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Résumé Nous étudions quelques propriétés de transport d'un systéme unidimensionnel dés-

ordonné de longueur finie N. Dans ce système, les particules sont soumises à des forces aléatoires

qui résultent à la fois d'un bruit d'origine thermique et d'une force aléatoire gelée F(~) qui ca-

ractérise le fait que l'environnement est inhomogène. On suppose que cette force est distribuée

comme un
bruit blanc

avec une valeur moyenne non
nulle. En présence d'une concentration finie

de particules aux deux extrémités de la chaîne, il apparaît un courant de diffusion stationnaire

J(N) qui dépend de l'environnement (F(~)). Nous étudions la distribution de probabilité P(J)
de ce courant. Notre approche s'appuie à la fois sur une méthode fonctionnelle et sur un

calcul

de moments. Dans le cas d'un biais non nul, nos résultats constituent une généralisation de ceux

obtenus récemment par Oshanin et ai.

Abstract. We study some transport properties of a one dimensional disordered system
of finite length N. In this system particles are subject to random forces resulting bath from

a
thermal

noise
and from

a
quenched random force F(~) which mortels the inhomogeneous

medium. Trie latter is distributed as a
white noise with a non zero average bias. Imposing some

fixed concentration of partiales at the end points of the chaiu yields a steady current J(N) which

depeuds on trie enviroumeut (F(~)). The problem of computiug the probability distribution

P(J)
over the euviroumeuts is addressed. Our approach is based ou a

path iutegral method and

on a moment calculatiou. In the case of
a non zero bios Dur results geueralize those obtaiued

recently by Oshauin et ai.

1 Introduction.

A large amount of work has been devoted to the study of classical diffusion in ramdam media.

Part of the interest in this field comes from the fact that the transport properties in such

systems are very diflerent from those of homogeneous media. In particular it has been shown

that quite generically one expects an anomalous diffusion behaviour to occur [1].

(*) Unité de Recherche des Universités Paris il et Paris 6 Associée au CNRS.
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The simplest one dimensional model which gives rise to such anomalous behaviour is known

as the Sinai model [2]. In this model, one considers a one dimensional lattice on which, at

integer times, a partiale can jump from site n to site n +1 with probability pn, or from site

n to site n -1 with probability qn =
1- pn. Trie pn(n E Z) is a set of independent random

variables distributed according to some probability law p(p) such that

< Log ~~
> =

/
p(p) Log ~ dp

=
0

1 PJ 1 P

< Log~ ~~
> =

/
p(p) Log~ )dp

< ce il.l)
PJ P

In this case it bas been proved that trie mean square displacement < x~(t) > grows like (Log t)~
for t ~ oe.

This problem can also be studied by starting from a continuous model defined by trie

Langevin equation

à
=

F(x) + i~(t) (1.2)
'f

where F(x) is a quenched random force (related to trie hopping variables pj) which is usually
taken as a Gaussian white noise

< Fjx) > =
F~

< Fjx)Fjx') > < Fjx) >2
=

aôjx x') ji.3)

and J~(t) is a thermal noise randomly chosen at each time such that

J~(t)
=

0

~llt)~llt')
"

~)ôlt t') l14)

The Sinai case
corresponds to an average bias F~

=
0. Increasing F~, one obtains a succession

of phases [3, 4] which in terms of ~1=
~~~F~ read

a

1) 0 < ~1 < 1 anomalous dispersion < x(t) >
+~

t~.

2) 1 < ~1 < 2 one obtains a finite velocity, V
=

~
il ~), but trie diffusion remains

'f ~
anomalous

~

< X(t) > -Vt
~J

tfP (1.5)

3) ~ > 2, one recovers a normal diffusion with a finite diffusion constant

D
=

D~~ (l.6)
~ 2

where D~
=

kTl'f
"

1/(fi'f) is trie diffusion constant of trie pure system.
A quantitative understanding of these phases bas been obtained by Bouchaud et ai. [4].

For a non zero bios F~, it was conjectured that trie diffusion process is essentially controlled

by trie existence of very high potential barriers that trie partiale bas to overcome by thermal

activation. Assummg that these barriers act as trapping regions between which trie motion is

purely convective, one is thus led to a simpler picture m which trie problem becomes essentially
equivalent at large time to a directed walk among traps.
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The sojoum time T(x), which measures trie thermal average of trie time spent at position x

was identified as

ce i
T(x)

=
d( exp -fl F(z)dz il.?)

Î Î
In suitable units this random variable is distributed over trie environments (F(x)) according

to trie law [4]

~~~~
(~1)ÎH+l~ ~~~ ~~'~~

Similar random variables bave been studied in trie mathematical [Si as well as in the physical

[6, 7] literature. The occurrence of a power law decay for large T seems to be a rather general
feature, which is related to the anomalous behavior of x(t) through a Tauberian theorem [8].

A similar variable, with however a diflerent physical interpretation, also appears in trie study
of transport properties of trie Sinai model [9]. Consider a finite chain of length N with some

prescribed concentration of partiales at the end points

P(x
=

0, t)
=

Po

P(x
=

N, t)
=

FN (1.9)

In such a system, for a given environment (F(x)), there exists a steady current

J(N)
=

-Do $
+

~~~P(x)j
(1.10)

X 'f

Taking into account the boundary conditions (1.9), it is given by

J(N)
=

~~ DOPN
~

lnr(N) (1.Il)
T

N) ôN

~~~~~

rjN)
=

/~ dj exp -p /~ djfji) l~'~~)
o o

In the Sinai case < F(x) >
=

0, it has been shown that trie disorder average flux < J(N) >

bas a non Fickian behaviour, namely

~ ~~~~ ~ NÎOe
/~

~~ ~~~

This result was first obtained by a careful estimation of upper and lower bounds of trie current

[10]. More precise results bave been recently obtained, in particular trie whole distribution ifi jr)
of the random variable r

(or altematively of J for the case FN
"

0) has been obtained [9]. The

method is based on trie evaluation of trie moments < r" > and on a suitable resummation of

the series giving the generating function

< e~P~ > =

f ~~
< r" > (1.14)

n=o
~'

The purpose of this work is to present an alternative derivation of these results by a path
integral technique. A generalisation to trie case of a non zero bios is also presented. We will

consider trie cases ~1 > 0 and
~1 < 0 since they correspond to diflerent physical situations due

to trie choice of the boundary conditions.
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2. The Sinai case.

In this section we study the distribution of the random variable

rjN)
=

/~ di exp -fl /~ dl'fjl') j2.1)

when the average bios Fo vanishes. Averaging over the random force, we can construct trie

generating function

#(p, N)
=

< exp j7r(N)] >

=

/
DF(x) exp

() /~ d(F~ if) + p
/~ d( exp -fl /~

l'f((')j
(2.2)

~ ° ° °

From trie generating function one can derive trie probability distribution ifi(r, N)

ijp, N)
=

/~ e~P~ifijr, N) dr, j2.3)

It is convenient to rewrite equation (2.2) in terms of trie potential

uj~)
=

/~ Fi') di j2.4)

One obtains

#(p, N)
=

/
DU(() exp

/~ d( ($)~
p
/~ d(exp +flU(() (2.5)

u(o)=o 2a
o

f
o

This path integral describes the motion of a partiale of mass 1la moving in the potential

VjU)
= pexp PU j2.6)

The associated Hamiltonian reads

~
d2

H= --j+pexpflU. (2.7)

Let us denote by ifik(U) a complete set of eigenstates of H such that

Hq~~ju)
=

k2q~~ju) j2.8)

The generating function then reads

#(p, N)
=

/~
dk

/~ dUifik(U)ifi((0)e~~~~ (2.9)
-ce -ce

The solutions of (2.8) which vanish at U
=

+ce are

ifik(U)
= NK~~~/ w

2 ~ P~/~)
(2.10)

°
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where N is a normalization constant which is fixed by the continuum normalization

/~°° q~~(u)q~j ju)du
=

ôjk q) j2.ii)

and 1la
=

2/(afl~) is a smtable unit of length.
One obtains

ifik(U)
=

2
~~

sinh ~~~K~
~ / ~p (2

~ P~/~)
(2 12)

a7r
fi ~ ~

a

Carrying eut the integral over U in equation (2.9) yields the final expression

#(p, N)
=

~ /~
cash ~Kik (2

~ e~~~*~Rdk (2.13)
~r o £Y

which is in agreement with equation (16) of [9].
From this expression one can study trie behaviour of trie probability law ifi(r, N) in the limit

in which the size of the sample is very large

~~~'~~ NÎOe
ô~~ ~~£~ ~~ ~~~

For fixed
r

the probability law therefore reads

~iT>N) ~vr
m

ùÎ
exP

-à
12.15)

Since this result does not hold uniformly with respect to r this distribution is obviously not

normalized. The true behaviour for large r is in fact given by the log-normal tait

1fiiT> N) ~r~
~jm1exPi-ù in~ (UT)] i~.16)

It is however interesting to point out that equation (2.15) that characterizes the tait of the

distribution for r ~
0 is m fact consistent with equation (1.8) in the limit ~1~ 0.

3. Functional integration method for the case < F > # 0.

The quenched random force (F(x)) is now a Gaussian white noise with a non-zero mean

< Fjx) > =
~~

< Fjx)Fjx,~ >
~j

~
~ôj~ ~,~

j3.i)

The generating function for r(N)
=

/
dz e~~10 ~~~~~~ reads

~
~

_j (~[F(x)-Fo]~d~~PÎÎ ~~
~

~
~

~~~~~~

~~ ~~p/)
= < e~P~~~~ >

"
l'~'(~~

~
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As m trie case ~1 =
o, we rewrite this patin integral over trie force (F(x))

as a patin integral

over trie potential U(x)
=

f/ F(g)dg

,
=

~

~~~ ~~
(o)=o

~~"~
~ " f0 (If +F0)~dx-p jN d~~pu~~~

o

w +~

~ ~~
ire ~" ~+

" < vie-NH jo >

13.3)

where < uje~~~ j0 > is the Green function that we bave already encountered in trie case ~1 =
0.

Its expansion in terms of a complete set of eigenstates (ifik) of H gives

<
uje~~~ j0 >

=

~~~~ ~

DU(x)
e~ÎÎ

~~ [~~%)~~~ ~~~~~~Î

U(0)=0

~~

(~.~)

"

/
lÎ~ lfi~(Ù) lfik(U) e

~~~

-oe

From trie explicit expression of ifik(u) one obtains through trie change of variables

"

~k
£Y

~
P~flu/2

/Î

#(p, N)
=

~
~~~.

(~ )~
/~ (( /~~ dq e~Î~~qsinh7rqKzq(2x) Kzq(2 ~ (3.5)

1r CY o X "
_~

CY

where
~1 =

~'
is the dimensionless parameter that characterizes the various phases of the

afl
problem. (See Ref. [4] for a physical discussion of this parameter).

However, this result, as it stands, is not fully satisfactory for two reasons. First, one cannot

expand the expression of #(p, N) into an entire series in p in order to extract the moments of

r(N). Furthermore it is very diflicult to study the limit N
~ oe when

~1 > 0.

Let us first consider trie case ~1< 0.

In this case interchanging trie two integrations, one obtains

#(p,N)= ~
~~~

(~)"~~ /~~dq e~"~~qsinhaq ~r(-~ +
j) Kzq 2

~) (3.6)
4~r

CY
-ce

2
CY

From which it follows that there is no asymptotic law m trie limit N
~ oe. In the case ~1 > o,

since trie interchange of integrations is not allowed, we will use another approach which will be

trie subject of trie next sections. First we will compute directly trie moments < r"(N) > for

n E N. Besides trie fact that these quantities are interesting in themselves, they will enable

us to prove that there is an asymptotic law for
~1 > 0 in the limit N

~ oe and to find the

expression of this law.

Then we will use these moments to reconstruct the characteristic function. For
~1 < o we will

recover the above expression (3.6), but for
~1 > 0 we will find a more tractable formula than

(3.5). This will allow us to study how the fuit distribution ifi(r, N) approaches the asymptotic
law ifi(r) in the limit N

~ oe.
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4. Moments.

We now tum to the derivation of the moments of the random variable r(N). Trie moment of

order n reads by definition

< r"(N) >
=

/
DF(x) e~~ Î~~~~~~~~'~~~~ jj

1/~ dxj e~~ÎÎ~ ~~~~~j (4.1)

~~~ 0

Performing trie Gaussian functional integral over trie random force F(x) we are left with an

ordinary integral over n variables

< r"(N) >
=

n!
/ lfl dxz e~ £Î=~ ~~P~~~"~~~~"l (4.2)

0<x~<x2...<x~<N

~~

For
~1

t N*, we get

~ ~~~~~~~ ~

(
~~~~~~ ~~~ ~~~ ~~~

~j
2k

~~1+1~ ljj
k

~1
1 + j

~~'~~

" i" J"

.
In trie case ~1= 0, we recover trie result (Oshanin et ai.

< a"r"jN) > =

fe"'~~~j-1)"~~ ~i~) Ci +
i~~~~

j4.4)

k=i

~i~~) ~ ~'

.
For

~1
t N* making use of trie basic property of r function [riz +1)

=
zr(z)]

We now consider trie limit N
~ oe in trie case ~1 > 0.

From (4.5) one finds

1O3 11 j1 < n

< ~~~~lN) > ~~ rjjl- n)
~ ~

rl~l) ~~ ~ ~ ~

The asymptotic moments can thus be rewritten as

< °"T"ire) >=
ù

£°° dt t""~ e'rit

where we bave used trie integral representation of r function for positive argument.
Trie change of variables t

=
1/(ar) gives trie asymptotic probability density of r(N) in trie

limit N
~ oe

~~

~~~' ~~ NÙOe ~" ~~~
Îj1) T ~

~
~~ ~~ ~~
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The corresponding generating function therefore reads

< e~P~~°°~ > =

/
dr e~P~ifioe jr)

~

~

2 p )"/2 ~
~ p

F(~)
CY

"
CY (4.7)

~

P P ~+"

~
rji ~) ~ l

a a

~_~

il Fil +1 ~1)
Fil +1 + ~1)

It is interesting to note that trie first non integer power in this expansion is
(plu)". This

implies that trie derivative of order n at p =
0 is finite for n < ~1

and infinite for n > ~1.
This

shows exphcitly at trie level of trie generating function why only trie moments with n < ~1 are

finite.

5. Construction of the generating function from the moments.

For a finite chain of length N, ail trie moments of r(N) are finite, however we cannot dj-
rectly construct trie generating function from trie entire serres <

e~P~(~) >
=

£$=~ ~

n.

< r"(N) > since its convergence radius vanishes.

Indeed, using equation (4.5),
we see that trie general term of this series tends to infinity for

ail p # 0

ÎÎ ~ ~~~~~ ~
»

Î
ce

r(iÎÎ
1)

Î~ -Î) ~~~~~~ ~~ nÙoe "

In order to derive trie true generating function, we therefore bave to give a sensible meaning to

this formol series, forgetting that we are m fact in a case where trie knowledge of trie moments

does not uniquely determine trie probability distribution [11]. This will now be done by two

methods.

5.1 FIRST METHOD DIFFERENTIAL EQUATION FOR #(p, N). From (4.5) it iollows that

trie derivative of trie moment of order n with respect to N is a simple combination of moments

of order n and in 1)

)(
< ~~~~lN) > " ~ll~l ~l) < ~~~~lN) > + ~l < ~~~~~~~~lN) > 15.i)

This recurrence relation induces a diflerential equation for trie formol serres

41Î'> N)
"

£ÎÎ=0 $~~ ~ ~~lN) >

ÎÎ
" P~ Î~Î + Ii l~)PÎ)

)4 15.2)

which bas to be supplemented with trie initial condition at N
=

0 #(p,0)
=

1 since we bave

by definition r(N
=

0)
=

0.
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We can thus write trie corresponding dilferential equation for trie probability density ifi(r, N),
which is just the inverse Laplace transform of #(p, N)

~ÎÎ Îr Î~~Î ~
~~~

~~~
Î Î

~~'~~

The initial condition at N
=

o now reads
:

ifi(r, 0)
=

à(r), It is straightforward to recover the

asymptotic law ifioe(r) (Eq. (4.6)) as trie stationary solution of this equation (~1 > o). In order

to obtain trie general solution it is convenient to perform trie change of variable ar =
2/x~.

Trie corresponding probability density P(x, N) such that P(x,N)jdxj
=

4/(r, N)jdrj satisfies

ÎÎ 12 ~~~~~
Î

~~~~ ~ ~~~ ~~Î ~ ~~'~~

It turns ont that this equation bas been studied in great detail by Schenzle et ai., as a model

of a multiplicative stochastic process [12]. Trie general solution can be expressed in terms of

an eigenfunction expansion which consists of a discrete and a continuous branch. New discrete

states are formed when one increases trie drift
~1

(which in their model plays trie rote a pump
parameter). Using these results (sec appendix A) supplemented by trie initial condition at

N
=

0 gives trie probability density

~fij ~
ll) ~ ~-aNn(~-n) (~ l)"(ÎL 2il) ~~~ ~

~~-2n 1
~-

3
' Fil + ~1

n)
ar

"
ar

~~"~~ (5.5)

~ 412
~~~

~
~~~~~~~~~ ~~~~~~ Î~ ~ ~Î~

~
~ÎÎr~

~~

~%+,~i ~/r~ ~
~

where L( are Laguerre's polynomials and Wp,~ are Whittaker's functions.

Laplace transformation of equation (5.5) gives trie generating function

~~~'~~
"

ll~ ~~~~~~~~ n'/)li)~~n) lll~~~ ~"~" (~£)
°~"~

2 j5.6)

+
j /~ ds e~Î("~+~~)s smh7rs jr (- +1)) ~

(~
"~~

Kzs (2
~

7r o a o

Let us now discuss these results according to trie value of trie parameter ~1.

* For
~1 < o we recover trie results given by trie functional method equation (3.6). Trie

Fokker-Planck spectrum is purely continuous and, as a consequence, there is no asymptotic
law in trie limit N

~ oe.

* For
~1 > o we bave now a more explicit expression than that given by trie functional

method (Eq. (3.5)). Besides trie continuous branch, trie Fokker-Planck spectrum also contains

some discrete states. Trie ground state n =
o yields trie asymptotic law in the limit N

~ oe

equation (4.7).

.
For 0 < ~1 < 2, since trie ground state is trie only discrete state, trie relaxation towards trie

asymptotic law is therefore given by the continuous branch.

.
For

~1 > 2, it is trie discrete state n =
1 that governs trie exponential relaxation towards trie

asymptotic law.



644 JOURNAL DE PHYSIQUE I N°5

5.2 SECOND METHOD RESUMMATION OF THE FORMAL SERIES Cl-1)" ~, < T"(N) >.ÎÎ
Followmg Graham et ai. [loi,

we now present another method of resummation based on a

contour integral representation of trie series.

As we have already seen at trie beginning of this section, it is trie dominant behaviour

r"(N)
+~

e"~"~ that makes trie series ~(-l)" ~~ < r"(N) > divergent for p # 0. To
» - ce n.

regularize it, we insert trie Gaussian integral identity

~a~v~~~-~~
=

e-""~
/+°° dz e-x~+(2k-")/~

~ 15 7)@
-m

into equation (4.5) for trie moment of order n

< a"T"(N) >
=

~ j /
dz e~~~ ~j e~~~~"~~

~ x

~~~~
~~ ~0

~ ~~~ ~ ~~~ ~~~~
Fin

ÎÎ+ Î~
~1)

~~'~~

Next we interchange trie order of trie integration and trie sums. This gives a well-defined

representation of trie generating function

~
P)"

#(p, N)
=

"
~j f < a"r"(N) > "

n
»=o

e~Q"~
jP "~~

/~°° dz e~~~
iv

ix) l~'~~@
a

-ce k=0

~

Wh~~~
~)k P j~ ~o)Uk(X) "~~~~ ~~~~

k[
~~~ ~~~~~ ~~~~~

~
~~Î~

ce

The serres
~j uk(x) is absolutely convergent for ail x according to d'Alembert's criterion

~ ~~~
k=0

Î~ÎX)
k

Ùoe ~ ~~~~~

°° ~2m+M ~M
~~~~~~

~

În!r(În + + M) MÎ
ce

r(1 + M) ~~'~~~

We now introduce the function of the complex variable s

f(s)
=

e(~~~")~~ (2s ~1)r(-s)r(s ~1)I2s-~ (2
~ (5.12)
°

f admits two serres of simples potes (~1$N)
j_i)k

ri-s) has potes at s =
k, for k E N, and Res(r(-s); k)

=

~~
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(_1)m
ris

~1) has potes at s = ~1 m, for m E N, and Res(r(s ~1); ~1
m)

=

m.
Using Cauchy's theorem we cari rewrite trie series £ uk as a contour integral in trie complex

s plane

fuk
"

f
Res( f; k)

=

/
f(s)ds (5.13)

k=0 k=0
~°~~

~

where (C) is a negative oriented contour of trie complex plane such that trie potes of r(-s)
are

inside and the potes of r(~1- s) are outside.

We have to distinguish trie cases ~1 < 0 and
~1 > 0 and choose an explicit contour (C) for

each case.

a) case ~1< o

We choose trie contour (Ci drawn in figure 1. Trie integral along trie semicircle at infinity
vanishes. To compute trie remaining integral of f along trie fine Re(s)

=
~1/2 it is convenient

to set s =
~1/2 + iq/2, then

~

q~~ z

1
zoo~ ~~ 21i ~~ Î(s)ds

~ °

Î
-zoo

j +ce

~~
~

~~ ~~~~~
~

~
~ ~Î~

~
~iq

(2/) ~~ ~~~

(ci)
sem>circle

at inf>n,ty@

~-rn P-2 ~-l p

0 2 k

Line
Re(s)

=
pJ2

Fig. 1. Contour Ci for the
case ~ < 0. Fuit circles that represent pales of ri-s) at s =

k, k E N,

are encirled once. Crosses that represent pales of r(s ~) at s = ~ m, m E N, are trot encircled.

Interchanging trie integrations over trie variables x and q we relever equation (5.6) in trie

case ~1< o

~~~'~~ ~
Î~~~ ~~~

~ ~~~~~~~~~~~ Î~~ ~ ~Î~
~

~Î~~~~~~
~~Î

~~ ~~~

JOURNAL DE PHYSIQUE T 4, N'5 MAY >994 24
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b)
case ~1 > o

We choose trie contour (C2) drawn in figure 2. As in trie case ~1 < o, trie integral along trie

semicircle at infinity vanishes. But now, besides trie integral of f along trie fine Re(s)
=

~1/2,

we have to take into account trie potes of r(-s) that are to trie left of this fine and the potes
of T(~1- s) that are to trie right of this fine (see Fig. 2)

(c21
semicirde

at infinity@

p-m p~3 p-2 p-1 p

2 k

Line

Fig. 2. Contour C2 for the case ~ > 0.

C° j
_~ ~~~~~ 21i f~~)~~ ~ ReS(Îi k) +

~j Res( f; /~ k)

~~~ ~
~" 0<k<j ~~~~~

j +ce

~

" ô
i~

dQ Qe~~/~
~

F 1-1 +
Il Iiq (2/l) is.i~~

~
~ ~~~~ ~~~~ ~~~ ~~~~~Î /~~ ~~~ f~)~(~ ÎL)I2k-~ (2

~

°~~~i
°

After integration over x, we recover equation (5.6) for the generating function

~~~'~~ ~
Î~~~ ~~~

~
~ ~~ ~ ~~~~ ~~

~
~ ~

~ ~~~
~~ ~~Î~

~ ~~~ ~~~~~ ~~kIÎÎÎ+Î~~k) ~Î~~~~~"~~~ ~~ÎÎ~ ~~'~~~

0<k<
~
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6. Current between two fixed concentrations.

When the quenched random force (F(x)) is a Gaussian white noise, from the probability den-

sity ifi(r, N) of the random variable r(N), using equation (1.Il)
we can study some statistical

properties of the current J(N). In particular, we will discuss below the behaviour of the av-

erage current < J(N) > as a function of the drift and of trie length of the chair. We also

consider trie whole distribution of trie current in trie case FN
=

o.

6.1 AVERAGE CURRENT. Trie following identities

< j
> = /~° < e-PT(N) ~ ~~

oe

~-p-
< e-pOET(N) ~

(6.1)

< In(ar(N)) >
=

/
dp

o P

together with the expression of the generating function #(p,N) + < e~P~(~~
> (Eq. (5.6))

allow us to compute the average current for
~1

> o for arbitrary concentrations (Po, FN) at the

two end points

~ ~(Î/) >

~~°
~~ ~ ~~ ~~~ ~ (~ 2n)e~OEN"("-»)

1<n< j

~
l /°° ~~ ~dà ~ 4

(" +S~) à SÎIÎh jr£

~6.2)

2 ~
~ ~~~ 7~8 COS 7r/~

Let us now discuss some limiting cases.

* For Sinai case Fo
"

o (~1 =
o), the average current is proportional to trie difference of trie

end points concentrations according to

< J(N) > =
~~ (Po FN)

/
dt

e~i~'~t
coth t (6.3)

1r

~

which is in agreement with Oshanin et ai.'s result in trie case FN
"

o.

* Limit of vanishing disorder a ~
o

~
2Fo

~ ~

In this limit ~fl~ with ~la =
Fofl constant, trie spectrum is purely discrete

afl '

~ Î ~
~

and trie average current therefore reads

ce

< J(N) > ~
DoPofofl + Do (Po FN )Fofl ~j e~~~°~"

"~°
n=1 j6 4)

~° ~~ (~ ~ ~ÎON ~~i

We recover trie deterministic current Jde< IN) resulting from a constant force Fo, since

N ~ ~-flFoN
Tde~ IN)

=
dz e-~~°~

= p~~
16.5)
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* Limit of a very long chia N
~ oe

As soon as ~1 > o, trie average current remains finite in trie hmit N
~ oe

< J(N) > ~
aDoPo~1

Trie correction to this asymptotic current for large N will exhibit a transition at
~1 =

2 de-

pending on trie existence in trie spectrum of a discrete state above trie ground state. (See the

discussion following Eq. (5.6)). More precisely :

.
For

~1 > 2, the relaxation is govemed by the exponential of trie energy of the discrete state

n =
1

< J(N) >
+~

cxDo (Po~ + (Po FN )(11 2)e~~~~"~~~ + (6.6)
N-

ce

.
For o < ~1 < 2, trie continuons branch modifies the purely exponential decay of the gap

e~Q"~ by an algebraic factor N~3/~

1g~3 /2 ~-Q~~
~ ~~~~ ~

N-
ce

"~° ~~ ~ ~~ ~~~
l cas 7r~1(CYN)3/2

~ ~~'~~

.
For

~1 =
0, there is no normalizable ground state, therefore trie continuous branch makes

trie current vanish purely algebraically like N~~/~ (cf. Oshanin et ai.)

< J(N) >
+~

Do(Po PN)1+ (6.8)
N- ce

~rN

6.2 PROBABILITY DENSITY oF J(N) FOR THE cAsE FN
=

0. When trie end at x =
N

is a trap described by trie boundary condition FN
#

o, trie relation between r(N) and J(N)
becomes very simple

~~~~
ÎÎÎ Y/N)

~~~~~ ~ ~~°~ ~~'~~

Equation (5.5) for the probability density ifi(r, N) gives immediately the whole distribution of

trie current J(N)

l~(J, N)
=

ifi(r, N)
~~

(6.10)

~

l ljj
~-OENn(~-n)

(~l)"(ÎL 2il) ~ ~ ~ ~

~~-2n ~ ~-J/Jo
Jo

~~~~~
r(i + ~t n) Jo " Jo

2

~412 %~ ~~ ~
~~~~~~~~~~ ~~~~~~ Î~ ~ ~ Î~

~ ~~

~~'%~'~' ~ ~~~

The asymptotic law for trie current in trie limit N
~ oe therefore reads for

~1 > o

~~~ ~~ NÎOe~"~~~
o/(~1)

~~ ~
~

~~ ~~~
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P
fiP ~ P fi

,

o J o J o j~(p. i) J

Fig. 3. Flux distribution for
an

infinite system. The transition at ~ =
l is displayed.

The moment of order n is simply

The curve ~oe(J) (see Fig. 3) isplays a for ~1 > 1.

probable alue of

~j=1° à

Jo (~ - l) if /~ / 1 . 6.13)

This
at

~1

1 was already found [3] for trie velocity V defined as

t

averaging uantity (4)

lv=o for

</Lil

v = '

7 11 Po ~
Here trie current Joe is not a uantity

but
its

oportional to trie velocity V
efined above : J~j

= PCV.

In contrast, trie average
urrent < Joe > =

Jo~
does not display any

ransition

As emphasized by Oshanin
trie disorder

configurations
(F(x)).

Trie
Sinai case

bas to

given by a
law

i'il> N) jr o ~ùm ~'

For J ~
oe

ne

obtains
~

J J/)
~ ~

' J-
ce ôW J
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p(N,Ji

3 5

N~=3la
3

2 s

2

Ni=2la

1.5

1

o.5

o-1 0.2 0.3 0.4 O.s
~~~°

Fig. 4. Flux distribution
in

the case ~ =
o for two diffierent lenghts Ni

"
2 la and N2

"
3 la.

trie length N of trie system increases, this maximum is pushed towards trie origin

Jj~
~

Jo e
~~"

N-
ce

~~~~'~~ NC
ce

2i$ ~~~ ~~'~~~

The whole normalisation is therefore concentrated in a region which shrinks to zero in trie limit

N
~ oe.

7. Conclusion.

In this work we bave studied trie probability distribution of trie current J that goes through a

one dimensional system of finite length when prescribed concentrations are imposed at its end

points. Trie resulting expressions exhibit many interesting features both as a function of trie

drift parameter ~1
and of the length. We bave shown that r c~

1/J is distributed according to

a broda distribution which crucially depends on trie drift. In particular, m trie Sinài case, this

distribution does not tend to a limiting law when trie size of trie system increases.

In trie case ~1 > o, it is interesting to point out that trie same limiting distribution occurs

in the context of localization in quantum systems. At the transition between the insulating
and conducting regime, conductance fluctuations become very large, therefore the average

conductance < g > gives a very poor description of the conducting properties of the system.
A complete characterisation requires m fact the knowledge of the whole distribution P(g).
A perturbative calculation m 2 + £

dimensions shows that the conductance distribution is

characterised by the following cumulants [15]

~"~~~
(L/ÎÎ~"~~~" ÎÎ iÎ~iÎ~. ~~~~
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where no is a large integer of order 1le and the size L of the system is much larger than the

mean free path 1. Therefore the large order cumulants diverge when L
~ oe. Since they

depend on trie mean free patin, it a priori suggests that trie limiting distribution, if it exists,
will depend on and therefore will not bave a universal behavior. This point was carefully
investigated in [15]. It was shown that the conductance distribution approaches a universal

function P*(g) when L
~ oe (in spite of trie fact that trie cumulant are 1-dependant). Trie

latter can be computed from trie cumulant generating function

GLIÀ)
=

f
~~j~" CnlL) 17.2)

which has the limiting form

G* là)
=

)j~~p2
>P K~~j/ù) (7.3)

where p =
1le. Comparing with (4.5) and (4.7), we see that trie following correspondence froids

~1= 2 le and N
=

~ ln(~). In both systems, the higher moments diverge with the length of
~la

trie system. We find very puzzling that these two problems give rise to very similar behaviour.

This is ail trie more surprising as they are of a very dilferent nature, smce one is dassical and

trie other purely quantum.
Another point that deserves attention is trie fact that trie determmation of trie flux distribu-

tion involves a dilferential equation that also arises in trie context of stochastic multiplicative
processes.Whether or trot this is a coïncidence is an open question. As a final remark, let us

point Dut that trie straightforwardness of trie functional derivation suggests that an extension

m higher dimensions should be considered seriously. Other functionals of a Brownian process
that appear for instance in the context of localization can probably be handled in a similar

way.
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Appendix A

We prjsent in this appendix the analytical solution given by Schenzle [9] of the equation)
=

$(x~P) )[(2~1+1)x x~]P with the initial condition P(x, t)
~

ô(x xo).
t x x <- o+

It is convenient to set P(x, t)
=

@@f(x, t) where Po lx)
=

~x~"~~ e~É.
(~)

Since the evolution of f(x, t)
is govemed by a self-adjoint operator we con use its eigenfunc-

tions to contruct an orthonormal basis lin) with corresponding eigenvalues (Àn). The general
solution f(x, t) cari thus be expanded in the following form

flX>t)
"

£Cn fnlX) e~~"' IA-1)
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The general solution for P(x, t) is thus given by

P(x,t)
=

~jcn Pn(x) e~~"' where Pn(x)
=

fi fn(x,t) (A.2)

n

The orthogonality and closure relations read

/
~~ ~"~~~~~~~~ ~"'~

/
~~

~ÎÎÎÎÎÎ~~~

~ ~)£ f»lx)f»lxo)
=

ôlx xo) ~
£ P»lx)P»lzo)

=
Polzo)ôlz zo)

» »

Trie initial condition P(x,t)
~

ô(x xo) determines trie coefficients cm =

~"~~°~.
<- o+ Po(xo)

The Green function of trie problem therefore reads

PiXt i Xo°)
"

L )))°) PniX) e~~"' iA.4)

The spectrum (Pn, Àn) given by Schenzle consists of a continuous and a discrete branch

* Continuous branch of the spectrum

À(s) = ~1~ + s~

~ ~ ~ 2~~"
s sinh 7rs jr (- ~

+ i
~ ~

2
z2

~~'~~

p j~) 2 2 ~~-2 ~-Q fl/~
~

jr
F(/l) i~Î"1 2

*
Discrete branch of the spectrum

~ ~ ~ ~
~)~~~~n-~l

'~~~(ÎL ~'~) ~2~-2n-1 ~~-2n
X~ ~-Ç ~~ ~~

" r(~1)r(~1 + 1 n) " 2

Next we perform the change of variables (t
=

aN/4 and ar =

~) and compute the
x

coefficients we need as

cm = ~~iimm Ill]]) and Cs = ~itrnoo Ill]]1 IA?)

This gives equation là-à)-
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