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Résumé. Les propriétés optiques des milieux inhomogènes amsotropes sont étudiées dans le

cadre des théories du milieu effectif, tant à trois dimensions (3D) (théories de Maxwell Gamett et

de Bruggeman) qu'à deux dimensions (2D) (théorie de Yamaguchi et ai. ). L'anisotropie du milieu

effectif peut provenir soit de l'alignement d'inclusions non sphériques dans un système à deux ou

trois dimensions, soit de la distribution plane du système 2D, même pour des particules
sphériques. Nous montrons ici que ce milieu effectif anisotrope induit une déformation fictive des

inclusions qui va dans le sens d'une réduction de l'amsotropie et rapproche les fréquences de

résonance de plasmon de surface vers celle de la sphère. Par ailleurs, dans le cas de la théorie de

Bruggeman, cela modifie la valeur du seuil de percolation optique. Ces théories, bien

qu'anciennes, sont toujours très utilisées, en particulier pour prédire l'absorption optique des

composites. L'effet présenté ici doit donc impérativement être pris en compte.

Abstract. The optical properties of anisotropic mhomogeneous media are studied within the

framework of the classical 3D effective medium theories of Maxwell Gamett and Bruggeman, and

the 2D theory of Yamaguchi et ai. The origm of the amsotropy is either the nonspherical shape of

the metallic inclusions m trie 3D systems, or the distribution of the inclusions (even if sphencal) on

a substrate m the 2D configuration. In bath cases, it Ieads to an anisotropic effective medium. In

this paper, it is shown that this surrounding amsotropic medium mduces a fictitious deformation of

the inclusions which reduces the anisotropy and shifts the resonance wavelengths toward the

sphere plasmon resonance. In the case of the mean field theory of Bruggeman, it also affects the

percolation threshold value. Although some of these theories are now qmte old, they are still

extensively used, especially for the predictions of the absorption of the composite media.

Therefore the effect presented here for the first time should be taken mto account.

1. Introduction.

Heterogeneous matter constitutes swce trie seventies an important field of basic research and

applications, m which granular films and nanocerrnets, i e. inclusions of metallic pa«icles

(*) Unité associée au CNRS n 781.
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(dielectric function e~) of nanometric size in a dielectric host (dielectric function e~), take a

growing importance, stimulated by their numerous applications in the field of spectrally
selective coating.

Theoretical works on electromagnetic prope«ies of inhomogeneous materials have their

origin m the study of three dimensional (3D) inhomogeneous media at the beginning of the

XXth century (Maxwell Gamett [1, 2], Bruggeman [31. .). Ail these thermes, extensively
studied, first consider spherical isotropic inclusions and lead to an isotropic effective medium

characterised by a scalar effective dielectric function (DF) e~. The derivations of the Maxwell

Gamett and Bruggeman theories for ellipsoidal inclusions aligned along the same axis j have

net been developed for a long time [4-6] and came at the same lime as most of the two

dimensional (2D) theories (Yamaguchi et ai. [7-9], Bedeaux and Vlieger [10-12]). Ail these

approaches introduce depolarization factors along the main axes of the ellipsoid related to the

ellipsoid shape in the 3D case [13], to the shape and interactions between neighbouring
particles and with the substrate in the 2D case (one then speaks of effective de polarization
factors). The effective DF deduced from these thermes is now amsotropic and tensonal, for

two fundamental distinct reasons : m 2 and 3 dimensions because the shape of the inclusions

can be anisotropic (and the depolarization factor is a tensor) m two dimensions because the

film itself is structurally anisotropic, even if made of spherical inclusions (Fig. I).
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Fig. l. The ongms of the anisotropy of the effective medium m 3D and 2D configuratiÔns.

In bath cases, each theory allows the determmation of the three mean values of the tensorial

effective DF ~~, each one independently from the others. In other words, these approaches

neglect the fact that the unit cells modelling the inclusion and it's environment are now

immersed in an anisotropic medium. It is the atm of this paper to present improved effective
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medium theories in order to accourt for the anisotropic effect on the depolarization tensor. The

exact formulation of the effective depolarization tensor is outlined in section 2. In section 3,

we revisit, in this context, the historical and still extensively used 3D theories of Maxwell

Gamett and Bruggeman, and the original 2D theory of Yamaguchi. The main results are

summansed in section 4.

2. The effective depolarization tensor.

In most classical effective medium theories (EMT) it is assumed that the particles do not

interact so that the inhomogeneous media can be modelled as single coated inclusions

immersed in the effective medium [14, 15] (Fig. 2).

Ce

Ea A~

Eb Ab

Fig. 2. A unit cell modellmg the effective medium in the quasi static theories. Materai a is immersed

m material b, the coated inclusion is immersed in the effective medium. If matenals a and b have the

same shape, we find the classical expression of Maxwell Gamett, if both are directly immersed in the

effective medium, it grues the Bruggeman theory.

The relation between e~ and the dielectric functions of the constituents e~ and e~ is then

obtained by deterrnining the polarizability of the coated inclusion when submitted to a local

(and generally static) electric field. One then obtains equations of the following forrn for 3D

theories :

E~ E~ e~ E~
= p MG

,

(1)
Eb + 2~b(Ee ~b) Eb +'Îa~~a ~b)

p
~~ ~~

+ (l p)
~~ ~~

=

0 BR, (2)
~e + Aa (Sa Se) Se + Ab (Eh ~e)

where p is the menai volume filling factor, A~ and A~ are the depolarization factors of the inner

and curer ellipsoids, respectively, generally assumed to be identical, so that equations (1) and

(2) reduce to the classical expressions of Maxwell Gamett and Bruggeman.

For the 2D theory of Yamaguchi, we have

f~(Fjj + p) + Eb(Î Fjj p)
~3~

Se l " Eb
~

~ ~ ~ ~~ ~
Î FÎ

+
Î~(Î

Î
~

~~~ ~ ~~ E~(F
~

+ p) + E~(Î F
~

p)
~~~
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where Fi and F,j are respectively the non degenerated and the degenerated values of the

effective depolarization tensor F(Ajj, A~ ) taking into account the effect of the substrate that

will be detailed below. Up to now, ail the components of any depolanzation tensor

(A~, A~, Ajj and Ai depend only on the shape of the ellipsoid. For a general ellipsoid (axis a, b,

c), the depolarization factors are given by [16, 17] :

~" ~Î~
Î~

(q +

Î~)
f(q

~" ~' ~' ~~ ~Î

with f(q)
=

((q +
a~)(q

+
b~)(q

+ c~)) ~'~ The integral cannot be evaluated in closed forrn,

but extensive tabulations are available [18, 19]. When the general ellipsoid degenerates into a

profane or oblate spheroid with rotation axis c, we have

~
= ~~j) (Log

~
2 e

with e =

fi
(prolate)

,

A~
=

~ ~ (e Arctg e ) with e
=

fi
(oblate) respectively

~~~

e~

and for the degenerate values

Aa,
b ~

i A~ )/2 (7)

The well known variations of A with the axis ratio are shown m figure 3.

Ab
=

Aa=(1-Ac)/2

A~

3 4 6 7 9

axis ratio cla

Fig. 3. Geometrical factors for a spheroid.

These expressions are deterrnined by solving the Laplace equation ha
=

0 in an elhpsoidal
coordinate system with the assumption that the externat medium (the effective medium m the

problem treated here) is isotropic. In fact, this is never the case, except for sphencal isotropic
inclusions in 3D medium, and the above calculation requires some discussion. This is not a

purely academic problem : the shape of the elhpsoid, and then the depolanzation factor value,

has a direct influence on the position, width and the amplitude of the surface plasmon modes m
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the metallic inclusions. Moreover, in the mean field theory of Bruggeman, the critical

percolation concentration p~, which deterrnines the metal non-metal transition, is exactly
equal to A. It is then necessary to evaluate the influence of the anisotropy on the depolarization
factor.

Ail previous results are based on the validity of the Laplace equation m a charge free region.
The problem is somewhat more complicated for an anisotropic extemal medium defined by a

tensorial DF s where the absence of electric charges does not involve the validity of Laplace's
equation [20]. The volume charge density p is related to the electric displacement D and the

potential ~P by

~2 ~2 ~2
p =V.D= -V. (s.V~P)=- s-V-Va

=-

(s~~+s~~~+e~.~j ~P, (8)
ôx ôy ôz

where the coordinate system is such that the axes are along the principal axes of the tensor e.

We can see here that, except if e~ = s~~ = e~~ (isotropic medium), p =

0 does not involve

ha
=

0. Nevertheless, a solution can be obtained by changmg from a cartesian coordinate

system to a new coordinate system parallel to the principal axes of e, such that the Laplace
equation holds m the outer medium [2 Il. For a homogeneous extemal field along the z axis, the

potential far from the inclusion boundary is given by :

~Po =
Eo s/)~ z'

,

(9)

so that, if we define the new coordinate system by :

~' ~~~~~ ~~~' ~'
"

Y ~~YY~~
~'~

,

z'
= z (s~~)-1/2

,

~~~~

the extemal field is also homogeneous. We can already notice that in the new coordinate

system, the axes of the ellipsoid change into :

>
~ ~- l/2

~ ~
xK >

~~ ~~YY~~~'

>
-1/2

C =
CEzz

so that the ellipsoidal inclusion apparently changes into another ellipsoid with different axes.

We now consider the problem of an ellipsoidal inclusion of isotropic DF s~ immersed in an

anisotropic dielectric with tensorial DF s~, to which an extemal electric field is applied in the

direction of one of the principal axes (a). In the new coordinate system defined above, the

Laplace equation holds and equation (5) becomes :

~ *
~

~'~'~' j~ ~~
=

~ 2
o

(q + a'2)3/2 (q +
b'2)i'2 (q +

c'~)i'~

=

abc
(s~ )~

°~ ~~

~ ~~~

(i1)
2

o
(q(ei )xx + a2)3'2 (q(si )~ + b2)12 (q(ei)~~ + c

and similar expressions for the other mean values A~ and A~. For inclusions in an amsotropic
medium, the depolarization tensor depends both on ils shape and on the anisotropy of the outer

medium. The integral expressions (II) have analytic solutions when b'~=a'~,
ie..

b~/(s~
)~~ =

a~/(s~)~. Except for unprobable specific cases, this occurs for spheroids (b
=

a)

immersed in a uniaxial anisotropic medium ((s~)~~
=

(s~)~). Whatever the inclusion shape

may be, the complex effective depolanzation factor Ai can be wntten under one of the
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equivalent forrns :

1_ ~* i ~ ~* i ~ ~*
Ai

=

~

log
~

2 e * (pro. ) or (e * Arctg e * ) (obl. ) (12)
2 e* l e e*~

with j(
s~ )~~

b~ (s~
)~~

b~
e*

= or e*
=

(13)
(

s )~~
c~ ( s~ )~,~

c~

~

It can be seen from the complex expression of the eccentricity e* that the amsotropy flattens

the ellipsoidal inclusion (1.e. increases the depolarization factor) along the direction of high

s~ values and elongates it along the other. If we now tum back to the effective medium

theories, this will lead to a shift of the plasmon mode frequencies toward the sphere resonance

frequency.

3. The effective medium theories revisited.

If we consider ellipsoidal inclusions aligned along the same direction in a 3D system, or

spherical and ellipsoidal partiales with the rotational axis perpendicular to the films, deposited

on a substrate (2D system), the effective dielectric tensor and the ellipsoidal inclusion have, by

nature, parallel axes and the above formalism applies. The unit cells which allow the

determination of s~ are now immersed in an anisotropic medium of DF s~ which modifies their

apparent eccentricity and thus the effective value s~ itself : in the anisotropic case, all the EMT

become self-consistent. We will now point ouf this anisotropic effect with in the frame work of

the most commonly used 3D theories (the Maxwell Gamett theory and the self-consistent

theory of Bruggeman) and the 2D theory of Yamaguchi. These theories will be briefly
outlined.

3,1 THE GENERALISED MAXWELL GARNETT THEORY. If we introduce the anisotropic effect

m the MGT, expression (1) becomes a tensonal self consistent expression of the form

s~ s~. l s~ s~. l

=
p (14)

e~. l +A*(e~ e~. l) s~. l +A*(e~- s~.1)

where the eigenvalues of A*, deterrnined by equations (12) and (13), depend on e~. This

implicit system of non-independent equations is numerically solved using a forced convergence

procedure. The two distinct components of e~
(fl and 1to the rotational axis of the ellipsoid)

are shown in figure 4, and compared to the classical prediction of the MGT. (Matrix and

inclusion can be permuted to model dielectric inclusions m a metallic host.)

Taking into account the effect of the amsotropy does not deeply affect the absolute value of

s~ but, as expected, shifts the two absorption peaks toward the plasmon mode frequency of the

sphere, indicating a sigmficant modification of the apparent shape of the inclusion. In the

example presented here (Au-AI~O~, p =

0.3, cla
=

0.5), the new position corresponds to an

effective axis ratio reduced by more than a factor 2.

3.2 THE MEAN FIELD THEORY OF BRUGGEMAN. More drastic effects are expected with this

theory, if we consider the particular signification of the depolanzation factor A. It has been

demonstrated a long time ago that the static percolation threshold p~ is exactly equal to A and

the physical meaning of A may be quite different whether the concentration p is close or far

from p~. Each modification of the effective value of A may deeply affect the predictions of this

theory. We can distinguish two situations. We have mentioned that, for spheroidal inclusions,
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the degenerated values of A* are related to the non-degenerated one by equation (7) so that we

can deterrnine two concentration regions where p falls between p~~ and p~jj (1.e.
Ai and Ajj), leading to an extremely anisotropic medium, metallic in the direction of

Ajj, for example, and dielectric in the other directions. This is represented by regions C and D

on the A-p diagram of figure 5. These regimes are typical of the Bruggeman theory. In the other

regions, A and B, the effective medium is very similar to those predicted by the MG theory and

the anisotropic effect qualitatively equivalent.
In the example given in the previous section, an axis ratio equal to 0.5 gives a depolarization

factor equal to 0.527 along the axis of rotation and 0.236 along the other two axes, so that for a

concentration p
=

0.3, the effective medium is dielectric m a direction parallel to the axis of

rotation, metallic along the other two axes (region C).

Maxwell Gamett theory

13
p =

o.3 cla
=

o.5

ii

Component ~

9

7

Component II

t

3

~

l

-1

-3

0.2 o.4 o.6 0.8 1.2 1.4 1.6 1.8

Wavelength ~m)

a)

Fig. 4. Real (a) and imagmary (b) part of the effective dielectric function of Au-AI~O~ cermet

modelled by the classical (---) and generahsed (~) Maxwell Garnett theory. The absolute values are

not affected bu the absorption peaks are shifted toward the plasmon mode frequency of the sphere.
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D
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~
Depolarisation factors

Fig. 5. The A-p diagram showing the four different regions modelled by the Bruggeman theory.

Region A and B correspond to the media modelled by the Maxwell theory in the metalhc and dielectric

configuration. Regions C and D are specific of the Bruggeman approach.
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The tensorial equation for the BR theory is

e~. l e~ e~. l e~
~

e~ + A](~~. l e~)
~ ~~ ~'~

e~ + Af(e~, e~)
~' ~~~~

Figures 6 present the classical and modified predictions of the Bruggeman theory m two

different characteristic regions. As expected, the influence of the anisotropic effect is quite

3 Bruggeman theory

p=0.3 cla=0.S

Component II

2

modif.

,,--,,,,[[~ ~~~Î

~ia~~i~ai,, ~~~~------
-----~~~~~

i

part

1 2 3

Wavelength p m)

a)

Fig. 6. la, b) The theory of Bruggeman in the extreme anisotropic configuration. The effective

medium is dielectric-like along the axis of rotation of the oblate inclusions (Fig. fia), conducting along the

other two directions (Fig. 6b). it implies a shift of the percolation threshold value with the frequency
together with significant modification of the dielectric function (Au-Al~03). (c) The Theory of

Bruggeman m the dielectric configuration. We find agam the mode contraction around the sphere
plasmon frequency.
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sensitive. As already mentioned, for a concentration p =

0.3 and an axis ratio cla
=

0.5, the

medium lies in region C, the component perpendicular to the rotational axis c is metal-fike and

dielectric fike along the axis of rotation. The anisotropy elongates the oblate ellipsoid, reduces

the depolarization factor m the direction of c
(Ai now fluctuates between 0.4 and 0.44, these

values correspond to an effective ratio cla
m

0.8) an increases A* in the other two directions

(0.28 ~Af~
~

0.29). The ellipsoid tends to a sphere, the mean values of A*, and so the

percolation threshold in this theory, become closer to p, so that the conductivity of the metallic

components decreases and the polarizability of the dielectric one increases (Figs. 6a, b). In this

connection, it is worth noting that the percolation threshold now depends on the frequency. Far

from the resonance region, A* decreases with w, involving a gradual increase of the

polarizability m the infrared region. As a consequence, this modified theory cannot deterrnme

more critical exponents for the conductivity t and the polarizability s of anisotropic
inhomogeneous media, than when the anisotropic effect is neglected, which leads to the static
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mean field exponents s
=

t
=

[22]. (The effective dielectric function m the infrared region

was shown to follow a Drude function with an effective polanzability P~ and an effective

plasma frequency w~~. In the Bruggeman equation one can then distinguish the wavelength
dependent and independent terras, whose solutions lead to the deterrnination of the scaling
laws : P

~
= e~ p *~ ~ and w)~

= w p *' with s
=

t
=

1, where e~ is the dielectric function of the

dielectric inclusions and w~ the plasma frequency of the metallic ones. p* is the reduced

concentration defined by p*
=

~p-p~)/p~ with p~ =A m the Bruggeman theory. This

procedure is no longer suitable as A depends on w and all the terras in the Bruggeman
decomposition are wavelength dependent.)

Figures 6c, d present the same situation as that descnbed with the MG theory (same axis

ratio cla
=

0.5 but p =

O.l). The effective medium is dielectric-hke m every direction

(region B). We observe the shift of the absorption peaks toward the plasmon mode frequency
of the sphere corresponding to the apparent modification of the shape of the spheroid, but m

JO~R~AL DP PHYSIQUE T 4, N' 2 FEBRUARY 1994 >2
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Bruggeman theory
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Fig. 6c'.

contrast to the MGT, the absolute value of ~~ is deeply affected, due to the apparent

modification of the reduced concentration p*
=

~p p~)/p~ (with p~ =

A*).

3.3 THE 2D THEORY OF YAMAGUCHI. No spectacular effects have to be expected from the

classical 2D theories which are based on the same principle as the theory of Maxwell Gamett,

namely the theory of Yamaguchi et ai. and the theory of Bedeaux and Vlieger. We will focus

our attention on the first approach which can be analytically solved whereas the second one,

which takes into account the actual morphology of the film, needs an image and does not

present a general formulation.

As the Lorentz approach is no longer suitable in 2D to deterrnine the local field polansing the

inclusion, it has to be exactly calculated for a given distribution of spheroids on a substrate.

Yamaguchi et ai. account for the substrate effect by using the mirror image expedient. For a

given inclusion, the local field is then the superposition of the appfied field, the field of the
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image-dipole and the field of ail the other dipole and image couples. The dipoles are assumed

to be distributed onio the nodes of a square array (interspacing d). Even for spherical
inclusions, the effective medium presents an appreciable anisotropy considering the particular

forrn of the dipolar field and the orientations of the image dipole (Fig. 7).

(Real part) Wavelength (pm)

0.5 1 1.5 2.5

Îd
~~ à
~

~
é

É Î
1 )
~ II ÎÙ ~
t

M%à
C O
£ ~
~ Il O

~

O
~

'Q ~

~
ôQ

# )
$ o 5

~

~i (
© ~
.Î À
Î
~
~

o 1 3

(Imaginary part) Energy (eV)

Fig. 7. Prediction of the theory of Yamaguchi et ai. for spherical gold inclusions deposited enta a glass
substrate. The amsotropy arises from the 2D configuration.

When the field is parallel to trie film, dipole and image-dipole are in opposite directions

whereas they are in the same direction when the applied field is perpendicular to the substrate

(Fig. 8). As a consequence, the substrate effect is minimized in the first case and increased in

trie second one. At least, trie anisotropy may aise be induced by trie shape of trie inclusions. In

the case where the rotational axis of the spheroid is parallel to the substrate [23] or with oblique
columnar structures [24], none of the components of the effective depolarization tensor is

degenerated and they have to be numerically deterrnined from equation (11). If this axis is

perpendicular to the substrate, two mean values (parallel to the film) degenerate, the tensor is

determined by the analytical expressions (6) et (7) and the anisotropic effect can be studied in a

similar way as the above 3D theories (Fig. lb).
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Fig. 8. The influence of the image-dipole is different for the two directions of the applied field.

The effective depolarization tensor, as determined by Yamaguchi et ai, has the following
forrn

Fjj =Ajj-
~ ~ ~~

-0.716
~~~ ~~,

24 p~ + p~ F~ + Fa 2 d

2 y2 p~ p~ 2
e

~

d~
~~~~

F
~ =

A~
~

+ 0.716
-.

24~/ F~+ Fa Fs+ Fa d

Ajj and A~ are the mean values of the geometric depolarization tensor in directions parallel and

perpendicular to the substrate (Eqs. (6) and (7)), d~ is the mass thickness of the film, y the axis

ratio and
7~ =

1/h, where Î is the distance between the dipole and trie image-dipole and h trie

rotational axis. For adsorbate inclusions with trie rotational axis perpendicular to trie substrate,
Î

=

h and ~/ =

Î. The second term in (16) represents trie dipole-image contribution and the

third terra is trie result of trie summation over ail trie couples (dipole, image-dipole). This third

terra contributes less than 10 fb to Fjj but can be preponderant in the perpendicular case. It can

be seen that only trie first two terras of F are affected by an apparent modification of trie shape
of the inclusion. In the following, we will neglect the variations of trie second terra. This

approximation is valid for oblate spheroids (cla
<

1). In finis case trie second terra, representing
less than 10 ni of trie total effective factor (only 5 fé in trie parallel case), is net greatly affected

by a modification of A (see Fig. 3) and we avoid trie questionable inversion of equations (6).

Trie modifications introduced when substituting A* in equations (16) are shown in figure 9.

Only trie parallel component is appreciably affected by trie amsotropic effect, considenng trie

relative amount of A in the effective depolarization factor F.

4. Conclusion.

Most historical effective medium theories, initially developed for sphencal inclusions, have

been subsequently extended to ellipsoidal shapes. Except for the case of randomly oriented

elhpsoids, the effective medium thus deterrnined is anisotropic and the depolarization factors

of the ellipsoidal inclusions, now immersed in an anisotropic medium, depend bath of the

shape of the inclusion and of the effective dielectric tensor e~. As a consequence, ail the

theories become self consistent and bave to be numerically solved. This has been done in the

particular cases where the effective dielectnc tensor and trie axes of the spheroids present the

same symmetries. This is always the case in 3D systems but reduces our analysis to 2D

systems with the rotational axis of the inclusions perpendicular to the substrate. The main

result is that the anisotropy tends to minimize the eccentricity of the spheroid and thus, the
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Fig. 9. The anisotropic effect in the theory of Yamaguchi et ai. (Au-granular, p =

0.3, cla
=

1). Only
the absolute value of p~ is affected.

anisotropy itself. This affects more or less the absolute values of s~, depending on the theory,
and shifts trie positions of the absorption peaks toward the interrnediate position of trie sphere

resonance. This anisotropic effect has been experimentally observed in the 2D configuration
and interpreted as a multiple-image effect introduced in the theory of Yamaguchi et a/. [25, 26]
(this effect leads to an enhancement of the anisotropy of the effective medium).

More drastic effects are predicted from trie self consistent means field theory of Bruggeman,

due to the particular sense of the depolanzation factor in this theory. It is weII established that

the static percolation threshold p~ is strictly equal to A in this theory. This result has been

demonstrated for optical frequencies, where optical conductivity and polarisation follow

power laws in the form of lp p~)", with cntical exponents equal to unity and p~ =

A. We

have shown here that this result is only valid for sphencal inclusion (A
= p~ =

1/3). For

ellipsoidal shapes, A* depends on the anisotropy charactenzed by p~ i
/p~

~
which is a function

of the frequency and the percolation threshold now depends on the frequency.
When apphed to anisotropic media, the simple effective medium thermes have to be solved

numencally. In addition to their classical restriction to low concentrations and long

wavelengths (quasi-static approximation), the classical formulations are limited to quasi-

sphencal inclusions.
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