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Abstract . — We propose a new continuum description of the dynamics of sandpile surfaces,
which recognizes the existence of two populations of grains: immobile and rolling. The rolling
grains are carried down the slope with a constant drift velocity and have a certain dispersion
constant. We introduce a simple bilinear approximation for the interconversion process, which
represents both the random sticking of rolling grains (below the angle of repose), and the dis-
lodgement of immobile grains by rolling ones (for greater slopes). We predict that the mean
downhill motion of rolling grains causes surface features to move uphill; shocks can arise at large
amplitudes. OQur equations exhibit a second critical angle, larger than the angle of repose, at
which the surface of a tilted immobile sandpile first becomes unstable to an infinitesimal per-
turbation. Our model is used to mterpret the results of rotating-drum experiments. We study
the long time behaviour of our equations in the presence of noise. For an initially rough surface
at the repose angle, with no incident flux and an nitially constant rolling grain density, the
roughness decays to zero in time with an exponent found from a linearized version of the model.
In the presence of spatiotemporal noise, we find that the interconversion nonlinearity 1s irrele-
vant, although roughness now becomes large at long times. However, the Kardar-Panisi-Zhang
nonlimearity remains relevant. The behaviour of a sandpile with a steady or noisy input of grains
at its apex 1s also briefly considered. Finally, we show how our phenomenological description
can be derived from a discretized model involving the stochastic motion of individual grains.

1. Introduction and model.

The physics of granular media (powders) 1s interesting from many standpoints, not least be-
cause of its obvious practical and engineering importance {1, 2]. In this paper we study theoret-
ically the surface evolution of a sandpile, whose mean slope is close to the angle of repose. This
problem has recently gained the status of a paradigm in the physics hiterature: sandpiles were
proposed as a prototype of ‘open dissipative systems’ and predicted to exhibit ‘self-orgamzed
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criticality’, that is, scale- and time-invariant dynamics [3]. Thus, for example, if grains are
dropped onto the centre of a sandpile supported by a plate (Fig. 1), the slope fluctuates in
time, as does the flux of grains leaving at the lower edge; theories of self-organized criticality
predict power-law spectra for (say) the distribution of avalanche sizes. This proposal has lead
to a series of original and interesting experiments [4-7], as well as a great number of theoretical
and numerical works [8-10]. However, there 1s evidence that sandpiles do not usually show
self-organized criticality [11]. Often the behaviour is more reminiscent of properties of an equi-
librium system close to a first order phase transition (displaying hysteresis [12]) rather than a
second order transition (displaying power-law behaviour) as suggested by theory.

'y

A
Plate

Fig. 1. — Typical situation considered in this paper: a sandpile on a plate, fed or disturbed from the
top or from the bottom; the grains are supposed to be extracted from the pile when they reach the
edge of the plate.

In the remainder of section 1, we discuss previous approaches to the problem and motivate
a new phenomenologial treatment involving two coupled hydrodynamic variables. We discuss
with some care the simphfying assumptions we have made, and identify scope for variation
in these assumptions. In section 2 we use our model to consider simple (noise-free) problems
in sandpile dynamics, and in section 3 turn to problems involving noise. Finally in section 4
we show how our continuum equations for sandpile motion emerge naturally from a micro-
scopic description involving the stochastic motion of individual grains. Our conclusions are
summarized briefly 1n section 5.

1.1 PREVIOUS APPROACHES. — Various models have been proposed to describe the time
evolution of the height of a sandpile: for example one can set up a discrete cellular automaton
in which a local threshold slope 1s introduced, above which ‘avalanches’ are initiated [3, 13].
Soon after these cellular automaton models were investigated, Hwa and Kardar [14] proposed
a continuum description of the same problem. Their philosophy was to write down the most
general nonlinear local dynamical equation compatible with the symmetries of the system,
selecting nonlinear terms on the basis of “relevance” criteria determined (essentially) by di-
mensional analysis. On these grounds, Hwa and Kardar proposed that ‘sandpiles’ [14] should
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be governed an anisotropic ‘Driven Diffusion Equation’

Oh(r,t

OMED) — (e, 1) + v 6L h(r, 1) — ua(hle,1)7) + (e 1) (1)

where h(r,t) is the height above a point r in the plane; a background slope, presumed equal to
the angle of repose, has been subtracted. The spatial variable z is the component of r along
the downward axis of the sandpile; v and v, are effective surface tensions; and y controls the
strength of the non-linear term, which was argued to capture the important aspects of any
threshold effects. Finally, n(r,¢) is a noise term describing the random addition of grains.

The strength of this phenomenological approach lies partly in its avoidance of the complexity
of the full problem, which might in principle require a description of the bulk of the sandpile.
Alternative phenomenological descriptions have also been proposed for this and other, closely
related, problems such as the surface of a sandpile vibrated from below [15, 16]. Often one is
interested in the scaling behaviour which controls the properties of the system at long times;
in the presence of noise, the initial condition is then unimportant. The long time properties of
equation (1) can be studied using theoretical or numerical approaches [17, 14, 18, 19], to obtain
information on the response and correlation functions. One finds, for both two dimensional
and three dimensional sandpiles, ‘superdiffusive dynamics’ (the correlation length increasing
faster than ¢!/2) and a stationary profile that is asymptotically flat (i.e., height fluctuations
that saturate at large separations).

Noisy non-linear equations, such as the Hwa-Kardar equation, are certainly of great interest
from a physics perspective (see e.g. Refs. [20, 18, 14, 21]), especially when they lead to
criticality and scaling laws in the long time limit. Nonetheless, from the point of view of
understanding sandpiles, it seems desirable that a phenomenological model should also describe
simpler situations, which include the deterministic evolution of a sandpile in the absence of
noise. This would enable the basic model to be validated before the added complexity of noise
terms is introduced. In any case, several aspects of the Hwa-Kardar treatment can be criticized,
as follows.

(i) Although the whole argument is based on symmetry considerations, equation (1) violates
the most natural one, which is translational invariance in h: translating the sandpile upwards
should not change 1ts dynamical equation. Hwa and Kardar suggest that this symmetry could
be spontaneously broken, although the mechanism remains to us rather obscure.

(ii) Secondly, equation (1) predicts a slow decay (as t~!) of the sandpile surface to zero
slope (after subtraction of the repose angle) if the noise is suddenly switched off. We would
argue that, in a realistic model, the surface should typically come to rest in a metastable state
intermediate between the initial one, and that of zero slope.

(1ii) Our third point is of more general scope: symmetry arguments alone are sufficient to
construct phenomenological equations only if one takes into account all the slow variables in
the problem. The presence of a hidden slow (hydrodynamical) vanable induces in general long
range effects and forbids a naive local gradient expansion in the height variable.

1.2 A MODEL WITH TWO DEGREES OF FREEDOM. — In the case of sandpiles, we believe that
the local height A(r,t) is not the only hydrodynamical variable. Instead, the grains can be 1n
two different states: either immobile or rolling downwards. We thus suggest that a suitable
hydrodynamical description should include, along with A (which is the height of a stack of
immobile grains), the local density of rolling grains R. These must be coupled dynamically
by an interaction term, allowing for the conversion of rolling grains to sticking grains and vice
versa. In this section we derive appropriate coupled equations for these quantities on a purely
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phenomenological basis. (Their relation to a more fundamental microscopic formulation is
explored in Sect. 4). Since it deals only with surface variables, our description does not, of
course, take into account any long-range effects mediated by the stress field in the bulk of the
medium, which might be significant in some situations.

The insight that two order parameters, rather than one, would better describe the evolution
of sandpiles is that of Mehta [16], who introduced a model with two coupled variables in the
context of modelling vibrated sandpiles. Mehta’s two variables were not A and R, however;
they described two different aspects of surface roughness, coupled to the dynamics of collective
and single-particle rearrangements [16]. We believe our own choice is more directly related to
the physics of the underlying problem.

From now on, we shall for simplicity work in one projected dimension (i.e. we consider two-
dimensional sandpiles whose height h(z,t) depends on one spatial variable). The generalisation
of the following equations to higher dimensions 1s immediate (though their solution is often
not). We first propose that the rolling grains are governed by a convective diffusion equation
of the following form:

R(z,t) = =8, (vR(z,1)) + 0 (D3, R(z, ) + T(R(z, 1), h(z, t)) (2)

where Rdz is the number of rolling grains between z and = + dz, v is the drift velocity of the
rolling grains downwards along z; D is a diffusion (or dispersion) constant. For simplicity, we
treat both v and D as constants in time and space. As discussed in section 2 below, one can
gain indirect information on these quantities from ‘rotating drum’ experiments.

The term I' accounts for the conversion of immobile grains into rolling grains, and vice versa.
We shall construct I' with the help of the following physical considerations:

(a) We assume that an immobile grain cannot spontaneously start rolling unless it is dis-
lodged by an already rolling grain. This seems reasonable close to the angle of repose, although
m principle at some larger angle a static grain could cease to be supported by those below it,
and start rolling. However, to create this condition in the absence of rolling grains clearly
requires an external perturbation, such as an imposed tilt of the entire sandpile. (We return
to this issue in our discussion of the Bagnold angle in Sect. 2.2).

(b) The local slope —3.h of the sandpile must exceed a critical value S. (which we associate
with the angle of repose) for the dislodging process to be effective. For convenience we can
subtract off a background slope, so that S. 1s zero, unless otherwise stated. With this choice,
the gradient of h is everywhere small and we need not distinguish between gradients and angles.
By convention we consider piles that are decreasing in height with increasing z (sloping down
to the right); thus d,h > 0 corresponds to a surface less steep than the angle of repose.

(c) If the local slope is less than the critical slope S; (i.e., 3zh > 0) then rolling grains
will tend to stick to the surface, thus being converted into immobile grains. This occurs
independently for each rolling grain, and hence at a rate proportional to R(x,t) itself.

(d) If 9,h = S, but 8%2h # 0, then conversion acts to reduce the local curvature of the
surface (filling in hollows and eroding bumps) again at a rate proportional to R.

The simplest form of I" exhibiting the above four properties 1s the following:

T(h,R) = ~R[v0;h + x3Zh] (3)

with v > 0 and & > 0. This expression, though nonlinear, depends linearly on each of R and h,
a choice which offers great advantages in analytical work. This major simplification corresponds
to assuming that, for a given rolling grain density, the rate of deposition or dislodgement of
static grains varies smoothly from positive to negative as the slope passes through S.. In
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principle this should not be true (except if there 1s a ‘particle-hole’ symmetry of the kind
discussed in Ref. [14]): instead, one should introduce two coefficients 4+ and v~ for slopes
above and below the critical value (likewise also for k). However, this simplifying assumption
seems to us reasonable (but see below Sect. 1.3, viii); when it holds, our choice of I' becomes
simply the first term of a Taylor expansion (for R and h small).

Having chosen I', we can at once write down an equation for the height h(m, t) of the sandpile
(in suitable units), which we define to include only immobile grains, as follows:

h = -T = R(z, t)}y9,h + £O2h] (4)

so that the total number of grains (h+R) is conserved locally. Since I' is linear in R, it follows
from equation (4) that in the absence of rolling grains, the surface is ‘frozen’ in a metastable
state, and is incapable of spontaneous rearrangement. A static system which is perturbed (so
that some rolling grains are generated) will typically evolve for a short time but then immobilize
In a new state as the rolling grains come to rest. This metastability is a characteristic feature
of powders, and we believe that it is important to incorporate it, at least qualitatively. (As
noted previously, this feature 1s not easily captured in the Hwa-Kardar approach.) We shall
see later that it can lead to hysteresis and other interesting effects.

Equations (2-4) comprise the basic phenomenological theory with which we aim to describe
the surface evolution of sandpiles. Before applying the model to some interesting situations,
we make some further comments about the structure of the model, and possible variations of
1t (either in the equations themselves, or in their interpretation).

1.3 VARIOUS REMARKS. — (i) Equations (2, 4) are invariant when h — h + const., as they
should be. The total number of grains is conserved since 8(h + R)/8t can be written as the
divergence of a current. Note, however, that the conservation of grain number only implies
volume conservation if the underlying powder has a fixed density.

(ii) The actual height of the sandpile may of course be defined to include the rolling grains.
Since in the moving phase powders expand, the true height of the sandpile reads H = h + aR
with & > 1 an unknown parameter of the theory. For simplicity, we consider only the underlying
height h in what follows.

(iii) The term in & in equation (4) is physically crucial. This term alone allows surface
features to be smoothed, rather than simply convected from one place to another (see Sect.
2 below) under the action of rolling grains. For example, one can prove that for & = 0 the
probability distribution of the heights of local maxima 1n h is conserved in time.

(iv) In contrast, the model obtained by setting D = 0 in equation (2) remains sensible, and
shares several major properties with the full equations. However, this diffusive term represents
the only means by which rolling grains can propagate backward up the slope of a sandpile. This
propagation turns out to be essential to the description of hysteresis phenomena, (see Sect. 2),
and so we retain D > 0 in what follows. More realistically, this dispersive term could arise, not
by any individual grains actually moving uphill, but rather from the fact that a rolling grain
can dislodge grains a little above it (or below it) on the slope. A more detailed model of that
process would require D to depend on 8;h. (The resulting terms, such as 2R3, h, could be
viewed as contributions to I'.) For simplicity we study only the simplest version (constant D)
in this paper.

(v) Several other physical effects could complicate these equations by adding new nonlin-
ear terms. For example, the velocity of rolling grains (as well as the diffusion constant, see
(iv) above) might depend on the local slope and also on the local density of moving grains,
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giving extra terms in equation (2). However, we believe that equations (2-4) already cap-
ture the essential physics of the problem (which might be obscured by introducing too many
phenomenological parameters).

(vi) In the presence of a incident flux of grains (deterministic or random), an input term
n(z,t) should of course be added. It is not totally obvious, however, whether 5(z, t) should be
added to equation (2), or to equation (4), or to both. Arguably this depends on the properties
of the grains themselves. In the case of “soft grains” 7(z,t) should presumably be added to
the h(z,t) equation, since these grain will generally stick upon landing. In the case of hard
elastic grains, the added grains will primarily contribute in the rolling grain density, and hence
7(z,t) should be added to the R equation.

(vii) If the average incident flux of grains (n) is non-zero (as expected physically) one should
follow Kardar, Parisi and Zhang (KPZ) [20] and add a term proportional to {n)(8,h)?, which
takes into account the dependence of the flux of particles on the local orientation of the surface
[20, 18, 21]. Such a term 15 clearly appropriate for soft particles (added directly to h); its
inclusion is not so transparent for hard grains (when the incident flux is added to R).

(viii) A similar term may also arise from the asymmetry between dislodgement and sticking
processes. The constant coefficient « in equation (3) could be replaced by g +v18:h to account
for this asymmetry, either as the next term in a series expansion, or to mimic the discontinuous
case when v+ # v~. This contributes to I" a term in R(8,h)?, which reduces to a KPZ term
m equation (4) if R is weakly fluctuating.

{(ix) Finally, we note that although our arguments are couched in terms of “rolling” grains,
very similar considerations can be used to construct a model in which dislodged grains do not
roll, but bounce loosely along the sand-pile surface. This may require a distributed energy
source such as external vibration of the pile, though for large elastic grains (such as boulders
in a rockfall), that does not seem to be necessary. Similar behaviour occurs when an external
convection (such as wind) is applied to a roughly horizontal surface. In this situation there
will be large changes in the interconversion constants v and k. Otherwise, it is arguable that
the basic structure of the equations 1s the same; if so, many or our results can be carried over
to these problems.

2. Deterministic examples.

We shall now analyse our phenomenological equations in some physically motivated situations.
In this section, simple deterministic evolutions (such as an isolated bump, Sect. 2.1) are
considered; noisy situations are deferred to section 3. This section of the paper is mostly
qualitative, but our arguments are illustrated and supported by some numerical solutions
of the governing equations. One interesting outcome of our analysis (Sect. 2.2) is that an
immobile sandpile remains stable to small perturbation until a ‘spinodal’ entical slope Sy,
strictly larger than S, (the repose angle) is reached. We shall also discuss in section 2.3 and
2.4 the characteristic relaxation time scales pertaining to ‘rotating drum’ experiments [4, 7],
and show how to estimate on this basis the model parameters v and vD. Section 2.5 concerns
a sandpile with a point source of incident flux.

2.1 EVOLUTION OF A BUMP AND OF A SINUSOID. — Let us first look qualitatively at the
case where a single small bump sits in the middle of an otherwise flat surface (at angle S.),
with a constant rolling grain density Rg. Equation (4) then reveals that the bump propagates
uphill with velocity vy, = 7YRy. (It also undergoes spreading due to the dispersion term.) For
a sandpile, this interesting behaviour reflects the fact that rolling grains deposit on the flatter
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(uphill) part of the bump, and erode the steeper (downhill) part, resulting in a net uphill
translation. Hence the surface structure is convected upwards by the action of rolling grains;
this is a generic feature of the model. The effect is similar to the well known fact that traffic
jams propagate in the opposite direction to the flow of cars [22]. In contrast, a curious feature
of the Hwa-Kardar formulation, equation (1), is that bumps might travel either upwards or
downwards depending on their absolute height.

Measurements of the uphill convection speed could in principle be used to extract the value of
~ from an experiment where Ry as well as the upwards velocity are measured. Experimentally,
uphill-travelling “surface waves” have recently been observed in sandpiles vibrated from below,
although the physics here may be more complicated, since bulk convective motions of the pile
were apparently involved [23].

Suppose now that one now starts with a sinusoidal profile, h(x,t) = hosin(2xz/A), with
an 1nitially constant rolling grain density Rg. If ko 1s small enough, the variations of R(z,1)
due to the evolution of h(z, ) will be negligible; the oscillatory profile will be convected uphill
and decay exponentially in time (due to the diffusion term in Eq. (4)), with a relaxation time
T» = A2/Rox. The uphill motion can only be observed if v,7y > A, i.e. when My/k > 1. If on
the other hand hg is not small, shocks can appear. This has been confirmed numerically (see
Fig. 2); the numerical scheme used is described in the Appendix. These shocks arise because
regions where |3, h| is initially larger will generate more rolling grains, thereby enhancing their
effective upwards velocity. Once a shock has appeared, it becomes the dominant cause of the
relaxation of the profile. The gradient in the shock is of order h/a, with a 1s the shock-width
(of order the grain size) and the relaxation rate in the presence of shocks is then found to be
~a?/Ryk.

Relaxation of a sine wave

TN
,.-" PR R(x,t=0)=1

o] 20 40 60 80 100

Fig. 2. — Numerical results for an 1nitial sinusoidal height profile with a constant rolling grain density
Rop, at various times. In this case, the imtial amplitude was high enough to produce shocks at
intermediate times.

2.2 HYSTERESIS; MAXIMUM ANGLE OF STABILITY. — Next we consider the situation of fig-
ure 3, where a sandpile 1s prepared in a metastable state, with 9,h(z,0) = —Sy < 0 [24], but
with no rolling grains. (This can be done by sumply tilting the base of a sandpile which was
at its angle of repose.) As we have already emphasized, since no rolling grains are present,
this situation does not evolve with time. However, imagine now that one slightly perturbs this
initial state by creating a small number of rolling grains at the lower edge of the pile. (This
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could be done by dislodging a few grains so as to spill over the hp of the supporting plate,
or by briefly opening a small hole there.) Interestingly, the subsequent evolution will depend
critically on the initial slope perturbation Sg, as shown by the following argument.

,
f
%2}

wall
\\I
/
7
/

Fig. 3. — Initial metastable configuration of a sandpile, with slope Sy larger than the nominal stable
slope Sc. This configuration 1s then perturbed by a small amount of rolling grains, introduced either
at the bottom or at the top of the pile.

If, at time zero, a small pulse of rolling grains R(z’,0) = AR d(z' — z) is created at site z,
then two opposite effects will come 1nto play:

(i) Firstly, the rolling grains are convected away downhill, tending to restabilize the profile
near z in a new frozen state. The effect of this can be 1solated in equation (2) by excluding
the interconversion term I'; we find that the density of rolling grains at z after time t evolves
as

AR, 9
R(z,t) \/mexp[ v“t/4D] (5)
Note that the dispersion process, governed by D, is the only factor limiting the effectiveness
of convection at carrying away the perturbation: if D — 0, the rolling grain density at z falls
to zero instantaneously.
(ii) Secondly, the rolling grains cause dislodgement which acts as a source of new rolling
grains. From equation (2), one finds that in the absence of convection or diffusion (v = D = 0),
R(z,t) would grow exponentially, as follows:

R{zx,t) = ARpexp [—’y /t dt'azh(x,t')] (6a)
0

So long as the local slope does not vary too much in space or time, this can be replaced by
R(z,t) ~ ARgexp(ySoet) (6b)

If we now combine these two competing effects, R(x,t) will either grow or decrease expo-
nentially, according to the relative magnitudes of ySy and v?/4D. If Sy > Sq =~ v?/4vD,
rolling grains are generated by dislodgement faster than they are convected downhill — this
leads to a catastrophic avalanche, discussed further below. If on the other hand Sy < Sg,
the small perturbation 1s swiftly convected away, leaving the uphill profile in a new quiescent
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h(x,1)

0 20 40 60 80 100

Fig. 4. — Height h(z,t) at different times ¢t = 1600, 2400, 4000, 5600,8000, starting at ¢t = 0 (upper
curve) from a slope below the spinodal limit Sy < Sy, perturbed from the bottom (¢ = L). The
values of the parameters are: v = 0.1, D = 10, v = 1, « = 1. Note that the profile relaxes to a
new metastable configuration: the two last curves (¢ = 5600 and 8000) are indistinguishable. Inset:
evolution of the rolling grain density as a function of time for the same 1nitial conditions.
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Fig. 5. — Height h(z,t) at different times ¢ = 300, 400, 500, 700, but starting at ¢ = 0 (upper curve)
from a slope steeper than the spinodal limit: Sy > Sy, and again perturbed from the bottom (z = L).
The profile now relaxes to the nominal stable slope Sc (= 0 here): the last curve, corresponding to
t = T00, has collapsed on the z-axis. Same parameters as in figure 4. Inset: evolution of the rolhng
grain density at the upper edge as a function of time for the same initial conditions.

state. Hence we predict the existence of a sharp critical angle, different from the static angle of
repose, above which the profile is unstable to small perturbations. In analogy with the physics
of first order transitions, we call this a ‘spinodal’ angle.

We have confirmed this prediction by numerically solving our equations. The results are
displayed in figures 4 to 6. In figures 4 and 5, we show the height profile at different times,
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Final height ratio

0.8

=0,t=0)

0.6

0,1 large)/h(x

0.4 r

=h(x=

r

02

0.0 . : .
0.000 0.005 0.010 0.015 0.020
S_0

Fig. 6. — Ratio r of the final height A(z = 0,¢ = co) to the initial height A(z = 0,¢ = 0) as a function
of the imtial slope Sy. Note that there is a region S; < Sp < Sy within which » is neither zero nor one.

both for Sy < Sy, for which the profile relaxes to a new metastable configuration (Fig. 4), and
for Sp > Sq, for which the profile relaxes completely to h{z,t) = 0 (Fig. 5). The perturbation
in each case 1s made at the lower edge of the pile. The inset of figure 4 shows the corresponding
profile of R(z,t), while the inset of figure 5 shows the rolling grain density at the upper edge,
z = 0 as a function of time. As expected from equation (7) below, R(0,t) reaches a maximum
at a non-zero value of ¢. Figure 6 shows the ratio of the final height to the initial height at the
upper edge, r = h(0,00)/h(0,0), as a function of the initial slope Sy. Interestingly, this plot
shows evidence for an intermediate range of the imtial slope, 1n which the surface evolves to a
final state with r significantly smaller than 1, but still non-zero. (We have found numerically
that 7 is quite insensitive to the initial noise - although the time needed to reach the final value
of r grows when ARy — 0: see below). 0 < r < 1 is found when S; < Sy < Sy, where we
estimate, from these data, S; ~ 3v2/Dvy and Sq ~ (10 — 20)v*/Dvy. For § > Sy, as argued
previously, the relaxation of the surface 1s complete, and the final state is at the angle of repose
S. = 0. The numerical value of Sq is somewhat larger than our naive estimate; this is not
surprising since, 1n approximating equation (6) by R = ARgexp(ySet) we ignored the fact
that the mean slope itself decays with time.

The difference between S; (zero, by our convention) and Sg characterizes the role of hys-
teresis 1n our model sandpile. In this context, Sq — S; is known as the Bagnold angle [1, 25].
In our approach, the Bagnold angle is related to physical parameters describing the dynamics
of the profile: the dislodging rate <y, the convection velocity of the grains v and, crucially, the
diffusion constant D. If D was equal to zero, there would be no limiting angle of metastability
(Sq — o0) essentially because R perturbations could not influence anything happening in the
uphill direction from where they started. Convection of R would immediately remove any lo-
calized perturbation in the rolling grain density, preventing the feedback mechanism that leads
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to instability. As mentioned previously, the diffusion term in equation (2) includes the effects
of dislodgement by grains at neighbouring spatial positions (see Sect. 1.3 (iv)), and therefore
in practice D could be a strong function of the background slope Sy. At the level of the above
arguments, however, this makes little difference: Sy is given by the root of Sy ~ v?/4vD(S4)
where D(Sp) represents the slope-dependent effective diffusivity.

Of course (as mentioned in Sect. 1.2) if a static sandpile were tilted through a large enough
angle, some grains could cease to be supported by those below, and start rolling. The angle
at which this occurs is, in fact, a more conventional interpretation of the Bagnold angle [25)],
which therefore depends on the local ‘roughness’ of the profile (see also [16]). In our picture,
such an explicit mechanical instability is not necessary for the global structure to be unstable
{though it could indeed provide the source for perturbations in R). Nor is it sufficient, since
for Sp < S4 the surface does not relax completely even if some isolated grains do start rolling.
Therefore our ‘spinodal’ interpretation of the Bagnold angle is quite distinct from the usual,
mechanical one. Our hysteresis mechanism also differs from that proposed by Jaeger et al. [12],
which is based on a discussion of the nonmonotonic friction-velocity curve for an individual
rolling grain.

The above arguments concerned the effect of a small rolling grain pulse on surface structure
uphill of the perturbation. It is natural to ask the effect on surface structure on the downhill
side — for example, what happens if rolling grains are added to the upper edge of a static
pile tilted through an angle Sy beyond the angle of repose. For Sy > Sq4, the entire surface
again relaxes to zero slope as before, but for intermediate angles the behaviour is more subtle.
The perturbation ARy of course rolls down the pile, dislodging further grains as it travels.
As this pulse passes through the neighborhood of some point z, its integrated effect on the
relaxation of A(z) remains finite (for the reasons discussed above, just as if the pulse were
initiated at = in the first place). However, the amplitude of the pulse increases (exponentially)
with time as 1t dislodges more and more grains. Therefore, for points far enough downhill from
the initial perturbation, the relaxation effect is large and the local slope will relax to values
very close to the angle of repose. However, as the perturbation becomes smaller one has to
look further and further downhill to see this effect. In fact, since the pulse of rolling grains
mcreases exponentially, the characteristic distance, beyond which nearly complete relaxation
occurs, increases as ~ % log{(Sq — So)V/7ARy).

2.3 THE TIME-SCALE FOR SURFACE RENEWAL. — For Sy > S4, we expect the initial profile
to relax to the truly stable profile 9;h = O after a certain renewal time, or ‘flushing time’
T which we now estimate. Suppose as before that the initial perturbation is created at the
lower edge of the sandpile, z = L, where h(L,t) = 0 (see Fig. 3). At z = 0, we imagine that
there is a wall against which the sandpile 1s leaning. Initially, A(0,0) = SpL; for definiteness,
we define the flushing time 7 as the half-time for the height of the upper edge of the pile:
h(0,T) = h(0,0)/2. As a rough estimate, we shall again neglect the time dependence of the
mean slope in the evolution equation for R, treating this as a constant, Sy.

Following our previous arguments concerning the competition of convection with dislodge-
ment, we find from equation (2) that the rolling grain density at « = 0 and time ¢t is approxi-
mated by:

R(0,t) = \;—:% exp [vSot — (L + vt)?/4Dt] (7)

On the other hand, from equation (4), one gets b ~ —yRS;. We can therefore define a
certain relaxation time t*(R) by the equation h(0,¢*) ~ h(0,0)/2; this is easily found to obey
t*(R) =~ L/¥R. Accounting for the fact that R is actually time dependent, we estimate the
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Fig. 7. — ‘Flushing time’ T(L) as a function of the 1nitial slope Sy for a Péclet number equal to one.
As expected, T becomes small as the ‘driving force’ Sp increases, and diverges when Sy — Sy.

flushing time T by the following self-consistency condition:
(8)

with R(0,T) given by equation (7).

The solution of equation (8) depends on a quantity Pe = vL/D, which we define by anal-
ogy with the usual Péclet number in fluid mechanics. If this is large enough, Pe > ¢ =
log[vT'(L)ARo/L], one finds that (6§ = Sp — Sa):

T(L) ~ vL/ADs  for 0 < 8 « Sy
T\ L/V/YDé for 6 > Sy

which, to first order, does not depend on the noise level ARy. For small Pe, one finds:

(9a)

20/~6 for 0 < 6§ « 2D#2 /L2

(L)~ {L/s/'ﬂ)go for Sp — Sq > 2D82 /yL? (9b)

(Note that the result for large Sg 15 the same for both large and small Pe.) Hence the flushing
time decreases with the nitial slope Sy (i.e. the driving force &} as one might expect.

We now compare these predictions with numerical data. Figure 7 shows 7" as a function of
the initial slope Sg, for L = 100, D = 10 and v = 0.1. This corresponds to Pe = 1 which is near
the crossover between equations (9a) and (9b). For mitial slopes such that § = Sy — Sq ~ Sy,
one finds from equation {9a) T(L) ~ L /v >~ 1000, which is indeed the order of magnitude of the
flushing times shown in figure 7; moreoever the flushing time shows a divergence for S — Sy
and a decreasing trend for large Sp, in good agreement with equations (9).



Ne°1o A MODEL FOR THE DYNAMICS OF SANDPILE SURFACES 1395

2.4 THE ROTATING DRUM. — The above discussion can be used to analyse the ‘rotating
drum’ experiment reported in reference [4], in which a cylinder, partially filled with grains,
1s rotated around its (horizontal) axis with an angular frequency w. We shall assume large
Pe; this is justified below. If w is very small, one expects the slope S of the surface of the
sand to build up gradually, according to S(t) = wt, until the spinodal angle Sq4 15 reached at
which point a landslide occurs. We presume the mechanics of the drum is imperfect enough to
provide the perturbation AR, needed to trigger the sandpile instability at Sq. (Amusingly, if
the noise level is too small, the instability will eventually occur for an angle Sy > Sy - totally
irreproducible since it relies on uncontrolled rare events. This might explain why there 15 an
irreducible uncertainty on the determination of Sg, even for very clean experiments [26])

However, it takes a finite avalanche duration T(L,w) for the slope to relax after Sy 1s reached.
Defining t* = Sq/w + T(L,w), and replacing Sy by wt in equation (7), we find that ¢* obeys
the following equation:

4yDt*3 — 2" — (0L + MDYt — L* =0

from which one deduces that (ignoring numerical prefactors) T(L,w) ~ L/v for Pe > 1 and
T(L,w) ~ ¢D/v? for Pe < 1. Notice that T(L,w) is in fact independent of w in both regimes
(though different from T(L) for a sudden tilt, as calculated above). Our description 1s valid
provided the time between avalanches is large compared to the duration of the avalanches them-
selves, 1.e. T(L,w) <€ Sg/w. In the opposite limit, avalanches overlap strongly: this corre-
sponds to a continuous flow regime, as described in reference [7). The characteristic angular
frequency at which the crossover from isolated avalanches to continuous flow is therefore defined
as: Sg/w* ~T(L,w*).

This scenario of regular avalanches between two limiting slopes, reminiscent of a first order
phase transition [11], emerges naturally from our model and concurs qualitatively with the ex-
perimental findings of reference [4]. Interestingly, both the time between successive avalanches
Sa/w and their duration 7'(L,w) were measured in the experiments of Jaeger et al.. The values
reported in [4] are: L = 0.1 m, w = 1072 57!, T(L,w) =~ 1 s and Sq ~ 5 x 1072 Writing
Sq = Av?/vD, where A is a numerical constant of order 1, we obtain the following parameter
estimates: (7) By assuming Pe > 1, one obtains v ~ 0.1 m/s and thus yD ~ A/5. Consistency
of Pe 3> 1 then imposes that v > 204 s~! Note that a value v = 100 s~ corresponds to a
lifetime of a rolling grain before sticking, on a surface inclined at 1° below the critical angle, of
about 1s. (i7) If instead we assume Pe < 1, then we deduce v ~ A¢x 10% s~ and v?/D ~ 5¢.
Consistency of Pe <« 1 then imposes that v 3> 0.5 m/s.

These estimates do not, unfortunately, allow us to decide the magnitude of Pe without
further information concerning (say) v or 7. The crossover value w* dividing 1solated avalanches
from continuous flow can however be predicted, based on our finding that T(L,w) is frequency
independent, whatever Pe. We obtain w* ~ 5 x 1072 s71, or 0.5 r.p.m, which compares very
well with the value quoted by Rajchenbach {7, 27] for a system of glass beads with similar
diameter to those used by Jaeger et al. [4] (0.25-0.5 r.p.m).

2.5 A SANDPILE WITH STEADY POINT SOURCE. — In all the cases examined numerically,
the presence of a steady source of grains relaxes an imtially unstable sandpile (S > Sc)
completely, i.e to S., regardless of the value of the imtial slope Sy;. In the case of a pulse
of incident grains, the question of whether enough ‘dislodged’ grains are generated locally to
initiate the relaxation process, before the ‘dislodging’ grains are convected away, is crucial to
the existence of the dynamical angle S3. However, in the present instance dislodging grains
are always present, hence relaxation 1s always complete.
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3. Surface evolution in the presence of noise.

In this section we focus on another aspect of the sandpile problem, of obvious interest to the
statistical mechanics community {20, 18, 14, 21, 19], though arguably more remote from the
practical world of real sandpiles. We study the long time, large length-scale properties of our
equations in the presence of a random noise source. Two sources of noise are considered: noise
1n the initial condition (initial roughness) which then evolves in time, and spatiotemporal noise,
such as is introduced by an incident flux or random “rain” of deposited particles.

3.1 RANDOM INITIAL CONDITION. — We have numerically integrated equations (2-4), using
a standard finite difference scheme [28], with a mesh size a (which we associate with the grain
size). The simplest case to consider is that of noise in the initial conditions. We start from
an initially random surface h(z,t), with an initially constant rolling grain density Rq. The
background slope S, has, as usual, been subtracted so that h(z,0) has mean zero; we take the
initial state to have a gaussian white noise spectrum with a small mean-square amplitude AZ.
We have obtained statistics for the height deviations at long times for large enough samples.

Our data (not shown) is consistent with the following analytical predictions: (h(z, t)2) ~
t=1/2 and (8, k%) ~ t~3/2. These exponents can be simply derived by expanding the governing
equations (2-4) in small deviations from a uniform rolling grain density R = Ro + éR, and
solving the problem to lowest order in 2 and §R. Equations (3) and (4) then reduce to the
following linearized equations:

6R = —v8, 6R + DO26R — h (10a)

h = Ro[v8:h + kO2R] (10b)

The second of these is a straightforward convection diffusion equation for A (with convection
in the uphill direction, as discussed previously). The convection term has only a trivial effect
since the random initial condition 1s already homogeneous. The diffusive term smears out the
height fluctuations within a time dependent diffusion length £(¢) ~ +/Roxt. The typical height
fluctuation can be estimated simply by averaging £(t)/a samples from the mitial distribution
(corresponding to the initial heights at all mesh points within the diffusion length). Since these
have mean zero and rms deviation hg, one has h ~ ho/+/€(t) ~ t~1/%. A similar argument
gives 9.h ~ h/& ~ t=3/4. Tt is gratifying that our numerical data may be rationalized so simply
(and in fact this can be done much more rigorously [29]). Since the initial roughness decays in
time, it is perhaps not surprising that the hnearized model becomes valid at long times. The
situation 1s less obvious with a steady noise term, as we now consider.

3.2 RANDOM INCIDENT FLUX. — We have also investigated numerically the role of a random
rain of soft grains governed by an incident flux 7(z,t) added to the h equation (Eq. (4)).
For this study we did not include a KPZ term, (9,h4)?; the role of such a term 1s discussed
in section 3.4 below. For n(z,t) we chose a white noise such that {n(z,tyn(z’,t')). = 2¢
x&(z — z')6(t — t'), where (). denotes a cumulant. Thus the mean incident flux, which leads
to a steady upward translation of the surface, has been subtracted.

One interesting outcome of our numerical work is that, in order reach a well-defined scaling
regime, the sandpile must be given a mean slope S, slightly less than S. (i.e. the slope must
be flatter than critical). If a slope S; 1s used, the rolling grain density increases exponentially
in time. This crosses over to exponential decay at slopes less than S,; only for § = S, 15 a
scaling condition obtained. In practise, one can dynamically tune to the critical slope S; by
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Fig. 8. — Noise induced dynamical slope (minus the nominal stability slope Sc) as a function of the
noise level, with a power law fit with exponent 3/2. The noisier the flux used to generate the pile, the
flatter the resulting slope.

Histogram of
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Fig. 9. — Histogram of the local rolling grain density in the presence of a random rain of particles:
we have plotted log P(R) as a function of R, which would be a parabola for Gaussian fluctuations, as
observed when the mput noise 1s small. Larger noise induce ‘intermittency’ (see Fig. 10), with a peak
developing at small values of R.

insisting that the total number of rolling grains in the system remains constant. The behaviour
of our noise-induced dynamical slope Sy(o) is presented in figure 8, where we show S¢ — S, as
a function of the noise level o. Unexpectedly, our data can be fitted by a nontrivial power-law:
S. — 8, = A(v)oP, with an exponent 8 ~ 3/2, and an amplitude A(v) which is a decreasing
function of the rolling grain velocity ». Physically, this means that the larger the noise, the
flatter the pile which is constructed - the true angle of repose S; 1s only reached in ‘careful’
conditions (¢ = 0). The static structure factor, (h(k,)h(—%,t)), and the time evolution of

(h(m,t)z) and (0R(z,t)?) are consistent with those predicted by the linearized theory in the
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presence of noise: we find (h(k,t)h(—k,t)} ~ k=2, with both (k%) and (6§R2?) scaling as #!/2.
(The latter result for R fluctuations of course does not contradict the fact that the total
number of rolling grains remains constant in time for S = §,.) The results for the height
variable correspond to the Edwards Wilkinson model [29] which is obtained by adding the
noise term 7 to equation (10b); since the noise term is translationally invariant, the convective
term in that equation again plays no role. The surface 1s asymptotically rough, in contrast to
the asympototic flatness predicted by the Hwa-Kardar model (Eq. (1)) [14].

Snapshot of the rolling grain density.
12 : . : .

»(x,t)

0+ I 1 1 | r
0 40 80 120 160 200
X

Fig. 10. — Snapshot of the rolling grain density R(z,t) at a given instant of time, showing quiescent
regions coexisting with ‘avalanches’.

Although our model follows the scaling exponents of the linear theory, the probability distri-
bution of the local rolling grain density P(R) is highly nontrivial. For small values of the noise,
the numerics show a nearly Gaussian distribution of fluctuations about a well-defined mean;
however, for larger noise amplhtudes the distribution becomes skewed and exhibits a significant
tail for small values of R, corresponding to the presence of locally ‘frozen’ regions (Fig 9). A
plot of the spatial variation of R at a given instant of time 1s shown 1n figure 10. It is clear that
for large-amplitude disorder, the rolling grain density shows strong intermittency, with many
quiescent zones separating 1rregular bursts. We have also investigated the time autocorrelation
of the flux (or “avalanche density”) vR. The linearized theory predicts that the autocorrela-
tion function v2{6R(z, t)6R(x,0)) decays with time as exp[—v2¢/D)], again consistent with our
numerical results. The absence of long time correlations arises because the non-zero convective
velocity v sweeps away the fluctuations as they are formed. This prediction is at variance with
other theoretical approaches 3, 14|, where broad spectrum (1/f) noise was proposed for the
flux down the slope.

3.3 PERTURBATION THEORY FOR WEAK NONLINEARITY. — We now set up a formal pertur-
bation expansion about the linearized equations (these are Eq. (10a), and Eq. (10b) with the
noise term 1 added on the right) to study the nonhnearity arising from a random incident flux
of soft grains. We will see that this perturbation theory 1s well-behaved, which indicates that
the power-law exponents predicted from the hinearized model should remain valid, although
the nonlinearity will alter the amplitudes of the correlation functions.

Writing R = Rg + §R and taking the Fourier transform of equations (2-4), we obtain the
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following equations (at wavevector k and frequency w):

(iw + vk + DE2)6R(k,w) = —ivpkh(k,w) — i’y/ g—z g gh{g, V6R(k —q,w~ Q) (1la)

dg d©2
(tw — tunk + &Rk Ak, w) = nk,w) + i’y/ 2—3——27 gh{q, Q)oR(k — q,w — Q) (11b)

Where v, = YRy > 0 is the magnitude of the uphill convection velocity of surface features
(introduced in Sect. 2). We have neglected terms corresponding to x6R82h in T, since these
involve higher powers of k& than the parts retained, and will thus be unimportant for the
interesting limit of small wavevector and frequency.

Expanding equations (11a) and (11b) in powers of v (with vy, held constant) and eliminating
§R(k,w) from equation (11b), one finds the following perturbative expansion for h(k,w):

k) = Gollk,0)(kyw) +1nGolk,w) [ $La(k = hlg,w)blh — g0 — )

dgd
+iv2 v, Go(k, w)/—g—pq —p)(p — Q)h(q,wo)h(k — p,w ~ wp)h(p — q,wp—y)

+0(7%) (12)

where Go(k,w) = (iw — tvpk + £Rok?)™! and w, = —vg +1Dg%.

Having eliminated the rolling grains, we are left in equation (12) with an evolution model
for h, including nonlinear terms, whose effect can be studied by following standard procedures
(see e.g. [17, 20, 18]). Formally one recasts the dynamical equation in terms of perturbative
Oh(k,w)
Ik, w)
{h(k,w)h(—k, —w)). These consist of the bare values (as given by linear theory) plus correction
terms in the form of integrals. For example, to order v?, G(k,w) reads:

expansions for the response function G(k,w) = { ) and for the correlation function

d
G(kyw) = Golk,w) = 87020 GA(kw)k [ 247k = )Go(g,0)Go(=0,0-0)Go(k = g, = )

d
+6iy? oo Ga(k,w)k / ﬁquo(q, wq)Go(—g,w—4) (12%)

It is straightforward to check that these integral corrections are all convergent. In the
language of critical phenomena, the nonlinearity is therefore “irrelevant”. This means that the
perturbation expansion should, for weak nonlinearity, lead only to finite shifts in the effective
parameter values (such as the uphill convection velocity, YRy, or the effective surface tension,
£Ro) from those of the linearized theory. For example, the lowest correction to the uphill
convection velocity for height fluctuations is:
4v*(3v — vp)ono

(vn + v)3a

Thus the combined action of noise and non-linearity 1s to speed up or to slow down the
uphill convection of surface features, depending on the sign of 3v — v}, [30].

Our perturbation theory will presumably start to break down when the nonlinearity 1s strong
enough. However, there is no sign of such complications in our numerical results given earlier;
in practice the scaling behaviour, (h(k,t)h(—k,t)) ~ k=2, and (h?), (§R?) ~ t'/2, remains that
of the linearized model. As 1s the case for analagous problems involving critical phenomena,
under flow [31], it appears that the steady convection of surface features suppresses the buildup
of fluctuations, preventing the occurrence of large nonlinear correction terms: note that [vpjeg
diverges when the relative velocity vy, + v goes to zero.

[vh]eff — v, =+ (13)
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3.4 OTHER TYPES OF NONLINEARITY. — Some other forms of nonlinearity were discussed
earlier (Sect. 1.3), points (v-vii)) which are missing from our treatment so far.

Various contributions could arise from including a dependence of the velocity of the rolling
grains v either on the local slope (as one might expect) or on the density of rolling grains (which
would represent a hindering effect). 1t is straightforward to check that for noisy deposition these
nonlinear terms are also “irrelevant”, i.e., they lead to convergent integrals in the perturbation
theory; the same applies to similar dependences of the diffusion constant D.

The same is not true however of the KPZ nonlinearity, as discussed in point (vi1) of sec-
tion 1.3, which is intended to describe the dependence of the mean incident flux of incoming
particles or of v on the local slope of the surface. The KPZ equation [20], which describes
random deposition onto horizontal surfaces, is obtained by adding a term A(8,h)? to the right
of equation (10b), and setting v, = O:

h=vdh + X6:h) +17

where we have identified the bare “surface tension” as Rgx = v. In the present context, for
nonzero incident mean flux, we should analogously add a term A(8,;h)? to equation (4). This
gives the following contribution to the right hand side of equation (12):

~AGo(k,) [ [ 52 latk = a)) ha Dh(k - g0 = ) (19

Perturbation theory to second order in A shows that this term is relevant (in space dimensions
d < 2): the divergence induced is the one encountered for the usual KPZ equation [20, 18].
This term strongly affects the effective surface tension, which becomes k& dependent. For two
dimensions (as here) the KPZ model predicts that for large times, {(h(k,t)h(—k,t)} ~ k=2,
and {[r(z,t) — h{z,0)]?) ~ t?/® These scaling form are expected to hold in the presence of
all the others, irrelevant, non linearities which we have discussed. The presence of a KPZ
term however leads to some subtlety involving the conservation condition on grains, which
imposes that h + R = 8,5 + 1 where j 15 a suitably defined current, and 7 the incident
flux. For the model just considered, this reads instead h + R = 8, j + M8.h)? + 7. Clearly,
the conservation law 1s restored by adding a counter-term —A(8;k)? to the equation for R,
equation (2). However, it is arguable that this conservation law should not hold in general in
granular media, where the local density can change e.g. under stress. But in fact, such a KPZ
term in the R(z,t) equation is anyway expected to appear from the nonlinear dependence of
I" on 8.k as considered in section 1.3 (viu). For completeness, therefore, we have checked
the effect of adding a counterterm to the R(z,t) equation as just described. This yields in
equation (12) a further contribution of a rather different form,

dg dp d2

~i73Go(k,w) [ SESETE lalk ~ p)(p - 0] hlg. Wh(k - pw — wp)h(p - g0y =) (15)

The term appears only to affect the uphill velocity [vn]eg which will also become k dependent,
while giving a finite correction to the surface tension Rgx. Although we have not analysed
this in detail, 1t seems hkely that the height exponents are not affected by this ‘Doppler like’
perturbation, and remain at their standard KPZ values. This trend is confirmed by a numerical
simulation of the goverming equations with both terms present: see figures 11 and 12.
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Fig. 11. — Height statistics < h(k,t)h(—k,t) > as a function of the wave number k when a ‘KPZ’ term
1s added to the rolling gran density equation equation. The KPZ behaviour < A(k, t)h(—k,t) >~ k=2
is maintained.
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Fig. 12. — Growth of the height fluctuations < [A(z,t) — h(z,t = 0)]? >1/2 as a function of time, 1n
the presence of a KPZ term 1n the rolling grain density equation. Again, the KPZ exponent t1/3 s
observed.

3.5 A SANDPILE WITH NOISY POINT SOURCE. — We have finally investigated in a qualitative
manner the effect of a noisy point source at the top of the pile. The main question is to know
how the non-linear ‘black-box’ separating the input point at the top from the exit point at the
bottom transforms the statistics of the input noise. In particular, one could wonder if a short
range correlated input noise could generate a ‘colored’ noise in the exit flux; this would reflect
a nontrivial (e.g., power law) avalanche size distribution. Figure 13 shows on the same graph
the input and exit flux as a function of time; revealing indeed an increase 1n correlation time.
A more systematic statistical analysis of this important question (in view of the number of
recent discussions related to the avalanche size distribution) is however needed, and we defer
1t for future work.
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Fig. 13. — Exit flux as a function of time (top curve), for a random input flux at the top of the pile
(bottom curve), represented on the same plot.

4. Derivation from a microscopic model.

In this section we show how our continuum equations (2, 4) can be obtained from a discrete
microscopic model involving the stochastic dynamics of individual grains. In fact it was the
study of this model which initiated the present work; logically, therefore, this section might
have been placed first. We have deferred our discussion until now because the continuum
equations, once formulated, are rather easier to use, especially in analytical work, once our
choice of a simplified, bilinear interconversion kernel (Eq. (3)) has been made.

The microscopic model discussed below remains phenomenological, insofar as it contains
various parameters which we do not attempt to predict. Nonetheless, 1t allows us to complete
a conceptual bridge between the local microphysics of sandpiles and their observed macroscopic
behaviour. We limit attention to the case of “hard” grains, for which any external flux feeds
into the population of rolling grains, rather than the immobile ones. This is the opposite case
from that considered in section 3; however, the generalization is straightforward.

4.1 SURFACE KINETICS ~— We consider a discretized two dimensional sandpile, constructed
by dropping graimns of sand onto a line. This baseline is divided into intervals of length a, which
are labelled 4,7 + 1 etc., and events (such as grain addition) occur at various times t,, t5 etc..
Time is also discretized, so motion of grains occurs in discrete hops from one site to another.
In what follows, the term “adsorption” means sticking of a mobile grain to the pile at a given
site to form an immobile grain. Also, we shall make a distinction between “rolling” grains
and “mobile” grains. The latter represent, essentially, those grains capable of rolling at the
next time step. The distinction becomes unimportant in the continuum limit, but is a useful
bookkeeping device 1 our discrete model.

We now consider some particular site ¢ at time ¢4, denoted hereafter as (i, «) we can wrte
for the corresponding change in the number n of immobile grains:

Anza = wza(an + Rza) — Ly, (16)
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where 1, is the local sticking probability. Here F;, represents the number of incident grains
added to the pile at (7, @) from external sources, whereas R,, 1s the number of “rolling” grains
arriving at (¢,@) (grains which have not just been added, but which were previously either
added or dislodged at some different site). The quantity L,, represents the number of grains
newly dislodged at (¢, &).

We now introduce a quantity

Maa = (Fux + Rza)(l - 1[)101) + Lia (17)

This represents the total number of mobile grains at (7, ), namely grains that have arrived

from an external source but are not adsorbed (F(1—1)); rolling grains arrived but not adsorbed

(R(1—%)); and dislodged grains newly produced (L). Finally we define x.qa,,s as the transition

probability that a mobile grain at (j, 3) moves to (i,a) without making contact with the pile

between these two times. In general, this can include local and long range jumps of all kinds

reflecting rolling, bouncing etc., though below we will specialize to a simpler form for X,« ;a-
With these definitions, we obtain for the rolling grain density

a—1
R = Z Z Xa,38 My.8 (18)

B=0 7

which means physically that the rolling grains at site ¢ at time ¢, consist of all mobile grains,
present at sites 7 and earlier times tg, that have moved from there directly to (i, ®). Equations
(16, 17) may be easily rearranged to give

_{_%a 1
An'y_a - (1 — 1/}1&) My — (m) L'La (19)

Our results so far are very general. To make use of them, we must make some simplifying
assumptions. The first of these concerns the transition probability X..,,s. For simplicity we
assume

1 1
Xra,38 = (5 — €)0a—1,80111,5 + (5 + €)da—1,60:-1,5 (20)

with € a parameter. This describes particles that can only transmit to nearest neighbour sites
in a single time step. (It thus describes the rolling of grains, but not, in principle, any long-
range hops or “bounces”.) Unless ¢ = 0, there 1s a built-in preference for jumping downhill
(i.e., increasing i), reflecting the presence of a background slope.

Substituting this form nto the defining equation (18) for R gives

1 1
Rq_a = (-é — e)m1+1,a_1 + (5 + e)mz_l,a_l (20/)
If we now eluminate L,, and R,, from equation (17) using (16) and (20) we obtain
1 1
My = (5 — €)Mat1,a—1 — (5 + €)M 1,01 = Fra — ANyq (21)

Equations (19) and (21) are a pair of coupled equations, local in time and space, for the
evolution of the numer of adsorbed grains, n, the number of mobile grains, m, at neighbouring
sites. The external flux 1s F, whereas the adsorbtion probability ¢ and dislodgement rate L
for each site remain to be chosen.
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4.2 THE CONTINUUM LIMIT. — We now seek the continuum limit for equations (19, 21). We
denote the discretization length by a, as previously, and the discrete time interval (jump time)
by 7. We must first associate our discrete variables n, An, F,v,L and m (each of which is
dimensionless) with a set of (dimensioned) continuum variables. This can be done in several
ways, but most straightforwardly by dimensional analysis, with the following results:

N = Rz, t)fa , Ane = hiz,t)r/a

Fo=¢(z,t)ar , L., =Nz, t)ar (22)
Yoo = (T, )T 5 Mg =m(z,t)a

Here h(z,t) is the height; h its time derivative; ¢(z,t) the incident flux (particles arriving per
unit time per unit length); p(z,t) the probability per unit time of a mobile particle sticking;
Az, t) the rate of production of rolling particles by dislodgement per unit length and time;
and m(z,t) the number of mobile grains per unit length.

Making these substitutions in equation (19), and letting the time increment become small
(r — 0) at fixed sticking probability p yields

Mz, t)/a? = p(z,t)m(z,t) — Az, t) (23)

This makes sense when one realizes that h/a? is the total number of immobile grains per unit
length: pm represents the adsorption of mobile grains and A the loss of immobile grains due
to the dislodgement process.

We now apply the same limiting procedure to equation (21). We further assume that the
density of mobile grains m(z,t) can be represented as a smooth function of position and time.
By expanding on the left of (21) in a double Taylor series, we obtain:

1 + 2e(a/7)8,m — (a2/27)82m + O(7%,6%) = ¢ — h/a? (24)

To eliminate the dependence on a, we introduce physical quantities R = ma?, # = ¢a?, and
A = Xa? which remain well-defined in the continuum limit. Thus R(z, t) is the contribution that
mobile grains would make to the height A if suddenly immobilized; n(z,t) is the contribution
that any incident flux would make to h under the same condition; and A is the rate of height
loss from dislodgement. We also define variables D = a?/27 and v = 2ea/, which (by taking
€ ~ a) can both be made to remain finite as ¢ — 0 and 7 — 0.

With these definitions, equations (23, 24) become

h = p(z,t)R — Az, t) (25a)

R +v9,R-DER=n-h (25b)

These correspond to equations (2) and (4), with a constant velocity v and diffusion constant D.
Note that the incident flux term 7 is added to the R equation. This model therefore represents
the physics of “hard” grains, as defined earlier, for which any grain that lands on the pile 15
initially mobile. The interconversion kernel in the present model is of the form

I' = —p(z, tYR(z,t) + Az, t) (26)

with p the local sticking probability and A the dislodgement rate.
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At this point we could make a sequence of physically motivated assumptions, in the frame-
work of the microscopic model, to sumplify the form of I'. However, we have already carried out
the corresponding procedure, at the macroscopic level, in section 1.2. The simplified bilinear
kernel (Eq. (3)) follows from (26) if we assume (i) that the dislodgement rate A is proportional
to the density of mobile grains, so that A = ¢(z,¢)R, and (ii) that the quantity ¢(z,t) — p(z, )
can be expanded as a Taylor series in h(z,t) and its spatial derivatives. The latter requires
that A(z,t) can be treated as smoothly varying. We have not needed to assume this so far
in this section, although a corresponding assumption was made earlier for m(z,t) (in deriving
Eq. (24) above).

The above considerations lead to a model with a finite diffusion constant D which arises
from the ability of grains to hop uphill. As mentioned in section 1.3 (iv), the diffusion term in
equation (2) is intended also to model the fact that dislodgement of a given immobile grain can
be 1nitiated by mobile grains, not just at the same site but at neighbouring ones. As discussed
there, this would lead to a presumably slope-dependent diffusion constant. To model the case
where this process is the dominant form of dispersion, the hopping diffusion D can be “switched
off” by taking a slightly different continuum limit of the discrete picture: if we maintain € finite
(e.g., € = 1/2, corresponding to fully directed motion) asa - 0 and r ~a — 0, then D =0
whereas v = 2ea/T, as before Any dislodgement-induced dispersion, of the type just described,
would then have to be explicitly included in the kernel T'.

5. Conclusions

We now summarize the main points of this paper. First, we have established, using general
physical arguments, a set of phenomenological equations (2-4) with which to describe the
evolution of the sloped surface of a sandpile or similar granular aggregate, close to the angle of
repose. These equations differ from earlier analyses in their explicit inclusion of two interacting
variables, the local height of the pile and the local density of mobile (“rolling”) grains. The
latter is subject to a steady downhill convection arsing from the background slope. The
interconversion of immobile and rolling grains was represented by a simplified bilinear kernel
with relatively tractable analytic properties.

Several interesting aspects of sandpile dynamics have been predicted using the model. Firstly
(see Sect. 2.1) the downbhill convection of rolling grains leads to an uphill convection of surface
features. For a steady initial rolling grain density, small features will be convected umformly,
whereas large amplitude features will tend to shock. Secondly (see Sects. 2.2, 2.3) our equations
exhibit the physically important property of metastability leading to hysteresis effects. A
sandpile at the angle of repose will not relax fully when tilted unless a finite threshold (the
Bagnold angle) 1s exceeded. In our model, this corresponds to a ‘spinodal’ angle beyond
which infinitesimal perturbations can lead to relaxation of the pile. This spinodal angle can be
expressed in terms of the other parameters entering the model, some of which can be estimated
from rotating drum experiments (see Sect. 2.4); qualitative agreement is obtained between our
predictions of the avalanche/continuous flow transition and the observed value.

We have also investigated our equations in the presence of various noise terms, focusing on
the long time, large length-scale properties. For a random initial condition with no external
flux (see Sect. 3.1}, the initial roughness decays in time with exponents corresponding to those
of the linearized version of the theory. For homogeneous spatiotemporal noise, and in the
absence of any KPZ term, our nonlinear equations again display the asymptotic properties
of their linearized counterparts; the height fluctuations therefore show Edwards-Wilkinson
scaling (see Sects. 3.2, 3.3). The steady downhill convection of grams inhibits the buildup of
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fluctuations; the current autocorrelation function decays exponentially in time. If a KPZ term
is added, however (appropriate in the presence of a nonzerc incident mean flux) it remains
relevant despite the convection, and we recover numerically the anomalous exponents of the
KPZ model (see Sect. 3.4). According to whether this term is included, the surface dynamics
are either diffusive (£(t) ~ t1/2), or of the KPZ type (£(t) ~ t2/3). In either case, the sandpile
surface is predicted to be rough, i.e., height variations increase with separation. These results
differ significantly from those of Hwa and Kardar who predict a flat surface and a correlation
length £(t) ~ t.

Finally, in section 4, we have shown explicitly how to obtain our phenomenological contin-
uum description of rolling and immobile populations, starting from a discretized microscopic
model that considers the local motions of individual grains. This helps to clarify the physical
approximations we have made, and completes a conceptual link between the microphysics of
sandpile surfaces and their macroscopic behaviour.

All the results summarized above are for sandpiles in two-dimensional space (the height is a
function of one position variable, and time). As mentioned in the introduction, our equations
generalize straightforwardly to higher dimensions. Most of the interesting physical properties
that we have predicted carry over, or have obvious analogues, in higher dimensions. Another
direction would be to apply similar 1deas to surface growth. Assuming that one still has two
populations of particles {moving or stuck), one could consider the following equations:

a_fg’—t) =T = M VR(E,t) - VR(Z,t) + M R(E, t)V2A(Z, £) (27a)
OR(Z, 1)
ot
as alternatives to the usual KPZ description. We leave the detailed investigation of these
extensions open to future study.

=DV*R(Z,t) + T + (&, t) (27b)
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Appendix.
The solution procedure.

In this appendix we describe a solution method suitable for dealing with the deterministic
examples of section 2. The results of section 3 in the presence of ‘strong nose’ were instead
obtained using a standard finite difference time-march scheme. The basic equations (2) and (4)
are a pair of second order quasi-linear partial differential equations in the dependent variables
h{z,t) and R(z,t). They may be solved by methods developed for first order equations, by
rewriting them 1n matrix form as,

ow

A(W)—B_{ + B(w)%:— =C (A1)
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where w = (ﬁ(a:,t),R(a:,t)), A and B are matrices whose elements are functions of w. The
inhomogeneous term C is a column vector containing the second order derivatives, along with
any external perturbing terms (such as a noisy incident flux ). Equation (13) can be classified
as ‘hyperbolic’ [32, 33], since the characteristic equation

det(B -~ AA) =0

has two real roots, Ay = —yR and Ay = v, and there are two linearly independent eigenvectors,

1,, such that
I'B-XA)=0 j=1,2 (A.2)

As a consequence, there are two characteristic curves along which the basic equations reduce
to compatibility conditions. To describe these, we introduce the notation

D._(a) 2, (&) o
Ds  \ds/ 6t ds | Oz

The first curve can be then written in parametric form as

dt dz

—=1; — = —R A.

ds ’ ds i (A3)
along which the following compatibility condition applies:

—— = kRIZh .

The second curve has the parametric form

dt dz
with the compatibility condition
YR Dsh D3R ) vkRO2h
=DIR - ——=— .
R+ Ds T Ds R R0 T (A-6)

The numerical procedure 1s based on an inverse marching scheme [34], wherein characteristics
are drawn backwards from any point w(z, t) at which the solution is desired, to the decremented
time (¢ — At) where the solution 1s known. Along the characteristics, which are approximated
locally by straight lines, the compatibility conditions are integrated using a modified Euler
predictor-corrector method. For a detailed discussion of the method, see [34]. The second
order derivatives appearing in the non-homogeneous term C are approximated by simple finite
difference expressions.

SOME COMMENTS ON THE BOUNDARY CONDITIONS. — In all the ‘deterministic’ numerical
simulations, the sandpile is imagined to be bounded by a wall on the left at £ = 0, and a sink
on the right at z = L, as depicted in figure 3. The background slope 5. is always taken as zero.
Finally, there 1s always a source of grains 7, in this case, of ‘hard grains’ added somewhere
on the pile, either as a pulse, or as a constant flux. Since there are two second order partial
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derivatives in the governing equations, we require four boundary conditions mn all, at z = 0
and z = L. These are prescribed as follows.

i) At z = L, we assume that no cliffs can occur, i.e., the height h(L,t) = 0. This is consistent
with our equations, which would relax such a shock rapidly (see Sect. 2.1).

i1) The existence of a sink at « = L implies that the rolling grains arriving at z = L are
immediately removed. Thus R(L,t) = 0.

1ii} The net flux of grains from the left must be zero due to the presence of the wall. Thus
atz=0,oR - D3, R =0.

iv) We assume that the gradient of h at the wall, ,A = 0. One might anticipate that
perhaps there exists for powders, as in the case of liquids, a ‘wetting angle’ at the wall, such
that, 9z h(z = 0), is some physical constant k # 0 depending on the nature of the wall, and the
powder grains. In the absence of precise information, we have chosen the value £ = 0 above.
In any case, our results are expected to be independent of the precise choice of this constant.

The use of a scheme derived from the Method of Characteristics, requires that all the
variables be prescribed on the imtial curve. The height h(z,0) has been assumed to be a
parabola, starting with zero slope at some value h(0,0) at z = 0, and decreasing to zero at
z = L, consistent with the boundary conditons (i) and (iv) above. The rolling grains are
supposed to not exist initially, i.e. R(z,0) = 0 (consistent with (ii) and (iii) above). However,
the nature of the governing equations ensures that they are generated at the very first time
step due to the influx of grains on the pile, either at the top or at the bottom.

As mentioned in the previous section, the second order derivatives are treated as the in-
homogeneous part of a set of first order equations. The numerical scheme adopted here then
requires that they be prescribed at every point z, at the time (¢ — At) in order that the solution
at time ¢ be obtained. Except at the boundary points, they are obtained from a simple finite
difference formula. At the boundaries however, they are estimated as follows.

1) Since R =0atz =1L,

KkRO2h =0

and, the equation for R(z,t) imples,
DR =v8,R -7

ii) Once the interior derivatives are calculated with a finite difference scheme, then one can
use a Taylors series expansion to find,

DA2R(x = 0) = 2D R(z = Az) — DAZR(z = 2Ax)

Finally, at = 0, one can use the compatibility condition equation (A-4) to find kR82h at ¢,
from the known solution at (¢t — At). At ¢t = 0, this term is zero, since R = 0.
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