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Abstract. Within trie boundary-layer model and by taking into account only interface kinetics

(isotropic or anisotropic), we find a contmuous set of
«

kinetic
»

dendrites. This solution exists at

arbitrary supercooling A in the 2D- and 3D-axisymmetric cases and reduces to the usual dendrites

with parabolic tails at A
~

l, and
«

angular
» dendrites at A

~
l. In contrast with classical Ivantsov

dendrites, there are upper limits for growth velocity and tip curvature at each supercooling A.

Ivantsov Ii was the first to show that there exists a contmuous set of stationary needle-like

solutions to the problem of the free growth of a crystal. These solutions are obtained by
neglecting capillarity and interface kinetics and exist only at dimensionless supercoohng

A smaller than 1. To find a smgle dendrite (experimentally, only one is observed), one needs to

introduce a length in the problem. Usually, the capillary length d~ is introduced and the

solution is found by disturbing the Ivantsov parabolic solution using a singular perturbation
method. In this case, and in two dimensions, the tip velocity v is proportional to

(D/d~ A~
at A « 1, where the constant of proportionality depends only on the anisotropy of the

surface tension [2]. D is the diffusion coefficient.

This choice of the length is not unique because there is another characteristic length
connected with interface kinetics : that is, D/w where w is constructed from the interfacial

kinetic coefficient p. The ratio d~
=

d~ w/D of these two lengths determines which of them is

more important. In pure materials, D is the thermal diffusivity in the hquid, whereas m alloys it

is the solute diffusion coefficient in the liquid. If d~ » 1, one expects capillanty to be more

important than kinetics. In the opposite case, dt « 1, kinetics should dominate surface tension

effects. The parameter d~ is a matenal constant which can be evaluated. For example,
d~ mû-1 m pure materials as Ni (by taking p =160cm/s/1ç [3]) or succinonitrile (with

p
=

20cm/s/K [4]). In contrast, d~ is usually much larger than m alloys because the

chemical diffusion coefficient is much smaller than the thermal diffusivity. Nevertheless,
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d~ can also be small in impure materials such as discotic columnar liquid crystals. For instance,

we measured previously in CBHET p
w

1.3 x 10~ ~ cm/s/K which gives dt
-

0.5 [5]. In ail

these examples we thus expect kinetics to be significant even at small supercooling. For these

reasons, we found it interesting to study the case dt
=

0 corresponding to zero surface tension.

This problem has already been discussed by Lemieux et ai. [6] and _by Brener et ai. [7]. Both

calculations are carried out using a full non-local approach and start from the Ivantsov solution.

This requires that kinetic undercooling is small. Lemieux et ai. found analytically for isotropic
kinetics a contmuous family of solutions m the limit of small A, while Brener et ai. found a

discrete set of solutions which are selected by kinetic anisotropy for A
~

l. In this article, we

analyze this problem for arbin-aiy supercooling A and arbitrary kinetic undercooling. We use

the boundary-layer model (BLM) which has been shown to give quahtatively correct results in

many situations [8]. Another important point is that we do non use A>antsov's solution as the

starting approximation.

In the two-dimensional one-sided model (no diffusion in the sohd) the BLM equation for

isothermal and steady-state solidification of a dilute alloy reads

k( V(1 U) cos o
~~~

K sm o
~ l~~

[1 + U(1/k~ -1)] d°
cos o [1 + U(1/k~ -1)]

K d KU dU
~

o (1)~
V do

cos o [1 + U(1/k~ 1)] d°

where V
=

u/w and K
=

J~D/w are respectively the dimensionless velocity in the z-direction

and the curvature of the interface. The angle between the z-axis and the normal to the front is

9 and K is the curvature defined by K
=

d9/ds where s is the arclength along the interface

measured in units of D/w. The dimensionless undercooling at the interface U is defined to be

U
=

(C,~~ C~)/[C~(1/k~-1)] where C,~~ and C~ are concentrations of solute at the

interface and in the hquid far from the interface ; k~ is the equilibrium distribution coefficient.

Equation (1) is still valid for pure materials and thermal growth. In this case,

U
= (T~~~ T~)/(L/c) where L is the latent heat per unit volume and c the heat capacity.

k~ must also be set equal to in equation (1) which grues the same equation as that previously
used by Langer and Hong [9].

The second important equation comes from the Gibbs-Thomson relation. Without anisotropy
effects, it is

U
=

A d~ K V cos 9 (2)

with d~
=

d~ w/D. In the chemical case, 4
=

(C~~ C~ )/[C~(1/k~ 1)] where C~~ is the

equilibrium solute concentration m the liquid at the temperature chosen. The capillary length is

d~
=

yT~/L )/ [mC
~

l/k~ )] and w =

pmc
~

l/k~ where y is the surface stiffness and

m the slope of the hquidus fine. In the thermal case A
=

(T~ T~ )/(L/c ), d~
=

yT~ c/L~ and

w =

pL/c. One sees immediately that in both cases d~ can be wntten m the general form

dt
=

°'~j~ (3)

Equations (1) and (2) can be generahzed for 3D axisymmetnc growth as follows [8]

k( V(1 U) cos 9
~~~ ~ ~~~ ~

Kj sin 9
~ ~~

[l + U(1/k~ )] d9
cos 9 [1 + U(1/k~ 1)]

K d ~~i ~ dU 1= o (1~)~
VR d9

cos 9 [1 + U(1/kE 1)] d9 '
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U
=

A d~(Ki + K~) V cos 9 (2~)

where Kj(9)=d9/ds and K~(o)
=

(sin9(/R(9)
are the two principal curvatures and

R(9
=

dt(cos t )/Kj (t) is the radius of the circular section normal to the z-axis (growth
o

direction).

Let us now discuss the solutions to equations (1) and (2) in the limiting case dt
=

0

corresponding to zero surface tension (2D case). To simplify, we further assume that

à « and k~
=

1. In this limit, the BLM is not stnctly vahd but it gives qualitatively the right
physics as shown by Langer [10]. We can now substitute U by A in ail terms of equation (1)
besides dU/d0=V sm 9 in the last term of equation (1). We thus obtain

ÎÎ ~

k

~n
9111~ ~

~~~

where k
=

K/A,
v =

V/A~. The problem now is to determine whether this equation has

symmetric needle-like solutions corresponding to an even function k(9) which starts at

o
=

0 with a fimte curvature ko and which tends to k
=

0 when 9
-

gr/2. Equation (4) has a

singular point at o
=

0. Thus, for any physical solution, the numerator of the r-h-s- of

equation (4) must also vanish at 9
=

0. This regulanty condition gives a relation between

velocity
v and tip curvature ko :

v =
ko k(. (5)

We can expand the curvature k(9) close to o
=

0 in the followmg form :

k(o
=

jj ~ C,~ ,~(o~)~~+~ for
a # (or ko # IN) (6a)

n o m o

k o
=

IN + ~ ~ Ci
~

o ~ '~ (In o )~ for ko
=

Il (6b)

n i m o

with Co
o =

ko. Inserting (6a) into (4) and equatmg coefficients of (o~)"" +"', we find

a =

1/2ko -1 (7)

and recursion relations which define coefficients C,~,
~

in ternis of Co
=

3 VI [2 (4 ko )] and

of the arbitrary coefficient C
m

C
o.

Constant C must be evaluated by integratmg equation (4)

with boundary condition k
=

0 at o
=

gr/2. For example, for
a =

1/2 (or ko
=

1/3), we find

C
-

0.39. The same procedure can be used when ko
=

Il for calculating C,[~ m terms of

C j*1
=

3 v/2 ko
=

9/8 and of the arbitrary constant C *
m

C i* o
which agam must be calculated

by integration.
Relations (5-7) define a contmuous set of needle-like solutions which can be parametrized

by
a.

The only limitation is a>0 (to avoid divergence of the curvature k(o) at

o
=

0). Note that for 0
~ a ~

l/2, we have k'(o
=

0 )
=

m, whereas for
a >

1/2, we have

k~(o
=

0)
=

0.

The main difference between these solutions and lvantsov's solutions [Ii is that the tip

curvature and velocity now have upper limits which came from the k( term m equation (5)

(lvantsov's solution corresponds to v =
ko m the BLM approximation), Indeed, equation (5)

imposes ko ~
l and

v ~
Il while condition a mû gives and additional stronger limitation

ko
~

l/2 and
v ~

Il. The dimensional velocity and tip curvature are given by

v
=

ko(1 ko) wA~, J~o
=

ko(w/D 4
,

ko
~

l/2 (8)
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The problem now is to understand what happens when surface tension and anisotropy are

mcluded. In this case equations (2) and (4) are generalized as follows

U
=

A Kdt(1 y,~ cos mo V cos o (1 p
~

cos m o ) (9)

v
COS~ ~ k COS~ ~

ù
~ol ~

ù
ikô (i Ym COS m~ +

+ v cos o (1 p~ cos m9
=

0 (10)

where à
=

d~/A~. y~ is the surface stiffness anisotropy while p~ is the amsotropy of the kinetic

coefficient p for m-fold symmetry. We also assume that directions of minimal surface stiffness

and of maximal kinetic coefficient coincide with the growth direction.

In the simplest case, we include only kinetic anisotropy (with zero surface tension,

à
=

0). Thus, for sufficiently small anisotropy p~, there exists a continuous set of solutions

given by

v =
ko k(/B

,

a =

(B/2 ko 1)
>

0 (11)

with B
=

Il [1- p~(m~ +1)] and hmiting values of velocity and tip curvature given by

v ~
BM and ko ~B/2. The solutions disappear when p~(m~ + 1) m1 (Fig. I).

> OE=

~
fi,=0.03 fi,= 0.154£j £~4

,~ ~~~
0 X~ 0 X~

'

0.10 0.15

fi4

Fig. l. Dimensionless velocity as a function of kinetic anisotropy. Trie sobd line grues trie maximal

velocity of
«

kinetic dendrites
>>. Dots correspond to velocities v~ of dendrites selected by anisotropy (see

also mset m Fig. 2). Two dendrite profiles (with trie unit of length D/(w. A. v
)) corresponding to two

different values of P4 and à
=

10~ ~
are given m trie insets. Trie profiles are compared with trie parabolic

profiles havmg trie same tip curvature (dashed lines; m trie nght mset trie two profiles are

indistinguishable on trie choosen scale).

When we include isotropic surface tension without any anisotropy (y~
=

p~
=

0) all

solutions disappear as usual [10]. This result is obtained from numerics and reflects the

impossibility of finding physical solutions k( 9 ) starting from 9
=

gr/2 with k
=

0 and arriving

at 9
=

0 with k'(0)
=

0 iii (in all cases, k'(0) is found to be negative).
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When amsotropy is included, we find numerically some values of
v

which provide
k'(0)

=

0, thus giving a discrete spectrum of solutions for each given value of à [12]. In

figure 2, we plot maximum selected velocity
v as a function of dimensionless parameter

à
=

d~/A~. These curves have been numerically calculated for different values of p~ and

y~. Two different cases can be considered depending on the existence or not of surface

stiffness amsotropy :

if y~ # 0, there are two asymptotic regimes : in the capillary regime, at à
- m, the

dimensionless velocity
v

scales hke y/'~/ô in agreement with the calculations of Langer and

Hong for the BLM [9]. In the kinetic regime, at à
-

0 (or d~
-

0), velocity
v tends to a limit

vo (which is obtained by extrapolation) depending only on p~ (see mset in Fig. 2). At small

anisotropy vo
PI ~~, in agreement with a previous analytical prediction [7]. This selected

velocity is plotted again m figure1 in order to compare it with the maximal velocity of

«
kinetic

»
dendrites corresponding to d~

=

0. Two points must be emphasized : first, the

selected dendrite still exists when p~ >1/17 and
«

kinetic
»

dendrites disappear. Second,

when p4
m

(0.02-0,04 ), the selected velocity is close to the maximal velocity of
«

kinetic
»

dendrite.

~

o
, p4"0.01,

o

v
=

x. ,, v=150

m

~
~'

',,
> ',
» O
>

v~
=

1 ~
j

j

> j
i

j
(
j
j

4

°'°~

Fig.
2.

-

v VIA

stiffness
and kinetic

P~.
Trie

velocity
v~

found by
to

à = 0 are given m trie mset.

-
When y~ = 0 two symptotic regimes

at à -

0 is independent of y~ and thus coincides with the inetic regime discussed
just

before, while the second

ne, at à - m, is haracterized by v ~ p ('~ ô ~
m agreement with the

analytical of
Brener.

We can agam phasize
that esult

is easier to find with the
BLM

than by solvmg the full nonlocal problem
[14].

SO far, we have assumed that AM 1 and k~ = 1. We now discuss

rbitrary 4 and k~ without
amsotropy

and tension. sing
the

ame
procedure as that
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used previously to denve equations (4)-(7), we find :

k(V(1-A+V) [1+ (A-V)(1/k~-1)]-Ko(A-V)~+K((A-V)=0 (12)

a =

[(A-V)/2Ko-1]>0. (13)

Similar equations con be obtained for 3D axisymmetnc dendrites using equations (1') and

(2~)1

k(V(1-4+V) [1+ (A-V)(1/k~-1)]-2Ko(A-V)~+2K((A-V)=0 (14)

and the same relation for
a as that given by equation (13). In this case, the two curvatures at

the tip of the dendrite are equal (Kj(0)
=

K~(0)
=

Ko) and the tip radius equals 1/Ko.
Equations (12-14) only grue the relation between growth velocity and tip curvature as well as

their upper limits (Fig. 3). On the other hand, to find dendrite profiles (see msets in Fig. 3), we

need to solve numerically the corresponding differential equations (1) or (1') in K(9) with

condition K(gr/2)
=

0 at A~1 (usual dendrite with a parabolic tait) and with condition

K(90)=0 at ~ ml (angular dendrite[15, 16]). In the latter case, 90 is given by
V cas 90

=

(A 1).

à
=

o.5 3D

>

à
=

1.5

2D

o-s à

Fig. 3. Tip velocity V (in unit of w) and tip curvature Ko (in unit w/D) versus supercoolmg for two and

three-dimensional dendrites (k~
=

1). Solid lines correspond to «
kinetic

»
dendrites of maximal velocity

(d~
=

0 and
a -

0). Trie thick sohd lines V
=

0 at A
~

l, V
=

(A 1) for A
~

l, and K~
=

0

correspond to steady-state growth of trie planar front. They also correspond to kinetic dendrites m trie

hmit
a - co. Two profiles for 2D

«
kinetic

»
dendrites (d~

=

0 and
a -

0) are shown m trie msets.

In conclusion, we have found a new basic continuous family of solutions which takes mto

account interface kinetics but not surface tension. This solution descnbes a needle-like

dendrite at arbitiaiy supercoolmg A smaller or larger than 1. Consequently, it should be more

appropnate for describing dendrites at large supercoohng than the usual Ivantsov solution only
vahd at A

~
l. It could also serve as a startmg approximation m a more complete theory.
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