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Résumé . — Nous étudions quelques propriétés de transport d’un systéme unidimensionnel dés-
ordonné de longueur finie N. Dans ce systéme, les particules sont soumises & des forces aléatoires
qui résultent & la fois d’un bruit d’origine thermique et d’une force aléatoire gelée F'(z) qui ca-
ractérise le fait que Penvironnement est inhomogéne. On suppose que cette force est distribuée
comme un bruit blanc avec une valeur moyenne non nulle. En présence d’une concentration finie
de particules aux deux extrémités de la chaine, 1l apparait un courant de diffusion stationnaire
J(N) qui dépend de Venvironnement {F(z)}. Nous étudions la distribution de probabilité P(J)
de ce courant. Notre approche s’appuie a la fois sur une méthode fonctionnelle et sur un calcul
de moments. Dans le cas d’un biais non nul, nos résultats constituent une généralisation de ceux
obtenus récemment par Oshanin et al.

Abstract . — We study some transport properties of a one dimensional disordered system
of finite length N. In this system particles are subject to random forces resulting both from
a thermal noise and from a quenched random force F(z) which models the inhomogeneous
medium. The latter is distributed as a white noise with a non zero average bias. Imposing some
fixed concentration of particles at the end points of the chain yields a steady current J(N) which
depends on the environment {F(z)}. The problem of computing the probability distribution
P(J) over the environments is addressed. Our approach is based on a path integral method and
on a moment calculation. In the case of a non zero bias our results generalize those obtained
recently by Oshanin et al.

1. Introduction.

A large amount of work has been devoted to the study of classical diffusion in random media.
Part of the interest in this field comes from the fact that the transport properties in such
systems are very different from those of homogeneous media. In particular it has been shown
that quite generically one expects an anomalous diffusion behaviour to occur [1].

(*) Unité de Recherche des Universités Pans 11 et Pans 6 Associée au CNRS.
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The simplest one dimensional model which gives rise to such anomalous behaviour 1s known
as the Sinai model [2]. In this model, one considers a one dimensional lattice on which, at
integer times, a particle can jump from site n to site n + 1 with probability p,, or from site
n to site n — 1 with probability ¢, = 1 — p,. The p,(n € Z) is a set of independent random
variables distributed according to some probability law p(p) such that

D
<L0g1_’p > =/p(p)Loglfpdp=0
7

< Log” ; ffp > = /p(p) Log? %dp <oo. (1.1)
J

In this case it has been proved that the mean square displacement < x2(t) > grows like (Logt)*
for t — oo.

This problem can also be studied by starting from a continuous model defined by the
Langevin equation

G = %F(x) + () (1.2)

where F(z) is a quenched random force (related to the hopping variables p,) which is usually
taken as a Gaussian white noise

<Flz)>=F,
< F(z)F(z') > — < F(z) > = 06(z — 2') (1.3)

and 7n(t) is a thermal noise randomly chosen at each time such that

n{t) =0
e = #m —ty. (1.4)

The Sinai case corresponds to an average bias F, = 0. Increasing F,, one obtains a succession
of phases [3, 4] which in terms of p = gﬂ, read

1) 0 < u < 1 : anomalous dispersion < z(t) > ~ t#.

2) 1 < g < 2 : one obtains a finite velocity, V = 70(1 - %), but the diffusion remains

anomalous o
<z(t)> -Vi~t 2 (1.5)

3) p > 2, one recovers a normal diffusion with a finite diffusion constant

p—1
D= Dou — (1.6)
where D, = kT /vy = 1/(B~) is the diffusion constant of the pure system.

A quantitative understanding of these phases has been obtained by Bouchaud et al. [4].
For a non zero bias F,, it was conjectured that the diffusion process is essentially controlled
by the existence of very high potential barriers that the particle has to overcome by thermal
activation. Assuming that these barriers act as trapping regions between which the motion is
purely convective, one 1s thus led to a simpler picture in which the problem becomes essentially
equivalent at large time to a directed walk among traps.
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The sojourn time 7'(z), which measures the thermal average of the time spent at position z
was identified as

oo £
T(x) =/ d¢ exp —ﬁ/ F(z)dz . (1.7)

In suitable units this random variable is distributed over the environments {F(z)} according

to the law [4]
1

T)= g /T 18

WT) = Frme (1.8)

Similar random variables have been studied in the mathematical [5] as well as in the physical

[6, 7] literature. The occurrence of a power law decay for large T seems to be a rather general

feature, which is related to the anomalous behavior of z(t) through a Tauberian theorem [8].

A similar variable, with however a different physical interpretation, also appears in the study

of transport properties of the Sinai model [9]. Consider a finite chain of length N with some
prescribed concentration of particles at the end points

P(CII = 0, t) = P()
P(x=N,t)=Py . (1.9)
In such a system, for a given environment {F(z)}, there exists a steady current
_ dP  F(z)
J(N) = [ Doz + . P(a:)] ) (1.10)
Taking into account the boundary conditions (1.9), it is given by
_DyRy d
where
N ¢
T(N) = /0 d€ exp —ﬁ/ deF(¢) . (1.12)
0

In the Sinai case < F(z) > =0, it has been shown that the disorder average flux < J(N)} >
has a non Fickian behaviour, namely

1
<JN)> ~ —. 1.13
M)> = o (113)
This result was first obtained by a careful estimation of upper and lower bounds of the current
[10]. More precise results have been recently obtained, in particular the whole distribution ¢(7)
of the random variable 7 (or alternatively of J for the case Py = 0) has been obtained [9]. The
method is based on the evaluation of the moments < 7™ > and on a suitable resummation of
the series giving the generating function
[» o]
_ (-p)
T —
<ePT>=> i
n=0

n

<7t > (1.14)

n

The purpose of this work is to present an alternative derivation of these results by a path
integral technique. A generalisation to the case of a non zero bias is also presented. We will
consider the cases ¢ > 0 and p < 0 since they correspond to different physical situations due
to the choice of the boundary conditions.
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2. The Sinai case.

In this section we study the distribution of the random variable

N ¢
(V) = /0 déexp—B /0 deF(E) (2.1)

when the average bias Fy vanishes. Averaging over the random force, we can construct the
generating function

¢(p, N) = < exp —[pr(N)] >

1 N N 3
= / DF(x) exp - [% / dEF?(6) +p / de exp B f de'F(s’)] (2.2)
0 0 0
From the generating function one can derive the probability distribution (7, N)

é(p, N) = / " e PTy(r, N) dr. (23)

0

It is convenient to rewrite equation (2.2) in terms of the potential

3
v =- [ P e (2.9
One obtains
1 (N (du\? N
som)= [ pu@ew- [ a(§) -p [ aewtsve. @)
U(0)=0 o Jo € 0
This path integral describes the motion of a particle of mass 1/0 moving in the potential

V{U) =pexpBU . (2.6)

The associated Hamiltonian reads
2

=—§'W +pexpBU . (2.7)

Let us denote by ¥ (U) a complete set of eigenstates of H such that
Hyp(U) = Ky (U) . (2.8)
The generating function then reads

¢(p,N) = /_ ak /_m AU (U (0)e N (2.9)

The solutions of (2.8) which vanish at U = 400 are

Ye(U) = NKyiy v (2\/g eﬁU/z) (2.10)
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where NN is a normalization constant which is fixed by the continuum normalization
400
V(U3 (U)dU = §(k — q) (2.11)

and 1/a = 2/(c3?) is a suitable unit of length.

One obtains
Pr(U) = 1/[”“ sinh i/HKzzk,f( \/7eﬁU/2> ) (2.12)

Carrying out the integral over U in equation (2.9) yields the final expression

é(p,N) = 2 / cosh ﬁmk (2\/2) e FaN/gy (2.13)
T Jo 2 a

which is in agreement with equation (16} of [9].
From this expression one can study the behaviour of the probability law (7, N) in the limit
in which the size of the sample is very large

¢, N) o~ \/(127r—NKU (2\/2) . (2.14)

For fixed T the probability law therefore reads

1 1
- - 2.15
N—v oo aﬂ'NTexp aT ( )

¥(r,N)

Since this result does not hold uniformly with respect to 7 this distribution 1s obviously not
normalized. The true behaviour for large 7 is in fact given by the log-normal tail

In®(ar)]. (2.16)

1 1 1
$(r, Ny~ WerNT exP[_4aN

It is however interesting to point out that equation (2.15) that characterizes the tail of the
distribution for 7 — 0 is 1n fact consistent with equation (1.8) in the limit g — O.

3. Functional integration method for the case < F' > # 0.

The quenched random force {F(z)} is now a Gaussian white noise with a non-zero mean

< F(z) > = Fy (3.1)
< F(z)F(z') > —F¢ = ob(z — ') . ’
N ¥ F(y)d
The generating function for 7(N) = / dz e” J5 Fway reads
0

N N ~p [T r@ay
¢(p, N) =< e—pT(N) > = /DF(:II) e—z—l,; fo [F(z)—Fo]zdx—pfo dz e fo (3‘2)
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As 1n the case 4 = 0, we rewrite this path integral over the force {F(z)} as a path integral
over the potential U(z) = — [ F(y)dy

¢(P,N)=/ DU(z) e z«f (§Z+F0) dz—pf dzelfV(®)

3.3
LA £ &9
=e 27 / due = * <ule M0 >

where < ule™V#|0 > is the Green function that we have already encountered in the case y = 0.
Its expansion in terms of a complete set of eigenstates (1) of H gives

U(N)=u

<ule™™Hj0 > = / DU(z) e =Jy de [ () +p U]
U(0)=0
(3.4)
+o00
= [ ak 00 wew) e
From the exp11c1t expression of ¥ (u) one obtains through the change of variables
a9 = =
f
z = i BePus
o
alN 2
e pyk [ dr [P awa p
¢(p,N) = = (a) /0 x1+”/—oo dg e” * ¥ gsinhwqK,4(2z) W(Z\/; (3.5)

2F, . . . ;
where y = 279 is the dimensionless parameter that characterizes the various phases of the
g

problem. (See Ref. [4] for a physical discussion of this parameter).

However, this result, as it stands, is not fully satisfactory for two reasons. First, one cannot
expand the expression of ¢(p, V) into an entire series in p in order to extract the moments of
7(N). Furthermore it is very difficult to study the limit N — co when g > 0.

Let us first consider the case y < 0.

In this case interchanging the two integrations, one obtains

aN 2 . 2
ek up uf2 [Heo —aNgZ . noog p
¢(p, N)= o (E) /_oo dge % ¥ gsinhmy |T —5t+5 K, (2 5/ (3.6)

From which it follows that there is no asymptotic law 1n the limit N — oco. In the case u > 0,
since the interchange of integrations is not allowed, we will use another approach which will be
the subject of the next sections. First we will compute directly the moments < 7™(N) > for
n € N. Besides the fact that these quantities are interesting in themselves, they will enable
us to prove that there is an asymptotic law for g > 0 in the limit N — oo and to find the
expression of this law.

Then we will use these moments to reconstruct the characteristic function. For g < 0 we will
recover the above expression (3.6), but for 4 > 0 we will find a more tractable formula than
(3.5). This will allow us to study how the full distribution (7, N') approaches the asymptotic
law ¥(7) in the limit N — co.
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4. Moments.

We now turn to the derivation of the moments of the random variable 7(N). The moment of
order n reads by definition

< T(N) > = / DF(z) e~ % JLZF@-FRolds ( / dz; e P Jo F“’C‘”) L@

Performing the Gaussian functional integral over the random force F(z) we are left with an
ordinary integral over n varnables

< T™N) > =n!/

0<z1 <z2- Ly <N

(dez) R R ()

For u ¢ N*, we get

n—k
< o™ (N)> = ZeaNk(k m(-1)rkCk (H . uﬂ) (Hk i ) (4.3)

k=0
. In the case p = 0, we recover the result (Oshanin et al.)
- '(n) (="
nen( N — aNk2 n—k )
< aPT(N) > :Z; (-1) F(zn)02n+ — (4.4)
. For p ¢ N* making use of the basic property of T function [I'(z + 1) = 2T'(z)]
- - - Lk —u)
non( N — aNk(k—p) —1\»kck _ . .
<a"r™(N) > ,;,e A G s sy (4.5)

We now consider the limit NV — co in the case p > 0.
From (4.5) one finds

) { Is) f p<n
<a™™(N)> — IO
— < if >n
T'(w) #

The asymptotic moments can thus be rewritten as
< a™1™(00) >= 5 / dt t#~"~1 e~tdt

where we have used the integral representation of I" function for positive argument.
The change of variables ¢t = 1/(ar) gives the asymptotic probability density of 7(N) in the
limit N — oo

ptl
YN = Yelr) = s (i) e (46)
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The corresponding generating function therefore reads

<ePrle) 5 = / dr e P 4o (7)
0

2 ©/2
= (a) o (2@ (4.7)
[ I+p
I NG

N|TQ+i—-p) TA+i+p)

It is interesting to note that the first non integer power in this expansion 1s (p/a)”. This
implies that the derivative of order n at p = 0 is finite for n < g and infinite for » > pu. This
shows explicitly at the level of the generating function why only the moments with n < i are
finite.

5. Construction of the generating function from the moments.

For a finite chain of length N, all the moments of 7(NN) are finite, however we cannot di-
o (=p)"

rectly construct the generating function from the entire series < e~?"() > = D om0 0
n!

< 7™(N) > since 1ts convergence radius vanishes.

Indeed, using equation (4.5), we see that the general term of this series tends to infinity for
alp#0
7L

p

F < Tn(N) > D P(n - /1’) eaNn(n—p) - o0,

n:ooil"(n+1)l"(2n—p) n— o0

In order to derive the true generating function, we therefore have to give a sensible meaning to
this formal series, forgetting that we are 1n fact in a case where the knowledge of the moments
does not uniquely determine the probability distribution [11]. This will now be done by two
methods.

5.1 FIRST METHOD : DIFFERENTIAL EQUATION FOR ¢(p, N). — From (4.5) it follows that
the derivative of the moment of order n with respect to IV is a simple combination of moments
of order n and (n — 1)

19 <a™™(N)> =n(n—p) <a®™(N)>+n <™ " Y(N) > (5.1)

This recurrence relation induces a differential equation for the formal series
P .
80, N) = 52 I < ony >

104 _ ,0% op p
@dN 23p2+(1~u)—_5 (5.2)

which has to be supplemented with the initial condition at N = 0: ¢(p,0) = 1 since we have
by definition 7(N = 0) = 0.
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We can thus write the corresponding differential equation for the probability density ¢{r, N),
which is just the inverse Laplace transform of ¢(p, N)

i%:%[ 22 [( +1)r—§]¢]. (53)

The initial condition at N = 0 now reads : ¥(7,0) = (7). It is straightforward to recover the

asymptotic law . (7) (Eq. (4.6)) as the stationary solution of this equation (x > 0). In order

to obtain the general solution it is convenient to perform the change of variable ar = 2/22.
The corresponding probability density P(z, N) such that P(z,N)|dz|=T(r, N}|dr| satisfies

4 6P B9°

—oN = 3:102( 2P)———- [(Ce+1)z—23] P. (5.4)

It turns out that this equation has been studied in great detail by Schenzle et el., as a model
of a multiplicative stochastic process [12]. The general solution can be expressed in terms of
an eigenfunction expansion which consists of a discrete and a continuous branch. New discrete
states are formed when one increases the drift x# (which in their model plays the role a pump
parameter). Using these results (see appendix A) supplemented by the initial condition at
N = 0 gives the probability density

r = —aNn( -—-'n.)( 1) (#’ Zn) tuom u—2n _L -1
¥ ) 0<§%e ’ F(l1+p—n) ( ) Ln (ar)e 655

2/ 1\ 1
o et (2 () (2

where LY are Laguerre’s polynomials and W, , are Whittaker’s functions.
Laplace transformation of equation (5.5) gives the generating function

)= 3 oo s () s (32)

0sn<f (5.6)
1 «© aN/, 2, .2 s\ |2 w/2
= —of (1P +5?) ‘ _H# 3 d /P
+ 573 /0 dse 2 ssinh s 1"( 5 +z2)l (a) K, (2 -

Let us now discuss these results according to the value of the parameter .

x  For p < 0 we recover the results given by the functional method equation (3.6). The
Fokker-Planck spectrum is purely continuous and, as a consequence, there is no asymptotic
law in the limit N — oo.

* For p > 0 we have now a more explicit expression than that given by the functional
method (Eq. (3.5)). Besides the continuous branch, the Fokker-Planck spectrum also contains
some discrete states. The ground state n = 0 yields the asymptotic law in the limit N — oo
equation (4.7).

e For 0 < p < 2, since the ground state is the only discrete state, the relaxation towards the
asymptotic law is therefore given by the continuous branch.

e For p > 2, it is the discrete state n = 1 that governs the exponential relaxation towards the
asymptotic law.
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7
5.2 SECOND METHOD : RESUMMATION OF THE FORMAL SERIES Y (~1)" p—, < T(N) >.
n

— Following Graham et al. [10], we now present another method of resummation based on a
contour 1ntegral representation of the series.
As we have already seen at the beginning of this section, it is the dominant behaviour
L
TN) ~ e*¥"* that makes the series SE=nn P« 7™(N) > divergent for p # 0. To

regularize it, we insert the Gaussian integral identity

aN

- 2 a4
eaNk(/c—;L) — RS / oodx e—-zz+(2k—y.)\/aN z (57)

T -0

nto equation (4.5) for the moment of order n

e_%v_#z oo 2 — [
<a"tM(N)>= / dre™® Ze(zk_“) alN = o
\/7? i k=0

'k — )
Fn+1+k—p).

X (=1)"*(2k — p)C}, (5.8)

Next we interchange the order of the integration and the sums. This gives a well-defined
representation of the generating function

o (-2}
¢(p,N)=”Z——( ) <a"T(N)>”

— n!
aN 2 o0
e~ % K rp\#/2 /+w 2
= £ d = .
7 (a) . Te gouk(a:) (5.9)
where .
. (—1
up{z) = e(2k—p)VaNz (_k'—)(2k — )k — p)lop—, (2\/%) (5.10)
The series Zuk(x) is absolutely convergent for all z according to d’Alembert’s criterion :
k=0
u———kﬂ(x) — 0 since
uk(a:) k — oo
o 2mt+M aM
I (20) = ~ 5.11
m(2a) ;mlf‘(m-{-l-{-M)M—oooF(l-kM) (5.11)
We now introduce the function of the complex variable s
f(s) = e(2s—p)VaNe (25 — p)T(—8)T'(s — p)las—p (2\/5) (5.12)

f admits two series of simples poles (u gN) :

—1)*
T'(—s) has poles at s = k, for k € N, and Res(I'(—s); k) = _=0

k!
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=y~
T'(s — p) has poles at s = g —m, for m € N, and Res(T'(s — u); 0 — m) = —

Using Cauchy’s theorem we can rewrite the series ) uy as a contour integral in the complex
s plane

(o] o o] 1
kz::()uk - I;Res( fik) = o /C £(5)ds (5.13)

where (C) is a negative oriented contour of the complex plane such that the poles of T'(—s) are
inside and the poles of I'(i — s) are outside.

We have to distinguish the cases ¢ < 0 and ¢ > 0 and choose an explicit contour (C) for
each case.
a) case 4 <0

We choose the contour (C;) drawn in figure 1. The integral along the semicircle at infinity
vamshes. To compute the remaining integral of f along the line Re(s) = u/2 it is convenient
to set s = /2 +1q/2, then

o0 1 £+200
Zuk(x) = om b o f(s)ds
k=0 2 (5.14)

. +o0 2
_ Ve = |p (L 4 )| ?
47r/_°o dg ge r( 2+22) Ly (22

semicircle
at infinity

Line
Re(s) = p/2

Fig. 1. — Contour Cj for the case p < 0. Full circles that represent poles of I'(—s) at s = k,k € N,
are encirled once. Crosses that represent poles of I'(s — ) at s = g — m, m € N, are not encircled.

Interchanging the integrations over the variables z and ¢ we recover equation (5.6) in the
case p <0

e~ 24ﬂ“2

#(p, N) = -—2—7r2—/:°dq =% g sinh g yr(—g +zg) |2 (g)“/zm (2\/3 (5.15)

JOURNAL DE PHYSIQUE | — T 4, N°5 MAY 1994 24
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b) case u >0

We choose the contour (Co) drawn 1n figure 2. As 1n the case p < 0, the integral along the
semicircle at infinity vanishes. But now, besides the integral of f along the line Re(s) = p/2,
we have to take into account the poles of I'(—s) that are to the left of this line and the poles
of I'(i — $) that are to the right of this line (see Fig. 2)

semicircle
at infinity

p-m n-3 n-2
% 3 3 AP
0 1
i
Line
Re(s) = w2

Fig. 2. — Contour Cg for the case p > 0.

oo +‘L(X)

Euk(x)zﬁi—i . f(s)ds — z Res(f; k) + Z Res(f;pu — k)

k=0 f—ieo 0<k< 0<h<

U Vol poa\ 2 P
- wgvValN z P (4 I .
47r/_°o dg ge ( 2+z2)‘ L (2\/;> (5.16)

- alNz - NI _l)k p
+ Z [e(2k piVaNz _ (4—2k)Val ] (T(zk — )0k — ) Log—,, (2\/g> .

0<k<

After integration over z, we recover equation (5.6) for the generating function

¢(p,N) = —_#/ dge” 4‘Iqslnh7rq’]."(——+z2)|2 (g)ﬂlszq (2 g)

ﬂ/
+ Z e~ Nk(p—k) k'lg((fﬁ— jk)k)( ’ K, o (QD (5.17)

0<k<t
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6. Current between two fixed concentrations.

When the quenched random force {F(z)} is a Gaussian white noise, from the probability den-
sity ¥(r, N) of the random variable 7(N), using equation (1.11) we can study some statistical
properties of the current J(N). In particular, we will discuss below the behaviour of the av-
erage current < J(N) > as a function of the drift and of the length of the chain. We also
consider the whole distribution of the current in the case Py = 0.

6.1 AVERAGE CURRENT. — The following identities
1 oo
< —=> =/ <e PN 5 gp
T(N) (]
o ,—p —paT(N) (61)
eP—<e™P >
< ln{at(N)) > =/ p dp
0

together with the expression of the generating function ¢(p, N) = < e 7"¥) > (Eq. (5.6))
allow us to compute the average current for g > 0 for arbitrary concentrations (Py, Pn) at the
two end points

< J(N)>

= Pop+(Po— P — 2n)e~aNnlu—n)
oDs on+(Po=Py) | > (n—2n)e

1<n< ¥ (6.2)

+l /oo de o— S (P+s?) ssinh s
2 /s coshws — cosTu

Let us now discuss some limiting cases.
*  For Sinai case Fy = 0 (. = 0), the average current is proportional to the difference of the

end ponts concentrations according to :
2 o «
<I(N) > = Z2(Po ~ Py) / dt e F cotht (6.3)
0

which is in agreement with Oshanin et el.’s result in the case Py = 0.
*  Limit of vanishing disorder ¢ — 0
2F,
= —

In this limit ggQ with po = Fpf constant, the spectrum 1s purely discrete,
= 70

and the average current therefore reads

<J(N) > = DoPoFofi+ Do(Po~ Py)Fof )y e~V Fobn

n=1 (6.4)
Py — Py
= DoFyp [Po + BRN _ 1 1]
We recover the deterministic current Jyet (V) resulting from a constant force Fp, since
N —BFyN
l1-—e o
Taet(N) = / dg e PP = — —— 6.5
(V) A 5F, (6.5)
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*  Limit of a very long chain N — oo
As soon as u > 0, the average current remains finite in the hmit N — oo

< .](N) > N—-> CZD()P()/J, .

The correction to this asymptotic current for large N will exhibit a transition at g4 = 2 de-
pending on the existence in the spectrum of a discrete state above the ground state. (See the
discussion following Eq. (5.6)). More precisely :
e For p > 2, the relaxation 1s governed by the exponential of the energy of the discrete state
n=1

<J(N)> ~ aDo [Pow+ (Po = Pr)(u = 2)e7=ND) ] (6.6)

- O

® Fo2r 0 < # < 2, the continuous branch modifies the purely exponential decay of the gap
e=“"#" by an algebraic factor N=3/2

<J(N)> ~ aDo (6.7)

71'3/2 e—a—‘xN’V'2
Pop + (Po — PN)1

— cospu (aN)3/2 *

e For p = 0, there is no normalizable ground state, therefore the continuous branch makes
the current vanish purely algebraically like N=1/2 (cf. Oshanin et al.)

<J(NY >~ Do(Py—Pu)y /% +- (6.8)

6.2 PROBABILITY DENSITY OF J(N) FOR THE CASE Py = 0. — When the end at 2 = N
1s a trap described by the boundary condition Py = 0, the relation between 7(N) and J(NV)
becomes very simple

DRy Iy

J(N) = T (V) where Jy = alphF . (6.9)

Equation (5.5) for the probability density (7, N) gives immediately the whole distribution of
the current J(N)

dr

dJ

— l_ Z e—aNn(u—n) (_1)n(ﬂ _ 2”) ;]_ u—l_nLy,—Zn i e—J/Jo
TA+a-n) \J ~ \%

J
0 0<n<k

e=3
1 ° aN (2.2 s\n2/JN 2 J 7
= —al (P 4s?) o B8 ‘ <L L™
+47r2/0 dse™ 4 s s1nh7rs‘I‘( 2+22) (JU) W1+5ﬂ% (Ju)e “0]

The asymptotic law for the current in the limit N — oo therefore reads for 4 > 0

P(J,N) = (7, N) (6.10)

1 IV .
P(J,N)N:w OQ(J)Z 30—1‘(;1,—) <7;) e Jo . (611)
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.Y

Fig. 3. — Flux distribution for an infinite system. The transition at ¢ = 1 is displayed.

The moment of order » is simply

D(p+mn)

W:J;ﬂ(uﬂ) (p+n—1). (6.12)

<JL>=Jy

The curve Poo(J) (see Fig. 3) displays a maximum for g > 1. This implies that the most
probable value of the asymptotic current J,, presents a transition at p =1

. _ 0 if 0<p<l1
J°°—{Jo(u—l) if w>1. (6.13)

This transition at u = 1 was already found [3] for the velocity V defined as
V =lim;, o —(lt z(t) for each environnement {F(z)}. It was shown [11] that V was a self-

averaging quantity (4) satisfying

V=0 for O<u<1

V=—I-:’E<1—l)z—io—(u—1) for p>1.
Y

(6.14)

Here the current J, 18 not a self-averaging quantity but its most probable value is simply
proportional to the velocity V defined above : J, = FpV.

In contrast, the average current < J,, > = Jop does not display any transition at y = 1.
As emphasized by Oshanin et al., this average value is supported by atypical realisations of
the disorder configurations {F(z)}.

The Sinai case has to be discussed separately. On a finite chain the behaviour for J — 0 is

given by a log-normal law

P(J,N) ~ waw n(55) (6.15)

1 -
—_—
J— 0 2v/raN

For J — 00 one obtains

P(J,N) ~

efaN —— 6.16
J— o \/raN J (6.16)

The curve P(J,N) (see Fig. 4) therefore displays a maximum for a critical value J¥,. When
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. . . N — 33
1 01 0.2 0.3 0.4 0.5 Y/

Fig. 4. — Flux distribution in the case p = 0 for two different lenghts N; = 2/ and Ng = 3/c.

the length IV of the system increases, this maximum is pushed towards the origin

J}:, ~ JO e—2Noz

N— oo

1
P(IN,N) ~ —c¢e
S )N—* o 2v/wmaN
The whole normalisation is therefore concentrated in a region which shrinks to zero in the limit
N — co.

al (6.17)

7. Conclusion.

In this work we have studied the probability distribution of the current J that goes through a
one dimensional system of finite length when prescribed concentrations are imposed at its end
points. The resulting expressions exhibit many interesting features both as a function of the
drift parameter p and of the length. We have shown that 7 oc 1/J is distributed according to
a broad distribution which crucially depends on the drift. In particular, in the Sinal case, this
distribution does not tend to a limiting law when the size of the system increases.

In the case u > 0, it is interesting to point out that the same limiting distribution occurs
in the context of localization in quantum systems. At the transition between the insulating
and conducting regime, conductance fluctuations become very large, therefore the average
conductance < g > gives a very poor description of the conducting properties of the system.
A complete characterisation requires in fact the knowledge of the whole distribution P(g).
A perturbative calculation 1n 2 + e dimensions shows that the conductance distribution is
characterised by the following cumulants [15]

_ €2 for n<mng
Cn(L) = {(L/l)en2—2n for n>ng. (7.1)
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where ng is a large integer of order 1/e and the size L of the system 1s much larger than the
mean free path [. Therefore the large order cumulants diverge when L. — oco. Since they
depend on the mean free path, it a priori suggests that the limiting distribution, if it exists,
will depend on ! and therefore will not have a universal behavior. This point was carefully
investigated in [15]. It was shown that the conductance distribution approaches a universal
function P*(g) when L — oo (in spite of the fact that the cumulant are I-dependant). The
latter can be computed from the cumulant generating function

Gr(M) = ,?=0 p Cn(L) (7.2)
which has the limiting form
ey 22T )

where p = 1/e. Comparing with (4.5) and (4.7), we see that the following correspondence holds
4 =2feand N = e ln(T)‘ In both systems, the higher moments diverge with the length of

the system. We find very puzzling that these two problems give rise to very similar behaviour.
This is all the more surprising as they are of a very different nature, since one is classical and
the other purely quantum.

Another point that deserves attention 1s the fact that the determination of the flux distribu-
tion involves a differential equation that also arises in the context of stochastic multiplicative
processes. Whether or not this is a coincidence is an open question. As a final remark, let us
point out that the straightforwardness of the functional derivation suggests that an extension
i higher dimensions should be considered seriously. Other functionals of a Brownian process
that appear for instance in the context of localization can probably be handled in a sirmlar
way.
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Appendix A

We present in this appendix the analytical solution given by Schenzle [9] of the equation
P 2 0

aa_t = %(;ﬁp) — a[(zp, + 1)z — 2°] P with the initial conditioan(:c, t) LT §(z — xo).

K 2

It is convenient to set P(x,t) = v/ Pp(z) f(z,t) where Py(z) = i(u) z#le

Since the evolution of f(z,t) 1s governed by a self-adjoint operator we can use its eigenfunc-
tions to contruct an orthonormal basis (f,) with corresponding eigenvalues (\,,). The general
solution f(x,t) can thus be expanded in the following form

f(@,8) =) e falz) e (A1)

—Z_
2
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The general solution for P(x,t) is thus given by

P(z,t) = cn Pa(z) et where Py(z) = /Po(z) falz,t) . (A.2)
The orthogonality and closure relations read
[ 02 £u@fn(@) = 8um = [ 2 2D
Fy(z) (A.3)
D Fal@) falmo) = 8(z — 20) = > Pu(2)Palw0) = Po(w0)6(z — o) -
The initial condition P(z,t) — &(z — z¢) determines the coefficients ¢, = P"(xo).
t— 0t Po(xo)
The Green function of the problem therefore reads
Pn(20) —Ant
P(xt || 250) = P (x)e ™ Ad
(@t ) = 30 By Polo) (A4)

The spectrum (P,, A,) given by Schenzle consists of a continuous and a discrete branch

* Continuous branch of the spectrum
A(s) = p? + §2
2
$20 1 |2'7# s sinhs II‘ (—E +z'§-){ . 2 (A.5)
Py(z) == 2 2/ pr2 e T Wy [
s T 1“(#) st+525 9
* Discrete branch of the spectrum
“ A =4n(p—n)
0<n<t R pp— 2k =20)  augn1pp-an (8 ) e (A.6)
" D(u)T(p+1—n) " 2

2
Next we perform the change of variables (¢ = aN/4 and ar = F) and compute the
coefficients we need as

cn = lim Pr(zo)

, Py (o)
and ¢, = lim =%
To— X Po(il?o)

oo Bolzo) (A7)

This gives equation (5.5).
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