). However,
the nature of the governing equations ensures that they are generated at the very first time

step due to the influx of grains on the pile, either at the top or at the bottom.

As mentioned in the previous section, the second order derivatives are treated as the in-

homogeneous part of a set of first order equations. The numerical scheme adopted here then

requires that they be prescnbed at every point z, at the time (t ht) in order that the solution

at time t be obtained. Except at the boundary points, they are obtained from a simple finite

dilference formula. At the boundaries however, they are estimated as follows.

i) Since lZ
=

0 at z =
L,

KlZô]h
=

0

and, the equation for lZ(x, t) imphes,

Dô]R=uô~7l-q

ii) Once the interior derivatives are calculated with a finite dilference scheme, then one can

use a Taylors serres expansion to find,

DôjR(x
=

0)
=

2Dô(R(x
=

AZ) DôjR(z
=

2Az)

Finally, at z =
0, one can use the compatibility condition equation (A-4) to find KRô]h at t,

from the known solution at (t ht). At t
=

0, this term is zero, since R
=

0.
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