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Résumé. L'aptitude à quantifier le coût du risque et à définir
une

stratégie optimale de

gestion de portefeuille dans un marché aléatoire constitue la base de la théorie moderne de

la finance. Nous considérons d'abord le problème le plus simple de
ce type, à savoir celui de

l'option d'achat ~européenne', qui a
été résolu par Black et Scholes à l'aide du calcul stochastique

d'lto appliqué
aux

marchés modélisés par un processus Log-Brownien. Nous présentons
un

formalisme simple et puissant qui permet de généraliser l'analyse à
une

grande classe de processus
stochastiques, tels que les processus ARCH, de Lévy et ceux

à sauts. Nous étudions également le

cas des processus Gaussiens corrélés, dont nous montrons qu'ils donnent
une

bonne description
de trois indices boursiers (MATIF, CAC40, FTSEIOO). Notre résultat principal consiste en

l'introduction du concept de stratégie optimale dans le sens d'une1nini1nisation (fonctionnelle)
du risque

en
fonction du portefeuille d'actions. Si le risque peut être annulé pour les processus

'quasi-Gaussien' non-corrélés, dont le modèle de Black et Scholes est un
exemple, cela n'est plus

vrai dans le cas général, le risque résiduel permettant de proposer des coûts d'options "corrigés".
En présence de très grandes fluctuations du marché telles que décrites par les processus de

Lévy, de nouveaux critères pour fixer rationnellement le prix des options sont nécessaires et

sont discutés. Nous appliquons notre méthode à d'autres types d'options, telles que'asiatiques',
~américaines', et à de nouvelles options que nous introduisons comme les 'options à deux étages'...
L'inclusion des frais de transaction dans le formalisme conduit à l'introduction naturelle d'un

temps caractéristique de transaction.

Abstract. The ability to puce nsks and devise optimal investment strategies m
the presence

of an uncertain "random" market is the cornerstone of modem finance theory. We first consider

the simplest such problem of
a

so-called "European call option" initially solved by Black and

Scholes using Ito stochastic calculus for markets modelled by
a

log-Brownian stochastic process.

A simple and powerful formalism is presented which allows
us to generalize the analysis to a

large class of stochastic processes, such as ARCH, jump or
Lévy processes. We also address

the case of correlated Gaussian processes, which is shown to be
a

good description of three

dilferent market indices (MATIF, CAC40, FTSEIOO). Our main result is the introduction of the
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concept of an optimal strategy in the sense of (functional) minimization of the risk with respect

to the portfolio. If the risk may be made to vanish for particular continuous uncorrelated 'quasi-
Gaussian' stochastic processes (including Black and Scholes model), this is no longer the case

for more general stochastic processes. The value of the residual risk is obtained and suggests the

concept of risk-corrected option prices. In the presence of very large deviations such
as

in Lévy

processes, new criteria for national fixing of the option prices
are

discussed. We also apply ouf

method to other types of options, 'Asian', 'American', and discuss
new

possibilities (~double-
decker'...). The inclusion of transaction costs leads to the appearance of a natural charactenstic

trading time scale.

l. Introduction.

There are various reasons explaining why physicists might be interested in economy and fi-

nance. A first reason lies in the fact that market exchange is a typical example of complex
system, where the apparently random fluctuations of market puces result from many causes,

such as non-linear response of traders and speculators with highly inter-dependent behaviors,
embedded in a time evolving in a somewhat unpredictable way environment. This diiliculty

m predicting the behavior of market prices has in fact been argued to be a fundamental prop-

erty of "eilicient" markets: any obvious predictable opportunity should rapidly be erased by
the response of the market itself [1]. Present mathematics and economic theory of finance are

developed from the perspective of stochastic models in which agents can revise their decisions

continuously m time as a response to a variety of personal and externat stimuli. It is the

complexity of the agent expectations and interactions that provides the major diiliculty in the

study of finance. The development of new concepts and tools, in the theory of chaos, com-

plexity and self-organizing (non linear) systems in the physics community in the past decades

[2], make thus the modelling of market exchange particularly enticing, especially for physicists,

as exemplified by quite a number of attempts: see e-g- [3-9] for recent discussions within this

context. Another, more anecdotic reason, is that due to the job crisis, more and more physics
students will probably end up working in finance. It is possible (although of course not certain)

that this population will bring new concepts and methods, leading to a rapid evolution of the

field.

There is also a historical reason: the French mathematician, Bachelier, discovered the the-

ory of Brownian motion in connection with stock market fluctuations [loi, rive years before

Einstein's classic 1905 paper. In particular, Bachelier proposed a formula for the price of an

option (see below), based upon the idea that these fluctuations follow a Brownian process. This

work laid somewhat dormant until the sixties, when many important ideas and methods were

developed. This renewed activity paved the way to the seminal work of Black and Scholes [11]

on the option pricing theory, which stands
as a landmark in the development of mathematical

finance: stochastic calculus was shown to be directly useful for an every day financial activity
such as option pricing, which was, before Black and Scholes, only empincally land not 'ratio-

nally') fixed. A considerable development of the field has then followed, both at fundamental

[13-16] and commercial levels, and numerous softwares based on the Black-Scholes approach

are now available.

In a nutshell, the simplest option pncing problem (the
so called 'European call options') is

the followmg: suppose that an operator wants to buy a given share, a certain time t
=

T from
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now
(t

=
0), at a fixed 'striking' price x~. If the share value at t

=
T, x(T), exceeds xc, the

operator 'exercises' his option. His gain, when reselling immediately at the current price x(T),
is thus the dilference x(T) xc. On the contrary, if x(T) < xc the operator does not buy the

share. Symmetrically, a European put option gives the owner of a stock the right to self his

shares at time T at a preassigned price x~. These possibilities given to the operator by -say-
the "bank" are options and have obviously themselves a price. What is this price, and what

trading strategy should be followed by the bank between now and T, depending on what the

share value x(t) actually does between t
=

0 and t
=

T?

In a sense, the option problem can be considered as the elementary building block of the

general problem of the evaluation of risks associated with market exchanges and more generally
with human activity. Indeed, an option on a stock can be viewed as an insurance premium
against the risk created by the uncertainty of share prices. When you insure your car against
collisions, you are buying from the insurance company a'put' option, 1-e- an option to self your

car at a given price. That option will be worthless if you never have an accident (you pay the

premium and collect nothing). But if your car is destroyed, you have the right to leave what

remains of it with the insurance which is obliged to buy it and pay you the insured amount.

The primary function of options is thus to give investors some control over how changes in the

market will affect their portfolios. For a cost, buyers of options can limit fosses with placing
almost no limits on their profits. Sellers of options who expect little change in market prices

can pocket an extra premmm. In short, options satisfy the needs of both the prudent person
and the speculator. Furthermore, pricing of much more complex financial securities essentially
proceed along the same fines.

Black and Scholes' model gives an answer to both the above questions (price and strategy):
assuming that the share value follows a log-Brownian process, they construct a strategy by
which the bank can exactly duplicate the buyer's portfolio, in such a way that, for the bank,
the whole process is Tisk fTee (the precise meamng of this statement will be discussed below).
This construction is translated using lto's stochastic calculus [17] into a partial dilferential

equation, the solution of which containing both the option price and the bank trading strategy
(see Appendix A).

The aim of this paper is to reformulate the problem
m a more transparent and flexible

way (at least in our eyes). The interest of our formulation is that 'generalized' Black-Scholes

formulae can be readily obtained for a large dass of stochastic processes, induding general
coTTelated Brownian processes. We propose to obtain generalized Black-Scholes strategies as

those minimizing the risk in a functional sense with the value of the residual nsk as a by-
product, which could allow one to propose Tisk-coTTected option prices. We find that this

residual risk is even zero for particular (continuous 'quasi-Gaussian') stochastic processes,
which allows us to include Black and Scholes Iog-Browman model in our general formalism.

Lévy processes are also considered. For these extremely strongly fluctuating cases, new criteria

for rationally fixing the option prices must be introduced.

We discuss several dilferent extensions of our approach, in particular to other types of options
l'Asian', 'American'), or to include the cost of transactions (market friction). We show in

particular how a characteristic trading time scale naturally appears when this 'friction' is

taken into account.

We also give evidence, based on a statistical analysis of three dilferent indices (MATIF,
CAC40, FTSEIOO), that the fluctuations

are quite well described by a coTTelated BTownian

pTocess, which justifies the interest of our generalization of the Black-Scholes formula.
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2. Solution of trie option problem using a risk minimisation procedure : general-
ization of Black and Scholes.

In appendix 1, we give a brief summary of the results and method used by Black and Scholes,
and most subsequent workers in this field. This may be useful in order to connect our approach
with those developed in the mathematical finance literature. As already stated, their approach
relies heavily on Ito stochastic calculus [17] and it is not straightforward to understand the

underlying principles at the origin of their solution. The method that we now present relies on

a completely dilferent point of view and uses a much simpler formalism, which only requires
basic knowledge in probability theory.

We shall colt x(t) the value of the underlying share of stock at time t, and consider the series

(x(t))t=0,T as a stochastic process, described by a certain probability density P(x,t[y,t'),
giving that the value of x at t, knowing that it was y at t' < t, occurs (within dz) with

probability P(x, t [y, t')dx.
The starting point is to express the total variation of the bank's wealth AW between t

=
0

and t
=

T taking into account the existence of the option and the underlying share. Note that

the existence of many other stocks m the market has no bearing on the option pricing problem.
This justifies the book-keeping of only the share underlying the option. The fair price of the

option will then be determined by the condition that the average of AW be zero (not net gain

or loss on average for the bank and for the option buyer).
The total variation of the bank's wealth AW is the sum of three contributions 1) the

gain from pocketing from the buyer the option price, that shall be noted C(xo> x~, T) for a call

option on a share of initial price xo starting at t
=

0, of striking price xc and maturing at

time T; 2) the potential loss equal to -(x(T) x~) if x(T) > x~ (stemming from the fact that

the bank must, in this case, produce the share at t
=

T) and zero otherwise; 3) the gain or

loss incurred due to the variation of stock puces during the time period extending from t
=

0

to t
=

T. This last term depends on the number of shares ç$(x,t) at time t (at which the

share price is x) held by the bank. The fact that this third term must be taken into account

con simply be illustrated by considering the following scenario suppose that the price of the

share was to increase with certainty between t
=

0 and t
=

T. Then, it is dear that the bank

would then have advantage m buying a share at t
=

0 (ç$(xo>t
=

0)
=

1) and in holding it

until t
=

T (ç$(x,0 < t < T)
=

1), at which time, it will give it to the buyer for the price

xc. This simple example suggests that, more generally for an arbitrary realization of the share

price x(t), holding a certain amount of shares prior to the exercice time can be favorable for

the bank, ç$(x, t) has the meamng of the number of shares per option, taken in the limit where

a large number of options and shares are traded simultaneously. It is of course in this limit

that continuous trading makes sense. Then, if the bank has, at time t, ç$(x,t) shares, the

true variation of its wealth W (shares + other assets) between t and t + dt is only due to the

fluctuations of the share price, i e.:

$
e ç$(x, t) ~~. (Note that the term

~~~~'~~
x describes

t dt dt

conversion of shares into other assets or the reverse, but not a real change of wealth).
Hence the total variation of wealth of the bank taking into account the three above contri-

butions is
for a given realisation of the process (x(t)) and a given strategy ç$(x, t):

àw
=

cjxo, x~, T) ojxjT) x~) + /~ ijx, t))dt ii)

with 9(u)
= u for u > 0 and zero otherwise (Ù(u) is equal to u times the Heaviside function).

The last term m the r-h-s- of equation il) quantifies the elfect of the trading between t
=

0

and t
=

T.
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2.1 INDEPENDENT INCREMENTS OF THE SHARE VALUE. Let us suppose for a while that

the local slopes
~~

are statistically independent for dilferent times. In ail that follows, wedt

shall always implicitly refer to a time discretized problem, and an expression like ç$(x, t)
~~

in
dt

fact means ~b(xj)(~z+i xi). For convenience, we shall however use the continuum notation.

Then, denoting by (..) the average over dilferent realisations of the process (x(t)), one has

(ç$(x, t)~~)
e ç$(x, t)(~~ ), because

~~
is always postenor, and thus uncorrelated to the value

dt dt dt
of x(t). The 'fair game' condition (AW)

=
0 gives the European option pricing formula, which

in the unbiased case [18], (~~
=

0, reads C(xo> xc,T)
=

(9(x(T) xc )),1-e-
dt

cc

C(xo> xc, T)
=

/ dx'(x'- xc)P(x', T[xo> 0) (2)
~~

This recovers the well-known Black and Scholes pricing formula (see Eq.(A2) in Appendix
1) which is always explicited for the Log-Brownian case, for which P(x,T[xo> 0) is given by
equation (Al of Appendix 1 [11, 13]. It is important to note that this formula (2) holds gen-

erally, without any assumption on the specific form of P(x, T[xo> 0) (although the assumption
of independent increments is important see below, Eq. (12)). The interpretation of equation
(2) is straightforward: this formula simply says that the theoretical option puce C is such

that, on average, the total expected gain of both parties is zero: risk-free profit should not

exist. The expected gain of the operator is indeed given by the right hand side of equation (2),
since its gain is either x'- xc if x' > x~ and zero otherwise, which must be weighted by the

corresponding probability. Note that the option price is independent of the portfolio strategy
of the bank, 1-e- of the specific choice of the number çi(~, t) of shares per option. This is in

contrast with the point of view of Black and Scholes and subsequent authors, for whom the

option price is deeply linked with the underlying strategy.
In the Gaussian case, P(x,T[xo>0) reads:

~~~~'~~~°'~~
ÀÎ

~~~
~~ 2à~

~~~

where D is the "volatility" of the underlying stock Ii.e, diffusion coe~fcient of the stock price)

[28]. Introducing the complementary error function erfc(u) e

~ /
du exp(-u~),

one finds

~~ ~~

é
u

~~~°'~~'~~ ~~~~~~ ~"~~~ ~~
/%

~~~

CjXc)
=

jj~~~j/Î~ XcerfcjXc)j j4)

Equation (4) Ieads to the followmg asymptotic behaviour: C(0)
=

(2r)~~/~,

C(Xc
-

+cc)
m

(2r)~~/~X/~ exp(-X))

and

C(Xc
-

-cc) t
-VSX~

+ (8r)~~/~X/~ exp(-X))

which means that, as expected, C(xo>~c,T) is of order /% for ~c m xo> very small if xc is

much greater than the initial price xo> and equal to the quasi certain gain of xo xc m the

other limit.
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What should be the optimal portfolio strategy of the bank, 1-e- the best function ç$*
ix, t)

giving the number of shares per option as a function of time between 0 and T? A first plausible
idea would be to maximize profit, i-e- find ç$(x,t) such that AW given by equation il) be

maximum. However, only the third term m the r-h-s- of equation (j) depends on ç$(~, t), which

means that the maximization of AW is equivalent to that of ç$(x, t)~~dt. This term is
dt

Iinear in #(~, t) and, in absence of correlations between the increments
~~

at dilferent times,
dt

cannot be maximized without knowing in advance the specific realization of ~(t) ion average,

this term vamshes and thus maximization cannot be performed either on the average).
The next raturai strategy for the bank is to attempt to mmimize its risk. Since its average

gain (AW) is zero, the risk R is measured by the fluctuations of AW around its (zero) average,

i-e- R
=

(AW~), and thus exphcitly depends on the strategy ç$(x, t). We determine the optimal

strategy ç$*(~, t) so that the risk is functionally mimmized:

à«
ôij~,t)"='" =

° i~~

For independent (but not necessarily Gaussian) increments such that

~~
[t

~~
Ît, "

D(x)à(t t'),
one finds:

dt dt

T +co

R
"

Rc + dt dX D(X)P(I, t(X0> 0)çi~(X, t)
Î CXJ

T co +co

-2 dt dz' dz ç$(x,t)(x' xc)
Î Îc Îm

xi
~~

)~~ t)_~~, T)P(x, t[xo 0)P(x', T[x, t) (6)

where Rc is the "bare" risk which would prevail in the absence of trading (ç$(x, t) +
0):

Rc
=

/~ dx(z zc)~P(x, T[xo>
)j

[C(xo xc, T)]~ ii)
~~

The term (~~)~~ t~_~~, T) is the mean instantaneous increment conditioned to the initial
dt ' '

condition ix, t) and a final condition ix', T). It is non-vanishing, contrary to the unconditionned

mcrement (~~
=

0 (neglecting the average interest rate by a suitable change of frame [18])
dt

~Equation (6) contains a positive term proportional to ç$
and a negative term linear in ç$,

showing that an optimal solution exists, and leads to a reduced nsk (compared to the bare

one). The general solution reads:

4*lI, t)
=

/~ dz'l)1(~,t)-(~,,T) ~~((~~ PII', TII, t) 18)

and

R*
=

Rc /~ dt /~~ dzD(z)P(z, t[0, 0)ç$*~ ix, t) (9)
o -cc

which are valid for an arbitraTy uncoTTelated stochastic pTocess, including 'jump', or discrete-

time, processes. The process can furthermore be explicitly time-dependent, with a variance
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Dix, t) which is a function of time, as for the much studied 'ARCH' processes (see, e-g- [16]),
which are Gaussian processes with a t-dependent variance Dit) [19]. I'ARCH' stands for Auto-

Regressive Conditional Heteroscedasticity.)

Formulae (8-9) can be simplified in several cases. Suppose first that the increments
~~

are
dt

identical independent random variables of zero mean and variance given by D (The
case where

D
= cc

will be addressed below). Equation (8) then reads:

ç$*(z,t)
= ~

~/
~~

/~ dz'(z' z~)(z' z)P(x',T[x,t) (8')

If furthermore
~~

are Gaussian variables, then expression (3) will exactly hold for ail time
dt

delays T t, and one may transform equation (8) into :

ii ix, t)
= /°'dxtjxt x~) ~~Gi(>

~"~>~~
j8tt)

This expression is exactly the result obtained by Black and Scholes il1, 13] using a completely
dilferent formalism (see Appendix 1), when replacing PG(x',T[x,t) in equation (8") by the

log-Brownian expression (Al). In fact, one can show that equation (8") holds both for the

Brownian and log-Brownian models and more generally for 'quasi-Gaussian' models such that
~~

=
g(x)q(t), where g(x) is an arbitrary function and q a Gaussian noise.

dt
What Black and Scholes were aiming at was to find a strategy such that the risk be exactly

zero, for ail realizations z(t) of the stock prices. We do recover this result for the Brownian,
the Log-Brownian models and more generally for 'quasi-Gaussian' models. Namely, we find

that the residual risk reads:

R*
=

R~ D
/

dt
/

dzPG(z,t[0, 0)ç$à~(z, t) (9')
~ ~Î~

which vanishes exactly for Gaussian processes, due to the following identity:

~
dt

/Î
da~PGia~> tia~o> 0) ~~~~~ii~"~

~~ ~~~~~ii~"~ ~~
=

=
PG(xi> T[xo>0)à(xi x2) PG(xi, T[xo>0)PG(x2> T[xo>0) (10)

Indeed, usmg the identity il 0), one can show that the integral in the right hand side of equation
(9') is exactly equal to R~, thus leading to a zeTo Tesidual Tisk for all 'quasi-Gaussian models'.

This equality (10) will however net hold for an arbitrary stochastic process [23] and thus

the residual risk will not vanish in general. This is the main dilference between the present
approach and that of Black and Scholes and subsequent workers 1) we find that a vanishing
residual risk cannot be achieved in the general case; 2) however, this does not imply that an

optimal strategy does not exist. We have indeed found an optimal ç$* ix, t) which minimize the

risk, given by expression (9) and which is a simple generalization of Black and Scholes result.

These findings are relevant to various concrete situations. In particular:
a) strong deviations from a Gaussian behaviour ("leptokurtosis") are expected when the

time delay T t is not large. In this case, our formula (9) allows one to estimate the residual

risk and correct the option puce accordingly.
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b) More importantly, the transaction costs (market friction) prevents to trade continuously
with time. Rather, trading will be restricted to a finite number of occurrences, separated by

a non-zero time interval
r.

The risk R* will again be non zero in that case; in fact, it can be

estimated using the Euler-McLaurin formula, which gives the dilference between a continuous

integral and its finite sum approximant. We find:

R*
=

)P(1- P) + O(r~) Ill)

cc

where P a

/
dx'PG lx', T[xo>0) is the total probability of realization of the option. Note

~~
that R* is maximum for P

=
o-S, 1-e- when z~ = zo "

(z(T)). Formula Ill) will be of

importance below: we shall show how it can be used to determine self consistently an optimal
value of r when market friction is taken into account.

Let us end this section by stressing the implications of the remarkable result that the risk

con be made to vanish for 'quasi-Brownian' processes. This 'Black-Scholes' result would still

hold if one replaces the function 9(z(T) z~) by an arbitrary function ~§(z(T)) of the final

value z(T): if (z(t)) is a Gaussian process, it is always possible to choose C~ and tp(z, t)
so

that ~§(z(T))
=

C~ (ID z~, T) +
/~ tp(z, t)

~~
dt for any realisation of the random series (z(t)).

o
dt

More precisely,
+m

C~ (ID xc, T)
=

dz'~§ ix') PG lx', T[zo 0)Îm

and

wlz, t)
= /~~° dz'~llz') ~~~~~)~~'~~

-cx~

These results allow one to express the arbitrary (non-linear) function ~§(z(T)) of the random

variable z(T)
as a path-independent sum over past values of z(t).

2.2 CORRELATED GAUSSIAN PROCESS. Let us now assume that we have a general correlated

Gaussian process, such that the dilference z(t) z(t') is a Gaussian variable with zero mean

and variance Vit t'), where Vi. is a given function. In the case of uncorrelated increments,
VIT)

=
D[r[; the generalization to a power law behaviour VIT)

=

Dr~~
was proposed by

Mandelbrot and Van Ness (see [24] b) under the name of'fractional Browman motion', as a

way to model 'persistent' or 'anti-persistent' evolution of share prices. This case is outside

the domain of validity of the Black and Scholes formalism, whereas it tums out to be exactly
soluble for arbitrary Vi.) within our approach. The interest of this model is also motivated

by the statistical analysis of some charts, which we now descnbe. We first determined the

function VIT) by computing the average ([z(to + r) z(to)]~)to, where (...)to denotes a sliding

average over the choice of the 'initial' time to and z(t) is the daily (closing) value of the London

FTSE-100, the Paris CAC-40 and the French MATIF, in the period 1987-1992, coTTected by
the aueTage tTend. The behaviour of the function VIT) is reproduced in figures la, b. Quite
interestingly, VIT) first grows linearly with

r as a standard uncorrelated Gaussian process until

r
reaches r~, beyond which strong departures are observed. rc is found to be t 100, 350, 250

days for the FTSE, CAC-40, and MATIF respectively (250 days correspond to a year in real

time). Then, VIT) saturates and, for the FTSE and MATIF, decTeases to a minimum around

r =
500 700 days, corresponding to a two-year statistical pseudo-cycle IA true cycle of period

T* would correspond to V(T*)
=

0). We have checked that a certain degree of stationarity
holds: similar conclusions are valid on the restricted periods 87-90, 89-92.
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Fig. l. a) Behaviour of the root mean square fluctuations fias
a

function of the time delay
r

(in days) for the FTSE and the CAC-40. Note that the initial part of the curve is very well fitted by

V(r)
cc r, which corresponds to an

uncorrelated random walk, before
a

'Saturation' regime is
rather

sharply reached. b) Same
as

figure la, but for the MATIF. The CAC-40 (CAO: compagnie des Agents

de Change) (resp. FTSE-100) is a
French (resp. British) market index calculated from a weighted

average of 40 (resp. 100) stock puces of the main sectors of activity of the country. MATIF stands

for Marché à Terme International de France (French futures and options exchange).

Next, the approximate Gaussian character of x(to -x(to +r) was established by constructing

the histogram of the rescaled excursion y =

~~~°~ ~~~° ~
~~, for dilferent values of r betweenfi

50 and 800 days. As shown in figure 2, ail the histograms are (within statistical errors)
superimposed. The average of ail these curves is reproduced in figure 3; we find that as

long as the fluctuations are not too large the probability is quite well described by a simple
Gaussian, although a slightly 'fatter' tait appears for larger deviations. Thus, our Gaussian

correlated model seems to be a good description of the charts for not too small time delays la
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Fig. 2. Histograms of the rescaled variable y =
(x(to) x(to +

r)(il@, for dilferent values of

T =
50,100,150,. 800. Although noisy, these dilferent

curves superimpose satisfactonly. A Gaussian

is
shown for companson in

thicker fine (see Fig 3).

large kurtosis, corresponding to a rescaled fourth moment larger than the Gaussian value 3, is

observed for small time delays).

Tuming now to the European call option problem for such a process, one can perform the

same calculation as above, although the presence of correlations slightly complicates the matter.

As for the uncorrelated case, we start agam from equation il ). The novel feature comes from the

fact that one can show that, even m the case
(~~

=
0, (ç$(x, t)~~ is no more vanishing. It is

dt dt

given by /~ dt'~~~l'~ )(2rV(t))~~/~ ~~'
dz

~~~~'~~
exp -[

~~
]. Hence, holding a certain

o+
dt'

_~

ôx 2V(t)
~

portfolio of correlated shares leads to a non-zeTo average gain (or loss) Çj e dt(ç$(x, t)
)

).
t

The price C~ of the option on the correlated stock prices is thus given by Cc
=

C Çj, where C is

still given by equation (2). The price of the option thus depends on the optimal strategy, to be

determined through the minimization of the risk. After manipulations of Gaussian integrals,

we obtain an integral equation determming the optimal strategy ç$*
ix, t), or more precisely its
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Fig. 3. Average of the histograms plotted in figure 3 over T, both for the FTSE and CAC (the
MATIF gives similar results). We have shown here the logarithm of this average as a

function of y~,
which should be a

straight line for Gaussian distributions.

cc

Fourier transform #* là, t)
=

dxe~~~#* ix, t). This equation has the following form:Îm

/~ dt' /~ dÀ'#*(À', t')K(À, t, À', t')
=

F(À, t) H(À, t)C~ (12)
o -cc

where the kernel K and the functions F, H are given in Appendix 2. Let us note that solving
this equation requires to invert K and to Fourier transform back to obtain #* ix, t), with Çj.
(and thus C~) determined self-consistently. Such a procedure con be implemented numerically

once
V(r) is determined, and would be rather important for long term options, where the elfect

of correlations becomes crucial (see Figs. la, b).

2,3 RARE EVENTS AND LÉVY PROCESSES. There might be interesting cases where the

fluctuations are so strong that the notion of variance (or even average) loses its meaning at

least formally. This is the case of Lévy processes, which have been argued by many authors

[24] to be adequate models for short enough time lags, when the kurtosis is large. Suppose
then that the probability distribution of the stock price x at time T is given by:

Pjz,Tjzo,o)
=

~

L~
l~ j~)

j13)
IZT)? IZT)?

where ~t < 2 is the characteristic exponent of the Lévy process, L~(u) the corresponding Lévy
distribution and Z the generalization of the 'volatility', which one might colt 'hypervolatility':

(ZT)) is the typical excursion of the share price dunng time T, just as
/fi in the case of an

uncorrelated Brownian process. Note that L~(u) decays, for
u - cc, as

[f
,

where C~ is
u H

a ~t-dependent number. (cf., e-g. [25] ). It is interesting to discuss the option pricing formula,

equation (2), in the limit xc xn »
(ZT)à. One finds:

C
=

~~~~ / ~~
(14)

11
~Î

U~
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One must thus distinguish two cases: ~t < 1 and ~t > 1.

i) ~t < 1. In this case, one finds that the integral in equation (14) diverges, and hence

that C
= cc Is the option pricing impossible in that case ? Yes and no: if the process was

really described by a Lévy distribution, even far in the taris, the notion of average would be

meaningless when ~t < 1, and the price of the option should be fixed using a dilferent criterion.

A possibility would be, for example, to demand that a loss (for the bank) greater than a certain

acceptable Ievel £ should have a small probability p to occur, giving:

/dxP
x,T[y,0)

= p ils)
~c+~c

or, using the asymptotic form of L~, C ce
(~~~~)) £ x~ (for small p). However, no

llP
'experimental' process is truly of the Lévy type far in tails: there always exists a cut-off

xmax(T) beyond which the fluctuations are truncated due to a physical, or economical, mech-

anism (see e-g. [25, 26]). In this case, formula (14) becomes well defined, but in the case

considered here (~t < 1), the price of the option is extremely sensitive to the 'rarest events':

~ IÎ~Î~L ~~~~~~~~ ~'

ii) 2 > ~t > 1, corresponding to values of ~t often quoted in the literature [24]. In this case,

equation (14) converges and gives, quite independently of the value of xmax, C
=

~~~~ x)~~
Ill -1)11

However, the critenon (Eq. (5)) fixing the optimal strategy, based on a minimization of the

variance (which is infinite for Lévy processes), is still ill-defined. A possibility would be to

wv
study the tails of the distribution of the wealth variation AW, which decays as

~~)
~

for
H

large losses (AW
-

-cc), with Wo depending on
#(x, t). #* ix, t) would then be determined

so that
~~°

=
0 corresponding to a minimization of the 'catastrophic' risks, since Wo

à#(x, t)
controls the scale of the distribution of fosses, 1-e- their order of magnitude. We leave this

problem for future work.

3. Extension to other types of options. Discussion.

As stated in the introduction, the European option is the simplest type of option. Many more

complicated scenani exist (the only limitation lies in the imagination of the banks and in their

ability to price the new products and devise optimal investment stategies). Let us discuss two

possibilities:

.
Asian options. For technical reasons, it is often not the final value of the stock x(T)

which is taken as a basis, but rather an average value of x(t) over the last few days. We shall

here consider a slightly generalized version of this problem, and define the operator profit as

9(1 xc ), where 9(u) is still u for positive
u and zero otherwise. Î is defined as:

1
=

/
dt Mit) z(t) (16)

~

Mit) is an arbitrary weight function. Asian options correspond to Mit)
=

1/M for t
=

T M +1, T M + 2,.
,

T, and Mit)
=

0 otherwise, but smoother functions could be imagined.
(w(t)

=
1/T would correspond to the option on the mean) This problem can be completely

solved using the method introduced above in the case of an arbitrary correlated Gaussian
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process; the formulae are simpler in the absence of correlations. We find in this case:

~~~°'~~'~~
ÎÎ

~~'
~

~~~
Î[Q~ÎÎÎ~)

~~~~

and

~

njt)
~ ~~'~~

~

j2Drjjn2jjT) qp)

~
Î~ ~~'~~~ lÎDjt~'fl~ ~

D[ÎÎ~](T) ~t~
~~~~

~ (T)

where we have introduced the notation Rit) e

/ w(t')dt' and iii (t) e

/ dt'fit'), and taken
~ ~

the origin of share prices at xo in equation (18). Since Rit) < 1, we find from equation (17)
that Asian options are less costly than European ones

(which correspond to w(t)
=

à(t-T) and

Rit
=

1). The residual risk is still given by equation (9). Note that since the Gaussian and log-

Brownian models (see Appendix 1) coincide in the limit
~~~~ ~~~~

< l,1-e- aT < À@ < 1,
x(0)

with the identification D e
ax(, the calculations presented here could be useful to check some

results obtained within the log~Brownian model [27].

.
American options, A more complicated problem arises when one considers 'Amencan'

options. In this case, the operator may exercise his option at any time between t
=

0 and

t
=

T. Even the price of the option C is diilicult to determine since one first has to know

what the operator will actually do. The only 'easy' result is to show [13] that the American

option price is at least larger than the European option price, since the 'optimal' strategy for

the operator, in the sense of leading to the largest average profit, cannot be worse than just
waiting until 'matunty' t

=
T. An interesting way to attack this problem is to consider what

we shall call 'double-decker' options, which can be exercized either at time Ti and price z~i

or at time T2 > Ti and price z~2. Let us colt f(zi the probability that the operator decides

to exercize his option at time Ti> knowing that the stock has reached xi It is then a simple
matter to show that the expected gain of the operator is given by:

C(zo> z~2, T2) +
/

dziP(zi> Ti(zo> 0) f(zi)(zi z~i C(zi> z~2> T2 Ti)] (19)
~

where C is the European call option price discussed above (Eq. (2)). The optimal strategy
f(zi) is:

jj l for xi > z~i + C(zi> z~2> T2 Ti)
j~~~~~ 0 for xi < z~i + C(zi> z~2> T2 Ti)

since this ensures that only the positive contributions of the integrand are kept in the integral in

equation (19). Let us first discuss the usual 'pre-Amencan' option case where x~i = zc2 = xc.

Since c(zo>z~,T) + (xc zo) > 0 for all finite xc, one has f(zi) + 0: the optimal strat-

egy is to exercize the option at matunty, which thus becomes de facto a European option.
Extending the argument to a continuous set of choices at the same striking price, 1-e- to

the Amencan option, we thus find that its rational price is the same as that for a Eurc-

pean option [13, 11]. This result is somewhat non intuitive and paradoxical: giving more

freedom does not increase the average gain In fact, the dilference betwen American and
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European options lies in the probability distribution of gains. One cari for instance show that

the probability of a strickly positive gain (for the buyer) in the 'double-decker' case is given
~ci ~c2

by dziP(zi>Ti(zo> 0) dz2P(z2>T2(zi> Ti) which is greater than or equal to theÎcc Îm
~c2

probability of positive gain in the European case, given by 1 dz2P(z2> T2(zo, 0). ThisÎm
rationalizes the expectation that American options are more 'attractive' than European options

one gains more often (but smaller amounts such that the average gain is Iess).

A much more interesting situation occurs where the exercice price is not constant, more

precisely, when zci < zc2. In that case, the equation z* zci =
C(z*,z~2>T2 Ti) has a

non trivial solution z*(zci>zc2>T2 Ti)> and the option is exercized prematurely whenever

xi > z*. This leads to an increased expected gain for the operator, and thus, correspondingly,

an increase in the option price which can be explicitly computed by replacing z~i with z* and

f(zi) with in equation (19). Once z* is known, the optimal strategy for the bank in the

sense, as above, of mmimizing the risk eau also be obtained. This fine of thought may of

course be generalized to 'Treble-Decker' or 'p-Decker' options, with an arbitrary sequence of

exercice prices z~i,
...>

z~p, which could be fixed, e-g-, by the operator himself. This could be

an interesting new family of financial products.

.
Let us finally tum to a slightly dilferent theme, which is the inclusion of the 'market

friction', in other words the fact that trading by itself induces costs. A realistij way to model

this is to add to equation il ), in the case of European options, a term like -io dt[
~~~~'

~~

ôt

ii MIT). MIT) is the total number of operations, 1-e- times when
~~

# 0. These terms mean
dt

that any operation on the stock (buying
or selling) costs a certain fraction io of the transaction

plus a fixed price ii If the time interval between trading is r, the order of magnitude of these

transaction costs is:

~l'fo#f+'fi) 121)

showmg that, not unexpectedly, the ii term dominates for small
r.

On the other hand, as

we have shown in section 2, the residual risk for a Brownian or Log-Brownian process grows
proportionally to r

itself (Eq. Ill)). Hence, the extra cost of risk + transactions Ieads to a

modified option puce:

C
-

C +11
~

+
)P(1- P) (22)

showing that an optimal trading time r* appears, which Ieads to a minimized extra cost AC.

In order of magnitude, we find:

~,2~n2 1/3

~~
~ ÎDJ'jÎ J')Î ~~~~

and

AC m
[4P(1 P)iiDT]~/~ (24)

Taking typically D m
xl 10~~ per day (that is 1 per cent variation per day of the stock value

zo), ii " zo 10~~, T
=

100 days and P
=

1/2, we find r* t 9 days and AC
=

2.2 x
10~~zo.
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4. Conclusion.

Using the Ianguage of physicists, we have analyzed the option pricing problem, which con-

stitutes the cornerstone of the modem theory of finance and more precisely of the general
problem of the evaluation of risks associated with market exchanges or human activity. We

have introduced a simple and powerful formalism which has allowed us to solve the pricing
problem for a large class of stochastic processes, such as

ARCH, Lévy and correlated Gaussian

processes. Dur main result is the introduction of the concept of an optimal strategy in the

sense of minimization of the risk as a function of portfolio. The remarkable result, that the

nsk may be made to vanish for particular continuous 'quasi-Gaussian' stochastic processes,
which includes Black and Scholes Iog-Brownian model, is shown to be wrong for the case of

more general stochastic processes. In the presence of very large deviations such as in Lévy

processes, we have discussed new cnteria for rationaly fixing the option prices. We have also

applied our method to other types of options, 'Asian', 'American', as well as to novel ones,

'double-decker'... Many other options exist or can be invented, whose valuation and underly-
ing porfolio strategy are amenable within our formalism. Exarnples which wiII be presented

elsewhere comprise so-called explosive options ("caps", "floors", "collars". .), options on the

maximum or options m
which the weight w(t) is determined in real time... Furthermore, the

idea of risk mimmization could Iead to interesting numerical developments using Monte-Carlo

methods and simulated annealing for cases not amenable to analytical treatments.

Much remams to be done in order to understand and model the fuII complexity of financial

markets and Iiabilities. However, in accord to the standard trend in the mathematical theory
of finance, a theory of options is a necessary first step before generalizing to more complex
financial products, generally shown or believed to be combinations of options [12]. The theory

of options is thus deeply Iinked with the branch of finance, called contingent-claim analysis,
whose applications range from the pncing of complex financial securities to the evaluation of

corporate capital budgeting and strategic decisions. Finally, it is often claimed that the trading
of options, 1-e- insuTance pTemi~tm, contribute to the stability of markets, their eiliciency and

Iiquidity.
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Appendix 1.

The Black-Scholes results.

Here, we summarize the seminal result obtained by Black and Scholes for the option pricing
problem and the determination of the portfolio strategy that the bank must follow. The

fundamental idea underlying their treatment is that a smtable strategy for the bank should

make the nsk vanish. Expressing this condition using Ito stochastic calculus, they obtain in the

sonne token from the solution of a Fokker-Planck equation the option price and the strategy.
Recall that z(t) denotes the value of the underlying share of stock at time t. Furthermore,

we consider the serres
(z(t))i=o,T

as a stochastic process, descnbed by a certain probability

>OURNAL DE PHYSIQUE i T 4 N' 6 ]UNE 1004 ~~
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density FIT, t[y,t'), giving that the value of
z at t, knowing that it was y at t' < t, occurs

(within dz) with probability FIT, t[y, t')dz.
The log-Brownian model studied by Black and Scholes is the most used in the mathemat-

ical finance literature [12]: it assumes that interest rates are independent random Gaussian

variables. As a consequence, the share value z(t) is distributed according to a log-normal law
:

,
1 [log(z/y) (m a/2)(t t')]~

~~~~~'~~~'~
z

2ra(t t')
~~~ 2a(t t')

~~~~

where m is the risk free interest rate, which in the following will be set to zero for simplicity
[18]. a is called the'volatility' Ii.e. "diffusion coefficient" of the interest rate) [28]. With this

notation, the results of Black and Scholes are as follows. If one denotes C(zo> z~, T) the price
of the option (where zo + z(t

=
0) and z~ is the striking price) the 'Black-Scholes' formulae

can be written as
ils]

cc

C(zo> zc,T)
=

/ dz'(z' zc)ABS(z',T[zo> 0) (A2)
~~

This expression (A2) can be shown to be equivalent to

cc

C(zo xc, T)
=

/
dxR(x, xo T) (A3)

~~

cc

using the repartition function Riz, xo> T)
=

dx'lbs lx', T[xo, 0). Using the Log-Brownian
Î

model (Al) in equation (A3) yields the most often quoted form of the Black-Scholes pricing
formula. Note that when the relative price fluctuations of the underlying stock are small, 1-e-

~ ~°
< l, or aT < Àà < 1, the log-Brownian model coincides to leading order with

xo
the Brownian model discussed in the main text (see Eq. (4)), with the identification D a

az(.
Black and Scholes give at the same time the number #* ix, t) of shares per emitted option

that the bank must possess at time t if the observed price is z:

1* ix, t)
=

) /°' dxtjx' xc)p~s jx', Tjx, t) +

~~i~> j> ~'
~~ jA4)

(we have used the stationarity of the process, 1-e- the fact that only t t' enters expression
(Al)).

The argument of Black-Scholes and subsequent authors il1, 15, 16] is the following (although
these authors use a dilferent language): if the bank has, at time t, #(z, t) shares, then the true

variation of its total wealth W (shares + other assets) between t and t + dt is only due to

the fluctuations of the share price, 1-e-:
~

+ ç$*(z,t)). (Note that the term ~~~~~'~~z
t t dt

describes conversion of shares into other assets or the reverse, but not a real change of wealth).
Hence the variation of wealth due to trading between t

=
0 and t

=
T is, according to equation

(A4):

and thus, taking into accourt the initial amount c(zo> z~,T) paid by the operator, the extra

wealth available to the bank at t
=

T is simply AW + C(xo, xc, T)
=

C(x(T), xc, 0).
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From the definition (A2) of the function C(xo> x~, T), C(x(T), xc, 0)
=

z(T) xc if z(T) > xc

and zero otherwise (we have used the property ABS lx, T[y, T)
=

à(z-y)). Hence equations (A4,
AS) mean that foT ail Tealisations of the process (z(t)) land not only on averagel), the wealth

available to the bank exactly compensates the fosses incurred if the operator makes a profit
and thus the risk is zero. In other words, in this idealized market situation, the possession of

the portfolio ç$* ix, t) given by equation (A4) is completely equivalent to the possession of the

option.

There is however a subtlety in the sequence of transformations m equation (AS ), which would

certainly be valid if the series (z(t))
were suiliciently 'smooth'. If, as is the case in reality,

(z(t)) jumps discontinuously for certain times tz, then the meaning of the integrals must be

specified more carefully. Since the strategy #*(z,t) ~ust be determined befoTe land net si-

multaneously to) the price variation, the equality dt~~~~'~~ ~~
=

f(z(T),T) f(zo> 0)
ôz dt

(where f is an arbitrary function) does net hold in general there is a correction term (called
the Ito correction) [20]. For Log-Brownian processes however las well as for more general
'quasi-Brownian' processes),

one can show that in fact C(z, z~, t) given by equation (A2) obeys

a diffusion equation ~~~~'j'~ ~~
=

~~~~
~~~~'/~'~ ~~ This is easily verified using

,

t 2, ôz

the fact that ~~~~~j'~~~'~~ = ~~~~~j'(~~'~~ This ensures that the Ito correction van-
z z

ishes and that equation (AS) is correct. This was indeed the very condition used by Black and

Scholes to fix C(zo> z~, T)!

The derivation of these results in the framework of stochastic calculus is rigorous and well-

established [12]. However, it seems strange and counter-intuitive. Indeed, the notion of zero

risk is completely orthogonal to the intuition developed in the study of stochastic processes in

physics to be able to transform a stochastic process into something certain sounds strange
Our initial naive intuition was in fact that this result could be wrong and could have resulted

from the use of the wrong stochastic calculus prescription (Ito or Stratonovitch) [21, 22]
tantamount to an incorrect discretized version of the problem which can lead to totally

erroneous conclusions.

Dur dilferent approach exposed in the main text in fact conforts these results, albeit in a more

transparent way. Furthermore, we show how the notion of zero risk con be straightforwardly
generalized to the concept of a minimization of the risk, m

order to encompass more general
stochastic processes and also dilferent types of options.

Appendix 2.

Formulae for K, H and F.

We give here, for completeness, the expressions of the kemel K and the functions F,H intrc-

duced in the case of correlated Brownian processes. These results were obtained by using stan-

dard properties of faussiaj integrals. Let us first introduce the correlation function C(t'- t")

such that Vit) +

/
dt'

/ dt"C(t' t") and define the function fl as:

o o

~l ~2
fl(ti> t2)

=
dt' dt"C(t' t") (Bl)

Î Î
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~ j~i z~)
Then one h"'

F(À, t)
"

)Î
Î~ ~~ h

x exp

~
~ ~j ~~

jÀ~jfl~ jT, t) fljt, t)fljT, T)) + 2iÀx'fljT, t) x'~ jj jB2)

HjÀ, t)
=

iÀj/~ dt'cjt t')j exp
~~flj~'~~

jB3)

and
, , , ,

~~~'~'~" ~'~ ~~
~Î~

~~
~~Î~~ ~ ~'~

~Ît~
~~ÎÎ

,

ôfljt, t') ôfl(t, t') ô~fllt> t')
+2ÀÀ

~ ôp ôtât'

x exp [À~fl(t, t) + À'~ fl(t', t') + 2ÀÀ'fi(t, t')] (84)
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