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Abstract. Using the adiabatic switching of interactions, we establish
a

condition for the

existence of electromc quasiparticles in a Luttinger liquid. It involves
a

characteristic interaction

strength proportional tu the inverse square root of the system length. An investigation of

the exact energy level separation probability distribution shows that this interaction scale aise

corresponds tu a cross-over from the
non

interacting behaviour tu a rather typical
case

for

integrable systems, namely an
exponential distribution. The level spacing statistics of

a spm
1/2,

one branch Luttinger model are aise analyzed~ as well as the level statistics of a two coupled
chain model.

The field of strongly correlated electron systems has recently stimulated interesting discus-

sions which are sometimes challenging some more traditional ideas on the many body problem.
For instance, Anderson has proposed that the low energy properties of a two dimensional Hub-

bard model are not properly described by a Fermi liquid theory [Ii. In a recent paper [2], he

emphasizes that this question requires a non-perturbative treatment~ and a careful considera-

tion of boundary conditions. As a consequence of the diiliculty of the problem, much effort has

been recently dedicated to numerical investigations either with Monte Carlo methods or exact

diagonalizations [3]. However, the available sizes remain quite small, and the interpretation
of these results is often delicate. A rather dilferent approach has been proposed [4] recently
with the hope to develop new tools for extracting more information from finite systems. These

studies have shown that for a large dass of low dimensionnai strongly correlated systems, the

energy levels exhibit statistical properties rather well described by random matrix theory. For

instance, a regime of energy level repulsion is dearly seen in most investigated cases, with the

exception of integrable models such as the nearest neighbor or the 1/r~ interaction Heisenberg

spin chain. Such a behavior has been extensively discussed in the context of quantum chaos.

More precisely~ it has been venfied that many time reversai symmetrical dassically chactic

systems generate a spectrum in good agreement with the Gaussian Orthogonal ensemble pre-

dictions [5]. By contrast, simple integrable systems yield in general uncorrelated energy levels

and the usual exponential distribution for energy level spacings [6].
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In this paper, we are investigating some possible connections between simple physical proper-
ties of an interacting Fermi system, such as the existence of long lived electronic quasipartides
and the energy level distribution. Intuitively, if the energy levels of the interacting system keep

a simple one-to-one correspondence with those of the non-interacting system, we expect on the

one hand Fermi Liquid Theory to be valid and on the other hard the statistical properties of

the spectrum to remain qualitatively similar
as for the free electron case. The interpretation of

random matrix behaviour is not straightforward. It may simply indicate that a model is non

integrable. For a normal Fermi Liquid, electronic quasiparticles are expected only at low en-

ergies compared to the Fermi energy. Furthermore, already for the partide-hole phase spaces,
interactions induce new collective modes, such as the zero sound, and the idea of a one-to-one

correspondence with the non interacting gas does not hold for the whole spectrum. Clearly, it

would be very interesting to see if the spectrum of a normal Fermi Liquid exhibits some features

which would distinguish it from a random matrix Harniltonian. However, this would likely re-

quire an intensive numerical effort (since best candidates would be at least two-dimensional

systems). For the sake of simplicity, and the motivation of doing analytical calculations, in

this paper we have concentrated on a one-dimensional model, namely the Luttinger model [7],
which is iutegrable at auy coupliug strength. Interestingly, this feature froids for auy system
length [8]. Furthermore, it provides a good example of a non-Fermi liquid, which cou be viewed

as a non-translation invariaut fixed point for many interactiug systems m one dimension.

This paper is organized as follows. A first part iuvestigates the condition for the existence of

electronic quasiparticles, using the adiabatic generation of eigenstates. An existence condition

is established~ from the combined requirement of having a negligible generation of non adiabatic

components and absence of decay. This criterion is satisfied if the interaction strength is less

thon a constant divided by the square root of the system length. As expected, no quasipartides

are found for an infinite system at any finite value of the interaction parameter. This result is

also rederived from a simple a nalysis of the single partide Green function for a limite system.
The second part is devoted to the study of the level spacing distribution as the interaction

is gradually increased. We show that the typical interaction scale locating the departure
from the highly degenerate non interacting system towards a more generic integrable model

with a Poisson distribution is the saine as the previous one. So, for this simple situation,
noticeable change in the energy level distribution is reflected by the disappearance of electromc

quasipartides. Then, the last two sections of this paper are dedicated to variants of this model,
namely in the spm 1/2

case and forward scattering only, for both one and two coupled one-

dimensional systems. A brief conclusion summarizes our results.

1. Adiabatic switching on of interactions.

A formol way to generate quasiparticles in an interacting Fermi liquid is to apply the Landau

switching on of interaction procedure, namely to start from a free partide added above the

Fermi sea, aud to switch on interactions adiabatically. Trie correspouding time dependeut
Hamiltonian is

H
=

Ho + voeEt, (1)

where trie interaction term Vo is switched with a rate e.

Provided it is successful, this procedure establishes a one to one correspondence between trie

free gas excitations, and trie dressed excitations of trie Fermi liquid, namely, trie quasipartides.
For a Fermi liquid~ trie validity condition of this procedure is [9]

T(ek) < e < ek, (2)
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where ek is trie energy of trie quasiparticule, with respect to trie Fermi surface, and T(ek) is trie

decay rate of trie quasiparticule. For a normal Fermi liquid, one con show [9] that r(ek)
~Î

e(.
At small energies, T(ek) < ek, so that it is possible to choose a rate e to perform trie switching

on procedure.
Trie atm of this section is to investigate under which conditions trie switching on procedure

is valid in a one-dimensional Luttinger liquid. We shall henceforth exhibit an inequality similar

to equation (2) for trie rate e in trie case of a Luttinger liquid.

1.1 INTRODUCTION. We first wish to sum up some results conceming trie formalism devel-

oped in [8]. This will also permit us to fix trie notation which shall be used in trie rest of trie

paper.

Trie fermions are on a ring of perimeter L, with periodic boundary conditions, so that trie

wave vectors are quantized (k
=

fn, with n an integer).
As we treat only low energy properties of a spinless, one dimensional Fermi gas, the curvature

of trie dispersion relation may be neglected. Trie two linear branches in the dispersion relation

emerging from each extremity of the Fermi surface are extended to arbitrary energies. This

linearized model is the Luttinger gas model~ whose Hamiltonian is

H°
= i~F

£(pk kF)
: c)~ckp

.,

(3)

kp

where i~F is trie Fermi velocity and p =
+1 or -1 labels trie branch (right

or
left). We shall

also use trie real space field #((x) associated with trie right (left) free fermions. Furthermore,

c(~ is trie Fourier transform of #((x)

L/2

c(~ =

L~~/~ #((x)e~~~dx. (4)ÎL/2

Notice that trie sign of trie phase factor is not arbitrary, but is chosen such as right moving
fermions with a positive wave vector propagate to trie right.

Because of trie presence of an infinite number of fermions in trie ground state, the density
operators

+ (5)PqP "

£
~k+~,P~k>P

~

have anomalous commutation relations (Schwinger terms)

ip~p,p-~,p,i
=

)~ôpp,ôqq;
(6)

They may consequently be used to build a set of boson creators aj (q # 0). To handle the

real space bosonic field, one needs to define

~P~x~
Pi

NF ii ~~P~)~
)~/~e~~~a~.

~7)

The q =
0 modes correspond to charge and current excitations. Their algebra involves the

umtary ladder operators Up constructed in [8]. They oct only in trie q =
0 sector, and increase

by one trie charge on trie p branch. Trie complete form of trie bosomc fields, mduding trie

q =
0 modes, is

Ùp(x)
= àp + 4lp(x) + 4l((x), (8)



740 JOURNAL DE PHYSIQUE I N°5

where àp is trie phase conjugate to Np.
We shall also use trie important relation to pass from a real space boson description to a real

space fermion description

~y+(~) j~-1/2~-zpkf~,~-zô~(~) (~)
p

j~-1/2 ~-zpkf~~-z~((~)~f ~-z~~(~)
P

Expressed on this new basis~ trie free hamiltonian becomes

H°
= iJF

£ (q(a)aq + iJF)(NÎ + NI), (10)

q#o

where Na (NL) denote the number of right (left) moving fermions added above trie vacuum

state. In terms of charge N
=

Na + NL aud curreut J
=

NR NL variables, trie euergy of trie

charge aud current excitations is i~F
) (N~ + J~).

2
Note that trie action of trie boson creation operators and of trie ladder operators on trie

ground state generates a basis of trie Hilbert space. Trie completeness may be shown [8] by

companng trie generating functions of trie degeneracies ii-e-, trie finite temperature partition
functions) for both trie free electron basis and trie boson basis. Trie notation for trie kets of

trie second basis is
j~+~nq

llNPl, l~ql)
"

fl (UP )~~ fl
j~ §~i /2

loi (~~)

P ~#o ~'

We now briefly describe the formalism to deal with interactions. The term for two-partide
interactions is wntten as

H~
=

) ~j v~PqpP-~-p. (12)

Fg

For simplicity, our treatment does not indude interactions between fermions lying on trie

same side of the Fermi surface. Only g2 interactions are relevant in trie physics we shall develop.
One important feature of trie interactions V~ is that they are eut off for impulsions greater thon

trie inverse of a length scale R. We shall use trie followmg expression of V~ (for q < 1/R)

V~ =
V(1- (qR)"). (~~)

The intensity of trie interactions is pararnetrized by V, and trie shape of V~ is parametrized by

o. Trie bosomzed form of trie interaction Hamiltonian H~ is

H~
=

) (vN i~F)N~ + )(i~
j

i~F)J~ + ~j qvq(a)a+~ + a~a-~) (14)
2

~q>

The total Hamiltonian is diagonalized by trie following Bogoliubov transformation,

b)
=

cosh~2qa) sinh ~2qa-q, (15)

where trie angle
~2~

is defined as

tanin 2~2q =

-'
(16)

i~F

The total Hamiltoman reads, after trie Bogoliubov transformation,
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The elfect of trie interactions is to give a non-zero ground state energy:

Eo
=

£(w~ i~Fq), (18)
2

q

where

~Jq "
(~Î Î~Î)~~~Î~Î. (l~)

Interactions also shift trie energies of trie oscillators from i~F (q( to w~. Finally, charge and

current excitations acquire dilferent velocities UN "
use~~~ and i~ j =

i~se~~. In these relations,

~2
is the infrared limit of

~2~
and trie sound velocity us is related to the infrared limit of the

dispersion relation (19)

us "
lim(u( VI )~/~. (20)
q-o

In the presence of interactions~ one needs to normal order trie field #((x) in terms of b)
bosons~ which leads to trie following expression of 4lp(x)

p
x =

~rx

~
j~ ~

~
~ ~~~?~~ ~°~~ ~~ ~~-?~~ Sinh §Jq)e~~~bq ~~~~

The fermion field reads, in terms of bosons

#((x)
=

L~~/~
exp (- ~j())(sinh~2~)~ )e~~P~F~e~~~Î°lUpe~~~P~4. (22)

q
q>o

1.2 INTERACTION PICTURE FOR c(~[(Np)). As t - -oc, trie system is made up of a right
moving fermion, with an impulsion k added above a Dirac sea [(Np))~ and interactions are

vanishing. This section deals with trie propagation of this state, c(~[(Np)),
as interactions are

switched on.

Trie first step is to decompose trie state c(~[(Np)) into bosonic modes. Trie action of c(~ on

trie vacuum
[(Np)) in trie q =

0 sector is simply to increase by one trie number of right moving
fermions~ by trie action of trie ladder operator UR.

To obtain the action of c(~ in the q # 0 sectors, we first Fourier transform c(~ into the real

space field #((x) for right-moving fermions.

We replace trie expression of #((x) in (9) by its expression (7) in terms of bosonic modes

a(. Trie development of trie exponential e~~~R(~) leads then to an expression of c(~[(Np))
as

a linear combination of bosomc states~ with occupation numbers (nq)

cj~jjNpj)
=

~j à (£
qnq (k (kF + j(2NR

1))))
(23)

(n~j q>o

fl ) ()) ~ llNR+1,NLI,Inql). (24)

q>o q.

~

The delta function insures that only bosonic states with a total impulsion equal to k kF
~ (2NR +1) survive in trie decomposition. As no interaction couples trie two branches, creating

Îright-moving fermion does not generate left moving bosons.

Trie second step is to propagate the bosonic wave packet (23). Instead of dealing with trie

rather complicated superposition (23) of bosonic states~ we focus on trie propagation of a single

JOURNAL DE PHYSIQUE i -T 4 N'5 MAY1~94 2,
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term [(Np),(n~)). We shall use the bosonized form of trie two-body interaction Hamiltonian,
and look for a solution of the time depeudent Schrôdinger equation

~~'i'i~(~~~~~~~~~ "
~intii~Pi>i~qiiint(f). (~~)

The "int" label stands for an interaction picture. Trie initial conditions are

~jfn~ llNpl, Inqllint(t)
=

llNpl, Inq1). (26)

The bosonic states are propagated under the form of a coherent state

1lNpl, Inq llint If)
=

Nlzqltl)e~~'~l"? l~~l fl e~~~?~~l~l~~~1lNpl, Inq Il 1271

The prefactor N(z) normalizes [(Np)~ (n~))ml(t)

~
N(izqi)

=

fl Ii lzql~l ~ (28)

q>o

To determine trie time dependent #((n~),t) and (zq(t)) functions, we first change zq(t) into

~~(t), with z~(t)
=

~~(t)e~"F~~, and then identify both sides of trie Schrôdinger equation. We

obtain first order non linear differential equations for (~~(t)) and #((nq),t):

~])~~ + 2iuFq~1~it)
=

qv~jt)ji ~jjt)) j29)

~~~]j~'~~
=

£(nq
+ 1)qvq(t) Im (~lq(t)). (3°)

In equation (30) we bave discarded a term depending only on N and J, which leads only to a

global phase factor. Translated in terms of # and z~ variables~ trie initial conditions (26) simply

mean that #(t) and z~(t) are vanishing as t - -oo. These differential equations describe trie

propagation of a single component of trie wave packet (30). Trie propagation of trie summation

is obtaiued as a superposition of trie dilfereut compoueuts after propagation

(CtRllNpl))int(t)
=

£ à IL qnq (k (kF + )(2NR +

))))
(31)

irai q>0

~i ù Ill ~ iiNR + i NLI irai)ml(t). (32)

1.3 ADIABATICITY CONDITION. We are looking for a solution of equation (30) which de-

pends only on trie variable
s =

et in the small
e

limit. It is possible since trie exterual time

dependence in equation (30) involves only et. We then assume ~~(s)
=

~((s) + m((s) + O(e~).
Neglecting the O(e~) terms m equation (30) leads to

2iuFq~((s)
=

qV~(s)(1 ~(°l(s)~) (33)

~~~ (s) + 2iuFq~(~l(s)
=

-2qV~(s)~(°l(s)~(~l(s), (34)
ds
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"~~~~~

Vq(s)
=

Vle~. ~~~~

The purely adiabatic solution ~il(s) is given by

~Î(~)
"

fi(~UF +
~)

" l tallll§~~(~). (36)
q

Using this solution in equation (34) gives the first finite e correction

y~(1)(~~ ~
j

VF ~(oj(~~ (~~~
~ 2q(u) V~(s)2) ~

The adiabatic preparation of eigenstates is achieved if [~(~l(s)[e < (~fl(s)[ for s =
0, which

leads to
q(ui~~

VI) ~ ~' ~~~~

This condition depends explicitly on q, and is satisfied for any value of q if

e < 4xuF IL. (39)

Here, we assume a weak coupling, namely [Vq[ < VF- It should be noticed that this Upper
bound on e is a much more restrictive condition than trie corresponding upper bound in equation

(2) for a Fermi liquid. We interpret this as a consequence of trie fact that trie quasiparticules
of trie Landau theory are not exact eigenstates of trie interacting system. They are obtained

m a situation where the thermodynamic limit is taken first, whereas the generation of exact

eigenstates would require e to go to zero as the typical spacing between energy levels. Our

criterion (39) corresponds to this second situation. This choice bas been motivated by trie

possibility to construct the exact eigenstates of a Luttinger liquid.

1.4 ADIABATIC PROPAGATION IN A BOGOLIUBOV suBsPAcE. The atm of this section is to

propagate a
fermion during the switching on procedure. We suppose that trie condition (39)

is satisfied, and we now look for a minoration of
e.

We first search an approximation for trie

evolution operator in trie limit
e < ~£ VF- At trie order e°, the evolution operator U~(0, -oo)

realizes the Bogoliubov transformations of angles (~2(), corresponding to the rotation of trie

basis of eigenstates as interactions were switched on from zero at time t
= -oo to (~2() at time

t
=

0. We shall note U°(0, -oo) trie corresponding part of trie evolution operator. Il° must

bave trie property that

U°a)(U°)~~
=

cosh~2(a) smh ~2(a-q. (40)

This equality is verified if U° bas trie following form

~~
~~P ~£~'Î(~Î~~q ~qa-q)). (41)

q>o

TO see it~ we differentiate each operator U°a~ (U°)~~ and U°a-q (U°)~~ with respect to ~2( and

salve the differential system.
However, at higher orders in e, trie evolution operator must take mto account trie phase factor

#((nq), t), the evolution of which is given by equation (30). Assuming that trie propagation is

adiabatic, we approximate Im ~q(t) in (30) by Im ~((t)

Im ~q(t) ci tanin ~2((s =
et). (42)
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We use expression (35) for V~(t), aud iutegrate trie differeutial equatiou (30) for the phase
factor #((n~)~t). A constant (infinite) phase factor associated with trie propagation of trie

ground state is factored ont. Thus, we obtain trie form of trie evolution operator m trie

adiabatic limit (at order e° for trie operator U°~ and at order Ile for trie phases)

U~ (0, -oo)
=

U° exp1(£ ~~~~~
(~2( )~ ) (43)

~
e

~>

= exp
(£ ~2((a~a+~ aqa-q)) exp

(1£ ~~~~~
(~2()~). (44)

~ ~
c

q> q>

In trie integrations~ we bave assumed that the interactions are weak, and trie phase factors are

given at trie lowest order in ~2(.
Trie rest of this section is devoted to trie calculation and trie interpretation of the overlap

F(x x~)
~

F(x,x')
=

liNpllilR(/)U7~(°> -O°)iii(x)U~(°, -O°)llNpili (45)

between the dressed fermions §l((x)U~(0, -oo)[(Np)), and the bore ones:

§l((z')U/~(0, -oo)[(Np)). To perform it, we use expression (22) of the field for right moving
fermions, and approximation (44) for trie evolution operator. Trie computation is straightfor-
wardi and F(xi x~) is the product of three terms:

1) a phase term

N
= exp (-1(kF +

~ (2NR + 1))(x z~) ), (46)
L

corresponding to trie propagation m the q =
0 sector.

2) A term corresponding to trie left moving basons normal ordering in (45):

Gi
= exP i- j

)(Sin1l~2i)~i (47)

q>

and 3) A term coming from trie nght moving basons normal orderiug

G~(z, z~)
= exp

i~ e-~~~~-~~ -i)1
(48)

~~~

The result for trie overlap is

F(z, z~)
=

NGIG2(z, z~). (49)
L

The Gi term contains the usual physics of the orthogonality catastrophy [loi. If
~2(

is assumed

to be constant between q =
2x IL and q =

1/R, and zero afterwards, and if L > R~ Gi can be

calculated as

~~ ~Î~ ~~~~~ ~~
~~~~

In the weak coupling limit, one con deduce the characteristic interaction scale associated with

the orthogouality catastrophy

~'~' ~~~~~
1R~

~~~
~~~~

TO obtain the energy scale associated with the G2 term, we use relation (13) and approximate
the phase as

~~Î~~~
~ÎÎÎ~ ~ ~ÎÎÎ~ ~~~~~ ~~~~
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The first term is linear m q up to the impulsion scale 1/R. The second term is associated with

smaller impulsion scales. The former are relevant for a quasipartide. If k is the impulsion of

the quasipartide with respect with the Fermi level, the energy scale Vdeph associated with the

dephasing is given by
kvj~

~~ (kR)"
=

2x~ (53)
2uFe

~~~~ ~~

l~eph(~)
/~j~OE

~~~~ ~~~~

The switching-on procedure shall henceforth be successful provided the intensity of interactions

V is much smaller than Vdeph(k), that is

kV~(kR)~
(55)

4xuF
~ ~'

1.5 CoNcLusIoNs. For the switching-on procedure to create a quasipartide, conditions

(39) and (55) have to be simultaneously met, that is

~~~~~~~ < e <
)

VF (56)
TUF

This inequality is satisfied if the following consistency condition is fulfilled

~ ~
47rUF

(ÎIL(kR)a)1/2' (57)

As we shall see, this condition has a simple interpretation on the spectrum of trie Luttinger
model. At this stage, we should again emphasize that the upper bound on e

is more restrictive

than in Landau theory. If we use the more usual condition that the spread in energy is smaller

than trie average density of trie wave packet, equation (56) is replaced by

~lll)~~ « ~ « kUF ~~~~

and trie consistency condition is

~ ~
(/Î)°~~~~~~'

~~~~

The absence of Landau quasiparticules in trie thermodynamic limit is then attributed to or-

thogonality catastrophy, as indicated by equation (51).

1.6 COMPARISON WITH THE GREEN FUNCTION. In this section, we calculate the Green

function for trie finite size Luttinger model

GR(zitjz',t~)
=

-ij(jNpjje~~l~'~~l~fiR(z')e~~~~~'~~l~fij(z)jjNpj)Ùjt'-t) j6~l)

-(z
-

z'; t -
t')j

and reestablish trie consistency condition (57). Note that in equation (60), [(Np) > denotes

an eigenstate of the interacting system.
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To calculate the Green fuuctiou, we use the expression (9) of the field #((z) in terms of

the Bose field, and normal order trie expression (60) of trie Green function with respect to the

bosonic modes b). The computation is straightforward, and the result is

~ ~~~/~ij+uj(2J+1))(t'-t) (~~~
-l ~(kF+K/L)(~'-~)e~L~~~G~(z,tiz',t')

= Z~
~

~~
~ (Siflh §2q~~~ (~~

exp
(£( ~~

)(sinh
~2~

)~e~~~~~'~~)e~~~~l~'~~l )]

~~
Lq

q

ix -
z'j t -

t']à(t t'))

The dispersion in trie frequencies leads to decoherence after a time tk. (k is trie impulsion
of trie quasipartide, with respect to the Fermi level). tk may be estimated in the same way as

we did for Udeph, and one finds

~
~~

21111)OE
~~~~

For a system of size L, the wave packet is stable~ provided it can cross the ring without

decoherence

uftk > L, (63)

that is

~ ~ ~kLÎÎR)" ~~~~~~' (64)

fJp to some numerical dimensionless constants, this criterion is the same as the consistency
condition (57) for trie switching on of interactions.

2. Level statistics of the interacting Luttinger model.

2.1 INTRODUCTION. We first need to find Dut a proper sector of trie Hilbert space, in which

we shall compute trie level statistics. We note HjN the subspace with given current J and

charge N.

In trie free case, trie boson basis of HjN can be organized as follows: consider all trie sets of

occupation numbers (n( ) such as, for ail q, n(
=

0 or
n°

~
=

0. Trie correspondiug states (n( ))

are anmhilated by any pair destruction operator: aqa-q[(n())
=

0. Starting from [(n()), and

creating pairs generates a subspace Hpmrs((n()). A basis of Hpairs((n()) is made up of all trie

states [(n( + pjqj )) with arbitrary occupation numbers for the pairs (pq)q>o. HNJ is trie direct

sum of all trie Hpmrs((n()) subspaces.
The subspaces Hpmrs((n()) remain stable under trie action of trie interaction Hamiltoman

Hi,
SO that they are appropnate to the study of trie level evolution.

We choose N
=

J
=

0 and drap trie euergy term associated with (n(), since we always
handle differences between cousecutives levels. The euergy levels are giveu by

E(jn ))
=

~j2uFqnq(1- (~
)~)~~~ ~~~~

~

~>o
~~
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where we use the expression (13) for Vq.

2.2 DESCRIPTION OF THE ALGORITHMS. In this section and trie next paragraph, we use

reduced units for trie energies and impulsionsi w is an energy divided by ~~uF and q is an
L

impulsion divided by 2ir IL.
Trie degeneracies of trie Luttinger model are given by

g(w)
=

~j à(w ~j qnq). (66)

Irai Q>°

Replacing trie à function by its integral representation leads to

~~"~ ÎÎ~ Î )
1-Î~Q~ ~ ~~~ ~~~~

Let g(~l(w) be trie number of different sets of occupation numbers, having trie property that

w

w =

~j Ini (68)

1=k

Of course, g(~)(w)
=

g(w). Trie integral representation for g(~)(w) reads

~~~~~"~
Î~ Î ) Î~Q~

~ ~~~' ~~~~

Using trie integral representations for g(k)(w), we obtain trie followmg recurrences

g(~l(w)
=

~j g~"1(w v)~ (70)
~k

which allows us to compute g(w) numerically.
With a similar recursion, we may generate all trie states of trie free Luttinger model: trie

states with an energy w are obtained by adding a boson with an impulsion
v on the states with

an energy w v.

As for as the interacting Luttinger model is concemed, we need to generate all trie energy
levels with an energy inferior to a given cut-off wo. Since there are an infinite number of

levels in trie sector under consideration, we need to introduce such a cut-off to compute trie

statistics. We shall then compute trie statistical properties of this set of levels. If a suilicient

number of levels with an energy infenor to wo bas been generated, trie statistical properties

are independent of wo. To generate trie levels, we remark that trie frequencies of trie oscillators

increase with their impulsion. So that we successively fill up trie mdividual oscillator levels,

starting with trie smallest frequencies.

2.3 LEVEL STATISTICS.

2.3.1 Degeneracies of trie free Luttinger mortel. Using trie recursion relation (70), we com-

puted the degeneracies of the first 800 levels of the free Luttinger model. The asymptotic form
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of the density of states may be derived in terms of initial fermions. The partial degeneracies
for n-particules n-hales excitations in a one branch model are

gl"1(W)
=

~j ~j à(W ~j W(k~) ~j W(kl)). (71)

ik,11=~ nik~i=~
n

Îi
iii

The sets (k~) ((k()) are the impulsions of the hales (particules) and are constrained by the

Pauli principle k~ # k~ (k[ # kj) for ail indices1 # j. This sum is approximated by assuming a

constant density of states, neglecting the Pauli exclusion principle, replacing the discrete sum

by an integral

1 W M-Mi
W-1"~+...+W2n-~l

9~"~ (~J) " @
/

~~l
/

dW2
/

dW2nô(~J (~Jl + + W2n) (72)
0 0 0

The multiple integral is readily evaluated and leads to

+m +m 2n-1

~~"~ ~~~~"~

~

(n!)~(2n 1)!' ~~~~

For suiliciently large energies~ the sum may be approximated by its saddle point value, approx-
imately reached for the following value of

n

n~
=

£.
(74)

2

The degeneracy evaluated at n =
n~ is

~

~3 /4 1
9~ ~~~

'~ (~~)3/2 ~5 /4 ~~~
~'

~~~~

We computed the summation (73) in order to test the accuracy of the saddle point approxima-
tion~ which is plotted in figure 1. The exact degeneracies of the Luttinger mortel reveal to be

inferior to the saddle point asymptotic form, which is imputed to the exclusion principle (Fig.
1).

2.3.2 Qualitative structure of trie spectrum. The evolution of some energy levels as a func-

tion of the interactions is plotted in figure 2. In this spectrum, we distinguish two regions:
1) No level crossings are present at suiliciently small energies and interactions. The free

Luttiuger model (V
=

0) belongs to this part of the spectrum. In this region, the statistics are

ill defined for they strongly depend on the energy cut-off.

2) If E and V are large enough, level crossings occur, and level statistics are Poisson statistics.

The convergence of the statistics as a function of the energy cut off eo is shown in figure 3. Here,

we emphasize that these level crossings occur because the Luttinger model remains integrable
for any value of the coupling constant.

To charactenze trie separation between these two regions of trie spectrum, trie location of

trie crossings is estimated in trie following way: as trie intensity of interactions V is equal to

zero, trie spectrum is made up of equidistant degenerate levels, separated by an amount of

energy /hE
=

~~
VF As V is turned on, trie degeneracies are lifted. We focus on a single fan

L
~of levels. All trie levels are degenerate if V

=
0, and their energy is E

=
2uFk, where k is trie
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1 o ~ ~$(log g(w) + ~ log fi ~ log 2 + j log 2ir)

1. i

(1)

(2)

1. 05

1

o.95
"''.

o 9

0.55 ~J
5 10 15 20 25 30 ~J

Fig. l. Degeneracies of the free Luttinger model, compared tu trie saddle point approximation.
(logg(w) (log2 + )log27r + )logvJ)ll0 is plotted

as a function of vJ. This function equals

1 for the saddle point approximation. In plot (1)~ g(w) is the exact degeneracy. As expected, the

saddle point approximation overevaluates the degeneracies smce ii takes into account particule-hale
excitations forbidden by the exclusion principle. In plot (2), ail the terms of the summmation (73)

are
taken into account. The saddle point approximation

m
(73) underevaluates the degeneracies~ aud

becomes exact at high energies.

total impulsion of the states. For a given value of V, ail the levels lie between Emin and Emax.

Emir is obtained as ail the quanta are m the smallest energy state (namely q =

~~uF),
so that

L

v2
~

Emin
=

2uFk(1 ~~i~~ )1/~ (76)
u~

Emax corresponds to a state with one quantum m trie highest q =
k state

v2
Ema~

=
2uFk(1 ~)~ )~/~ (77)

u~

As the interaction parameter V increases, trie levels ev.o'vo and trie first crossings occur as the

width of trie fan Emax Emin is of order /hE. This condition defines trie interaction energy

beyond which crossings exist

v~ 7~ )1/2~ (?~)
kL(kR)OE ~'

Via bosonization, the free Luttinger liquid is described as a set of harmomc oscillators with

commensurable frequencies. As interactions are switched on~ the oscillator frequencies vary and
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i~educed energy

14

12 '...

lÙ

""'".
"._

8 ".

4

a

ig. 2. -
Evolution

of
q,

m nits uF27r IL. For the plot to be
eadable~

ail the evels are
nui shown.

ecome
ncommensurable. In [6]~ Berry

and Tabor show that
a with a finite number

of generic
armonic oscillators does not exhibit level

ustering.
It appears that ncreasing trie

number of cillators with
incommensurable

requencies geuerates dusteriug.

2.3.3
Quasi partiale destruction and level spacing statistics. -

The condition (78) separates
two egions of trie spectrum. The same energy

quasiparticule
m a Luttinger liquid~ in the sense

adiabatic
continuation of exact

We have thus shown that the structure of the spectrum of the
finite

size Luttinger iquid

is
related

to trie success or trie failure of adiabatic generation of eigenstates from

nteracting fermion system.

2.3A
Limit R = 0. - Consider

trie
case

of trie o-branch Luttinger liquid with 1/R

and a constant

their coherence hatever trie
alue e. Trie

decoherence time
tk, given m (62), is

infinite.

Trie (55) associated with trie
ephasings is lways verified

hatever trie value of e.
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Fig. 3. Evolution of the level spacing statistic
as a

fuuction of the cut-off eo. q7q is a decreasiug
hnear function, such as qJq=o #

0.25 and qJ262«/L "
0. The statistics converge slowly to a

Poissoman

distribution ("expo"). The statistics are plotted for eo equal to 5, 91 13. The number of levels taken

into account in the statistics
is

4196, 97438, 1048214, respectively.

The only remaining restriction for the switching-on procedure to be successful is thus

e <
~ / (79)

The level statistics are singular in this limit. The degeneracies of the fan of levels are never

lifted, whatever the intensity of interactions V. The degenerate levels depend on V in the

following way

E((nq))
=

~j 2uFqnq(1
~

)~)~/~ (80)

~
VF

q>

However, we note that trie overlap between the eigenstate thus constructed and trie state

obtained from the action of trie bare electron operator on trie interacting ground state is

vamshing according to equation (50)
smce R

=
0.

3. Level spacing statistics for a
spin 1/2, one branch Luttinger model.

The rest of trie article is devoted to trie study of some models denved from trie two branch,
spinless Luttinger liqmd model. We begin with trie one-branch Luttinger modeli with spin 1/21
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and a g4 interaction. Trie kinetic energy term is

H°
=

~juF(k kF) c)~ck«
.,

(81)

ka

where trie label
a

denotes trie spin comportent along trie z axis. Trie interaction is given by

H~
=

) ~j Pq«P$-« (82)

qa

The usual spin and charge combinations

Cl
" (()~~~(Pq1 + Pqi) (83)

SI
" ()~~~(Pq1 Pqi)> (84)

bave bosonic commutation relations, and trie total Hamiltonian H
=

H° + H4 is diagonal in

terms of spin and charge variables:

H
= UC

~j qC/Cq + us
~j qS/Sq + VF

)(NÎ
+ NI) (85)

q>o q>o

The charge and spm velocities are: uc " VF + g4/2x and us = VF g4/2x.
Trie g4 interaction is switched on adiabatically:

94(t)
" 91~~~ (86)

The evolution operator is

U~ (0, -oo)
= exp (-1 £ ~~ q(ncq nsq Ii (87)

~

1e

q>

where ncq "
C~Cq and nsq "

S/Sq. Trie overlap

F(z, z')
=

liNpilili(z')Ui~(°, -O°)ill(z)U~(°, -O°)llNpi) (88)

is found to be equal to

F(z, zt)
= je~if(2Ni+ii+kfi(~-~~i ~~ ,~

(89)
(1- ~~Î (~~*~*))Î/2 (1- ~~Î(~~~'+*))l/2

Spin-charge separation is effective if trie real space separation is of order
~~

,

which leads to
1e

trie energy scale for spin charge decoupling

91 ~> (~°)

where k is trie impulsion of trie quasiparticle with respect to trie Fermi surface. Trie switching-

on procedure is sucessful provided g( < g(. Since trie transformation (83) is independent of

trie interactions, there is no Upper limit for trie rate of switching on e.

In the same way as for the Luttinger liquid, trie sector of trie Hilbert space has to remain

stable under the action of the evolutîon operator (87). Since U~(0, -oo) is diagonal in terms of
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charge and spin variables, the relevant sector has a given impulsion k. This sector corresponds

to a single fan of levels, with no crossings, except for g4 =
0, leading to smgular statistics. One

may compute the statistics in trie whole Hilbert space, namely to superpose trie uncorrelated

blocks with different impulsions. Trie statistics still remain singular. Trie degeneracies of some

levels are not lifted for any value of trie interaction g4. These singularities correspond to re-

maining degeneracies as trie impulsions of trie charge and spin part are specified independently,
and are remimscent of the degeneracies of trie free Luttinger model. Trie spectrum exhibits

further singularities at non-zero level spacings, due to the linear dependence of trie levels m

g41 trie statistics do not become Poissonian even though uncorrelated sectors are superposed.
Note that many degeneracies~ and trie singulanties at non-zero level spacings are expected to

disappear if g4 is not a constant as a function of q. In this more generic case, trie Poisson

statistics is expected.

4. Level spacing statistics for a model of 2 coupled chains.

We now discuss trie level statistics for a mortel of two coupled Luttinger liquids. This model is

solved in il Ii and we first remind some results.

Trie two-chain kinetic energy is given by

H°
= VF

~j(k kF) c)~,ckna
.,

(91)

koEa

where a labels trie chain and
a

the spin. Trie interactions consist of a g4 term

H~
=

) ~j pkaaP(~-«i (92)

kaa

and of a hopping term between trie two chains

H~
=

-t
i

~j Claack-OEa. (93)

kaoE

Only trie case of two coupled one-branch mortels is treated. This is suilicient smce no inter-

action couples right and left fermions. Fabrizio and Parola il Ii were able to diagonalize trie

Hamiltonian H
=

H° +H4 +H~ The excitation spectrum of trie model exhibits four branches:

~P(q)
" llpq (94)

~a(q)
" ~aq (95)

~+(~)
" )(~P + ~a)q +

Î()(~P
~a)q)~ + 4tl (96)

e- (q)
=

(~p + ~«)q (~p ~«)q)2 + 4t( (97)
2 2

The ground state is such that all trie states with a negative energy are occupied, and ail trie

states with a positive energy are empty. We computed trie level statistics for a toy model with

only trie e-(q) branch,
m a sector of given total impulsion q. We study the evolution of trie

statistics as trie dimensionless hopping constant tî
=

~~~
is fixed, and J4

"

~~
varies. The

iruf 2iruF
statistics exhibit a cross-over between two regimes as J4 decreases. This cross-over is controlled
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Fig. 4. Level spacing statistics for the model of two coupled chairs in the regime q( » 1. Only
excitations of the lowest energy branch e-(q) are taken into account~ and the aualysis is restricted to

the lp lh and 2p 2h excitations only~ for parameters equal to: p = 200~ tper
=

2$ g =
0.5~ with

the following notation: p is the total impulsion divided by 2~/L~ tper
=

~~~
and g =

~~
24000

7ruF 27ruF
states were generated. Trie value of trie parameter q( is 100.

by trie same length scale (
=

~~ ~~
as in iii]. If q( < 1, trie statistics are singular, with a4ti

Sharp peak at s =
0. In this regime~ trie dispersion relation e-(q) may be approximated as

f-(q)
" j(llP +11«)q 2ti (98)

The linear q dependence induces high degeneracies m trie excitation spectrum, leading to a

sharp peak for zero separation.
In the opposite regime (q( » 1), the statistics are Poissonian. The corresponding spectrum

is plotted in figure 4. In this case, the curvature of the dispersion relation e-(q) is no longer
negligible~ and individual fermion levels can no longer be considered as equidistant.

Notice that trie cross-over observed here is similar to trie case of trie one-dimensional, one-

branch Luttinger liquid with q-dependent interactions. In both cases, the dispersion relation

is linear as trie interaction parameter is set to zero (corresponding to a highly degenerate spec-

trum)~ and becomes non-linear as interactions are switched on (leading to a random spectrum).
This transition is mdependent of trie bosonic or fermionic nature of the partides. In trie one-

dimensional Luttinger liquid, we dealt with bosons~ and the partides under consideration m
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Fig. 5. Level spacing statistics for the model of two coupled chains in the reg~me qf » 1, with

the four excitation branches. Only lp lh and 2p 2h excitations were taken into account. The

parameters are set to: p =
loi tper

=
loi g =

o-S and q(
=

SD. The number of computed levels is

42692. Among them, 8293 separations are equal to zero. For visibility, the level statistics is cut off for

separations inferior to o,05~ which supresses the large peak ai zero separations.

trie case of trie two coupled chain8 are fermionic.

What happens if we now take trie four branches into account? In trie regime q( > 1, we

observe a peak for s =
0, coexisting with a Poissonian distribution for non zero separations (see

Fig. 5~ where the peak is suppressed for darity). Trie peak for s =
0 is due to the degeneracies

m the excitation spectrum, induced by the presence of the two linear branches. An exemple
of such degenerate configurations, with 2 partide hole excitations is as follows: the two holes

bave impulsions hi and h2, and belong to trie e- branch. The partides with impulsions pi and

p2 are on trie linear ep branch. Consider another excitation, deduced from trie previous one

as follows: the holes have trie same impulsions (h[
=

hi and h[
=

h2). Trie impulsions of trie

partides are such that pi + p2 =
Pi + pl. Since ail trie particules belong to trie same linear

branch, these configurations are degenerate.

Thus, trie existence of trie two regimes q( > 1 and q( « in trie coupled chains is re-

flected in the statistical properties of the spectrum. To summanze, we have studied a special
dass of models~ since they are integrable for any value of the coupling constant. In general, a

non-interacting fermionic quasipartide can be described as a linear combination of degenerate
eigenstates, which undergo an energy splitting as interactions are switched on. This is respon-

sible for the decay of such a quasipartide state~ and provides a lower bound for the switching
rate e, in the process of adiabatic construction of quasipartides. The same degeneracy lifting
has been found to modify the energy level spacing distribution, from a smgular behaviour for
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a degenerate, non-interacting system~ to a more generic Poisson distribution already observed

in many integrable systems. We should stress that both aspects are non-universal features

of the models. More precisely, they depend on the complete q-dependence of the interaction

functions g~ and g4. By contrast, universal properties such as correlation function exponents
depend only on the q =

0 limit of the couplings. We have seen that the vanishing of the quasi-
partide residue, due to orthogonality catastrophy is also such a universal property, independent

of trie fine structure of trie spectrum and its statistics.

In this paper, we could not address trie question of strongly correlated fermion systems
leading to Gaussian orthogonal ensemble (G.O.E.) statistics. However, trie present study in-

dicates that one of the most interesting questions is whether trie difference between G-O-E- or

Poisson distribution is a universal feature of a low-energy fixed point or not. Our paper bas

been dedicated to fine tumng phenomena within an integrable class of mortels, and trie lack

of universality found here is not surprising. Intuitively, the difference between Poisson and

G-O-E- statistics is much more robust and might still be a way to distinguish between several

physically non equivalent fixed points.
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